
IMPROVING THE PRIVACY, SCALABILITY, AND ECOLOGICAL IMPACT

OF BLOCKCHAINS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Benedikt Bünz

June 2023

© Copyright by Benedikt Bünz 2023

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Dan Boneh) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Mary Wooters)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(David Mazierez)

Approved for the Stanford University Committee on Graduate Studies

iii

Abstract

Despite the excitement around them, Blockchains today still suffer from major limitations. Popular

blockchains have high transaction fees, limited privacy, and substantial ecological impact. These

issues are largely due to the fact that in decentralized blockchain systems, each action performed by

one party gets seen and verified by all parties in the network. In this dissertation, we develop solu-

tions to these limitations. They rely on a common proof paradigm, in which a prover can generate

a certificate that the actions it performed were in accordance with a set of rules. Importantly, the

certificates can be highly efficient and privacy-preserving, even if the actions are not. We develop

four such proof systems, each tailored to resolve one of the limitations of blockchains. Bulletproofs,

a zero-knowledge proof system that is designed for private blockchain transactions. HyperPlonk, an

efficient SNARK that enables outsourcing the processing of entire blocks of transactions. Verifiable

Delay Functions, a key component for ecologically friendly blockchains, and ProtoStar, an incremen-

tally verifiable proof system designed for building efficient Verifiable Delay Functions and succinct

blockchains. These tools are not merely theoretical but have already found practical applications

and are securing systems worth billions of dollars.

iv

Acknowledgments

When I was asked what I wanted to be, as a child, I would respond: “Not a doctor” (my form of

rebellion). Well, now I am one, just not the ‘real’ kind. This journey would not have been possible,

and certainly not nearly as enjoyable, without the many amazing people who supported me along

the way.

First and foremost, this is my advisor Dan Boneh. I walked into Dan’s Cryptography class as

a Master’s student, knowing something about cryptocurrencies but very little about cryptography.

Dan’s excitement for this topic was, and to this day is, contagious, and I immediately fell in love

with the subject. I could not have wished for a better advisor. Any time after meeting with him,

I would feel energized, motivated, and usually filled with a new insight or answer from the ’oracle’.

I, especially appreciated his support and his ability to open doors for his students. After my first

year, he was asked to give a keynote at a big blockchain conference on the ‘state of cryptography’.

He suggested that I, who was far from an expert at that point, gave the talk. This single event was

a major confidence builder, and I hope that I can emulate him as an advisor myself.

The second person that made this Ph.D. possible is Ben Fisch. My first memory of Ben was

discussing (to the outside, it would have looked like a full-blown fight) the general merits of decen-

tralized blockchains. I thought I did a terrible job for the defense and was just not getting through.

This was the unorthodox start of an incredibly successful collaboration and more importantly, a great

friendship. Ben has made me a significantly better researcher by forcing me to be less hand-wavy

through endless discussions (not fights anymore) and by fixing most (unfortunately not always all)

of the bugs I carefully hid in our proofs. We did end up working on quite a few blockchain-related

topics, so maybe I did get through after all.

I also want to thank Binyi Chen, who I have tremendously enjoyed collaborating with in these

last couple of years and who has become a close friend. I am looking forward to many more years

of working together! Joe Bonneau taught me that good research can and should be combined with

good humor and life balance. I cannot thank him enough for his support from before I started my

Ph.D. till recently on the academic job market. I am very much looking forward to being colleagues

with him! I would not have made it to Stanford without Sven Seuken and Ben Lubin. They first

sparked my interest in research, and by treating me as an equal, gave me the confidence to think

v

that I could be a successful researcher.

I also want to thank all my other co-authors that I have had the pleasure of collaborating with:

Mary Maller, Pratyush Mishra, Nirvan Tyagi, Jeremy Clark, Psi Vesely, Alessandro Chiesa, William

Lin, Nicholas Spooner, Zhenfei Zhang, Alan Szepieniec, Shashank Agrawal, Mahdi Zamani, Lucianna

Kiffer, Loi Luu, Jonathan Bootle, Andrew Poelstra, Pieter Wuille, Greg Maxwell, Fernando Krell,

Alex Xiong, Philippe Camacho, Elaine Shi, and Yuncong Hu. It is a great joy to work in such a

collaborative field, and I hope to add many more people to this list in years to come.

