
CSCI-GA.3033-107: Cryptography of Blockchains Spring 2024

Homework #1
Due: 11:59pm on Sunday, Feb 11, 2024
Submit via Brightspace (each answer on a separate page)

Problem 1. Proof-of-Work hash functions. Let H : X × Y → {0, 1, . . . , 2n − 1} be the hash
function for a proof of work scheme. Once an x ∈ X and a difficulty level D are published, it
should take an expected D evaluations of the hash function to find a y ∈ Y such that H(x, y) <
2n/D. Suppose that X = Y = {0, 1}m for some m (say m = 512), and consider the hash function

H : X × Y → {0, 1, . . . , 2256 − 1} defined as H(x, y) := SHA256(x⊕ y).

Here ⊕ denotes a bitwise xor.

a. Show that this H is insecure as a proof of work hash. In particular, suppose D is fixed ahead
of time. Show that a clever attacker can find a solution y ∈ Y with minimal effort once x ∈ X
is published. Hint: the attacker will do most of the work before x is published.

b. Would H(x, y) = SHA256(x)⊕SHA256(y) work? Prove your answer, assuming that SHA256
acts as a random oracle.

c. Is H(x, y) = x SHA256(y) a collision-resitant hash function? Prove your answer. (Note
that the question is not asking about Proof-of-Work security, but collision-resistance.)

d. Given the hashing power of the Bitcoin network as of January 2024, how long would it take to
find x such that SHA256(x) = 0256 if every miner worked towards that goal? (Use reasonable
assumptions to get an estimate.)

Problem 2. Binary Merkle Trees and Beyond: Alice can use a binary Merkle tree to commit
to a list of elements S = (v1, . . . , vn) so that later she can prove to Bob that S[i] = vi using
an inclusion proof containing at most ⌈log2 n⌉ hash values. The binding commitment to S is a
single hash value. Let H be the collision-resistant hash function used.

a. A Merkle tree constructed using H is a binding vector commitment if H is collision resistant.
Prove this by showing that if an adversary can construct two opening proofs (vi, i) and (v′i, i)
then we can break the collision resistance of the hash function.

b. Show that Merkle trees satisfy an even stronger property, i.e. that they have unique proofs.
That is, given two distinct Merkle proofs π,π′ for the same statement (vi, i) and the same
Merkle tree root, we can break the collision-resistant property of the hash scheme.

c. Is such a Merkle tree also a set accumulator? If yes, prove it. If no, explain why not.

d. Consider a k-ary Merkle tree where each node has k children (a binary Merkle tree is where
k = 2). If the tree contains n elements, What is the length of the inclusion proof as a function
of n and k?

1

e. For large n, if we want to minimize the proof size, is it better to use a binary or a ternary
tree? Why?

Problem 3. Merkle Trees and Block Trees

a. Draw a Merkle tree with 5 leaves and describe how each node’s value is calculated.

b. Let T be a Merkle tree with n nodes and T ′ be one with n′ > n nodes such that the leaves
of T are a prefix of the leaves of T ′. How would one prove this? Assume that n is a power of
two.

c. What if n is not a power of two? You can give a brief description or a diagram (that is, your
answer doesn’t have to be too formal). Hint: you’ll need to use less than n nodes.

d. To update a Merkle tree T by appending a leaf e, how much information about T would you
need? A brief description or diagram will suffice. (You need not formally prove your answer.)

e. Let h1 ← h2 ← . . . ← hn be a blockchain represented by headers hi with hn being the current
head. Alice wants to prove to Bob that there exists a block with a certain header h in this
chain, but Bob only knows that hn is the head and knows nothing about the other headers.
How can Alice convince Bob? How long is this proof?

f. Instead of a blockchain, imagine that the blocks are arranged in a “blocktree”. The blocktree
would be a Merkle tree whose leaves are the hashes of the headers of all blocks. State one
advantage and one disadvantage of this method. (Hint: use the previous subparts.)

For the next two problems it’s useful to recall the security definitions of signatures that was
presented in class (note that we will discuss a weakness of this definition in Problem 5:

Definition 1 (Secure Signatures) A Signature Scheme Σ is a tripple of algorithms Σ =
(Setup, Sign,Verify). We say the signature scheme is secure if for all polynomial time and query
adversaries A

P

Verify(pk,m,σ) = ”accepts”

∧
m ∕∈ O.M

(pk, sk) ← Setup(λ)

(M,σ) ← AO(sk)(2λ, pk)

Here O denotes an oracle that on input m outputs a valid signature on that message. and O.M
denotes the set of messages that the oracle was queried on.
A one-time signature is a signature scheme where the adversary does not have access to O.

Problem 4. One-time Schnorr: Consider the following modification of the Schnorr signature
scheme:

• sk = (x, r) and pk = (Y = x ·G,R = r ·G)

• Sign(sk,M) outputs s = r + c · x , where c = H(pk,M)

• Verify(pk = (Y,R),σ = s,M) outputs s ·G ?
= R+ c · Y , where c = H(pk,M)

a. Show that the scheme is a secure one-time signature scheme. Concretely, show that if there
exists an adversary AOTS that can forge one-time Schnorr, there exists an adversary ASchnorr

that can create arbitrary forgeries for the normal Schnorr signature scheme.

2

b. Show that given any two signatures on two different messages, you can extract the private
key.

c. Assume you have two parties with public keys pk1, pk2 and a message M . Design a way for
the parties to produce a signature σa that is the size of only one signature but shows that
both parties (identified by their keys pk1, pk2) signed M . Hint: You might need to generate
an additional challenge c′.

d. Prove that the signature scheme in part (c) is secure. The proof requires a special notion of
“special soundness” and starts with the assumption that you have two aggregate signatures
σa,σ

′
a on the same message M but distinct challenges c′1, c

′
2. Using these and pk1, pk2, show

that you can compute σ1,σ2 where each σi is a valid signature for message M and public key
pki.

e. Is such a one-time signature scheme useful in a blockchain setting? Can you modify Bitcoin
such that it still works using only a one-time signature scheme? What about Ethereum?

Problem 5. Randomized BLS: Let Sign be a signature scheme with private key x and public
key Y = x · G ∈ G with Sign(sk,M) := σ = (r, (x · r) · HG(M)) where r ← Zp\{0}, and

Verify(pk,M,σ) := e(σ, G)
?
= (r ·HG(M), y) ∧ r ∕= 0. Here HG is a hash function that maps to

group elements (as in BLS).

Consider the following pseudocode describing an exchange’s withdrawal function. (Note that this
is a function running on the exchange’s server and not on a blockchain smart contract.)

request_withdrawal(amount,account,withdrawaladdr)
If account.balance>=amount:

lock account
create tx sending amount to withdrawaladdr
sig = sign_BLSR(sk,tx)
txid = H(tx,sig)
wait(timeout)
Check blockchain
if txid on blockchain then

account.balance-=amount
unlock account

else
notify user that tx failed
unlock account

txid= H(tx,σ) is the transaction id on the blockchin.

a. First, show that the signature scheme is secure assuming BLS is secure

b. Assume that the exchange uses this randomized BLS signature scheme. Can you construct
an attack that allows a user to steal money from the exchange? (This really happened).

c. There are two possible mitigations. For the first, how would you strengthen the security def-
inition of signature schemes such that vulnerable signature schemes are no longer considered
secure?

d. For the second, how can we change the blockchain so that this attack does not occur anymore?

3