I started my Ph.D. in the Applied Cryptography Group together with Dima Kogan, Florian

Tramer, Saba Eskandarian, and significantly overlapped with Ben, Henry Corrigan-Gibbs, Riad

Whaby, David Wu, Sam Kim, and Alex Ozdemir. I am incredibly proud of this group and all that

we have accomplished, and the culture we created. We had a great mix of support, friendship,

and competitiveness that never once got toxic. I am very confident that this new generation in the

Applied Cryptography Group will continue and build on this legacy. I also want to thank Ruth

Harris and the rest of the Stanford staff, who graciously put up with me for all these years.

Essentially, the only jour fixe in my last 7 years was Tuesdays, 6 pm running practice with the

Peninsula Distance Club. PDC and the people in it were a vital constant in an otherwise, at times,

tumultuous Ph.D. journey. Running in circles with Matt, Chris, Steven, Kevin, Trevor, Sarah, Maya,

and Brendon, while getting told life stories and advice by our coach Dena is the single thing I most

looked forward to in any given week. I have been blessed with many amazing friends here and on

the other side of the world back home. They gave me the support and the distraction I needed, and

I would have been miserable without them. My many Bay Area friends that have made this place

a home for me: Chris Olley, Felix Crevier, Benoit Miquel, Lars Neustock, Anastasiya Vitko, Jean

De Becdelievre, Emilie Leblanc, Maxime Bouton, Arnaud Dusser, Isabelle Durant, Behrad Afshar,

Frances Silva-Roig, Annie Marsden, Jake Kohn, Timon Ruban, and Dan Zylberglejd. Special thanks

go to my close friends overseas, Aidan Biggar, Marius Vollberg, Max Volmar, and Herny Clausen. I

am so happy that we’ve been able to maintain our friendships over this distance and all these years,

and it makes me even more confident that it will continue for many years. And finally, I want to

thank my family, to whom this dissertation is dedicated: My parents Katharina, and Stephan, my

siblings Johannes, Solveig, Franziska, and Jacob. Mit viel Liebe an Euch alle!

vi

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 The proof paradigm . 3

1.2 Bulletproofs: Privacy through zero-knowledge. 4

1.2.1 Application to confidential transactions . 5

1.3 HyperPlonk: A proof system for the zkEVM . 7

1.3.1 Application to Rollups and ZK-EVMs . 9

1.4 Verifiable Delay Functions . 10

1.4.1 An unbiasable, ecological and communication-efficient beacon from VDFs . . 11

1.4.2 Impact . 12

1.5 ProtoStar: Proofs for VDFs and Succinct Blockchains 12

1.5.1 Efficient and Flexible IVC from accumulation 13

1.6 Preliminaries and Notation . 15

2 Bulletproofs: Privacy through Zero-Knowledge 17

2.1 Introduction . 17

2.1.1 Our Contributions . 18

2.1.2 Applications . 19

2.1.3 Additional Related Work . 23

2.2 Preliminaries . 24

2.2.1 Assumptions . 25

2.2.2 Commitments . 25

2.2.3 Zero-Knowledge Arguments of Knowledge . 26

2.2.4 Notation . 28

2.3 Improved Inner-Product Argument . 29

2.3.1 Inner-Product Verification through Multi-Exponentiation 33

vii

2.4 Range Proof Protocol with Logarithmic Size . 35

2.4.1 Inner-Product Range Proof . 35

2.4.2 Logarithmic Range Proof . 39

2.4.3 Aggregating Logarithmic Proofs . 39

2.4.4 Non-Interactive Proof through Fiat-Shamir 41

2.4.5 A Simple MPC Protocol for Bulletproofs . 41

2.4.6 Perfectly Binding Commitments and Proofs 42

2.5 Zero-Knowledge Proof for Arithmetic Circuits . 44

2.5.1 Inner-Product Proof for Arithmetic Circuits 44

2.5.2 Logarithmic-Sized Protocol . 45

2.6 Bulletproofs for R1CS with committed witness . 48

2.7 Performance . 52

2.7.1 Theoretical Performance . 52

2.7.2 An Optimized Verifier Using Multi-Exponentiation and Batch Verification . . 52

2.7.3 Implementation and Performance . 54

2.8 A General Forking Lemma . 55

2.9 Proof of Theorem 2.1 . 59

2.10 Proof of Theorem 2.3 . 61

2.11 Proof of Theorem 2.4 . 64

3 HyperPlonk: A proof system for the zkEVM 67

3.1 Introduction . 67

3.1.1 Technical overview . 71

3.1.2 Additional related work . 76

3.2 Preliminaries . 76

3.2.1 Proofs and arguments of knowledge. 77

3.2.2 Multilinear polynomial commitments. 80

3.2.3 PIOP compilation . 82

3.3 A toolbox for multivariate polynomials . 83

3.3.1 SumCheck PIOP for high degree polynomials 83

3.3.2 ZeroCheck PIOP . 87

3.3.3 ProductCheck PIOP . 88

3.3.4 Multiset Check PIOP . 89

3.3.5 Permutation PIOP . 91

3.3.6 Another permutation PIOP for small fields 92

3.3.7 Lookup PIOP . 95

3.3.8 Batch openings . 98

3.4 HyperPlonk: Scalable SNARKs for scaling Blockchains 103

viii

3.4.1 Constraint systems . 103

3.4.2 The PolyIOP protocol . 105

3.5 HyperPlonk+: HyperPlonk with Lookup Gates . 107

3.5.1 Constraint systems . 107

3.5.2 The PolyIOP protocol . 108

3.6 Instantiation and evaluation . 110

3.6.1 Implementation . 110

3.6.2 Evaluation . 110

3.6.3 MultiThreading performance . 112

3.6.4 High degree gates . 112

3.6.5 Comparisons . 113

3.7 Orion+: a linear-time multilinear PCS with constant proof size 114

3.8 Zero Knowledge PIOPs and zk-SNARKs . 124

3.8.1 Definition . 125

3.8.2 Polynomial masking . 125

3.8.3 Zero knowledge SumCheck . 126

3.8.4 Zero knowledge compilation for SumCheck-based PIOPs 126

3.8.5 zk-SNARKs from PIOPs . 129

3.9 The FRI-based multilinear polynomial commitment 129

3.10 Unrolled and optimized Hyperplonk . 131

3.10.1 Using only one sumcheck . 132

4 Verifiable Delay Functions for Ecological Consensus 135

4.1 Introduction . 135

4.2 Applications . 138

4.3 Model and definitions . 142

4.3.1 VDF Security . 143

4.4 VDFs from Incrementally Verifiable Computation . 146

4.5 VDFs from Verifiable Computation . 152

4.5.1 Discussion . 154

4.6 A weak VDF based on injective rational maps . 154

4.6.1 Injective rational maps . 154

4.6.2 Univariate permutation polynomials . 157

4.6.3 Comparison to square roots mod p . 159

4.7 Practical improvements on VDFs from IVC . 159

4.7.1 Iterated square roots in Fq . 160

4.7.2 Iterated permutation polynomials . 162

4.8 Related work . 162

ix

4.8.1 Inherently sequential puzzles . 163

5 ProtoStar: Efficient IVC for VDFs and succinct Blockchains 165

5.1 Introduction . 165

5.1.1 Technical overview . 170

5.2 Preliminaries . 173

5.2.1 Special-sound Protocols and Fiat-Shamir Transform 173

5.2.2 Adaptive Fiat-Shamir transform . 175

5.2.3 Commitment Scheme . 175

5.2.4 Incremental Verifiable Computation (IVC) . 175

5.2.5 Simple Accumulation . 176

5.3 Protocols . 178

5.3.1 Special-sound Protocols . 178

5.3.2 Commit and Open . 178

5.3.3 Fiat-Shamir transform . 180

5.3.4 Accumulation Scheme for VNARK . 180

5.3.5 Compressing verification checks for high-degree verifiers 186

5.4 Special-sound subprotocols for ProtoStar . 191

5.4.1 Permutation relation . 191

5.4.2 High-degree custom gate relation . 191

5.4.3 Lookup relation . 192

5.4.4 Vector-valued lookup . 195

5.4.5 Circuit selection . 198

5.5 Special-sound protocols for Plonkup relations . 198

5.6 Protostar . 200

5.7 Accumulation Scheme for high/low degree verifier . 204

5.8 Protostar for CCS . 205

6 Conclusion 209

x

List of Tables

2.1 Range proof size for m proofs. m = 1 is the special case of a single range proof . . . 52

2.2 Range proofs: performance and proof size . 57

2.3 Protocol 2.3: Performance numbers and proof sizes 58

3.1 The prover runtime of Hyperplonk, Spartan [Set20], and Jellyfish Plonk, for popular

applications. The first column (next to the column of the applications) shows the

number of R1CS constraints for each application. The third column shows the corre-

sponding number of constraints in HyperPlonk+. Note that the Zexe and the Rollup

applications are using the BW6-761 curve. For more detail see Section 3.6.5. 71

3.2 Multi-linear polynomial commitment schemes for µ-variate linear polynomials and

n = 2µ. The prover time measures the complexity of committing to a polynomial

and evaluating it once. The commitment size is constant for all protocols. Unless

constants are mentioned, the metrics are assumed to be asymptotic. In the 4th row,

ρ denotes the rate of Reed-Solomon codes. In the 5th and 6th rows, k denotes the

number of rows of the matrix that represents the polynomial coefficients. The 6th

column measures the concrete proof size for n = 225, i.e. µ = 25 and 128-bit security.

Legend: BL=Bilinear Group, DL=Discrete Logarithm, RO=Random Oracle, H=

Hashes, P= pairings, G= group scalar multiplications, rec.= Recursive circuit size,

univ.= universal setup, trans.= transparent setup, Add.=Additive 82

3.3 The complexity of PIOPs. d and µ denote the degree and the number of variables

of the multivariate polynomials; k in MsetCheck is the length of each element in the

multisets; k in BatchEval is the number of evaluations. 84

3.4 Prover runtime of Hyperplonk vs. Spartan[Set20] and the Jellyfish Plonk implemen-

tation for popular applications. Column 2 shows the number of RR1CS constraints

for each application and column 4 shows the corresponding number of constraints in

HyperPlonk+/Ultraplonk. We emphasize that the Zexe and the Rollup applications

are using the BW6-761 curve because they need to use two-chain curves. The rest of

the applications are using the BLS12-381 curve. 113

xi

3.5 Single-thread prover’s performance (in seconds) for varying number of constraints

under different schemes. 114

3.6 64-thread prover’s performance (in seconds) for varying number of constraints under

different schemes. 114

5.1 The comparison between IVCs. 168

xii

List of Figures

2.1 Sizes for range proofs . 56

2.2 Timings for range proofs . 56

2.3 Timings for arithmetic circuits (Pedersen Hash) . 56

3.1 The multilinear polynomial-IOPs that make up HyperPlonk. 75

3.2 PIOP for RPLONK. 105

3.3 PIOP for RPLONK+. 108

3.4 Stack of libraries comprising HyperPlonk. The components in grey we implemented

ourselves. The arithmetization frontends have not yet been linked to the implemen-

tation. 110

3.5 Cost breakdown for vanilla RPLONK with 220 constraints. 111

3.6 . 112

3.7 The multilinear polynomial commitment scheme. 120

3.8 The outer SNARK circuit statement. The circuit configuration is independent of the

random set I. 121

3.9 The indexer of the optimized PIOP for RPLONK. 132

3.10 Optimized PIOP for RPLONK. 134

5.1 The workflow for building an IVC from a special sound protocol. We start from

a special-sound protocol Πsps for an NP-complete relation RNP, and transform it

to CV[Πsps] with a compressed verifier check. CV[Πsps] is converted to a NARK

FS[cm[CV[Πsps]]] via commit-and-open and the Fiat-Shamir transform. We then build

a generic accumulation scheme for the NARK and apply Theorem 5.1 from [Bün+21a]

to obtain the IVC scheme. This last connection is dotted as it requires heuristically

replacing random oracles with cryptographic hash functions. 170

xiii

5.2 The special-sound protocols for ProtoStar and ProtoStarccs. The special-sound

protocol Πmplkup for the multi-circuit Plonkup relation Rmplkup consists of the sub-

protocols for permutation, high-degree custom gate, lookup, and circuit selection

relations. The special-sound protocol Πmccs+ for the extended CCS relation Rmccs+

consists of the sub-protocols for lookup, circuit selection, as well as the CCS rela-

tion [STW23]. From Πmplkup or Πmccs+, we can apply the workflow described in

Fig 5.1 to obtain the IVC schemes ProtoStar or ProtoStarccs. 172

5.3 Accumulation Prover for low-degree Fiat-Shamired NARKs 182

5.4 Accumulation Verifier for low-degree Fiat-Shamired NARKs 182

5.5 Accumulation Decider for low-degree Fiat-Shamired NARKs 183

5.6 Compressed verification of Πsps. 187

xiv

Chapter 1

Introduction

Since their inception in 2008[Nak08], blockchains have received an enormous amount of hype and

speculation. But beyond all of the noise, real transformational utility of blockchains is building.

For example, blockchains are being used to avoid currency controls by oppressive governments1,

and a whole new decentralized finance space removes barriers to accessing financial tools such as

loans or currency exchanges. In 2022, over 800 billion usd of trades happened on such decentralized

exchanges. Further, stablecoin (digital copies of the dollar and euro that live on a blockchain)

transfers exceeded 7.4 trillion dollars, more than Mastercard’s and American Express’ volume2. A

blockchain is a public shared ledger that is accessible to everyone in the blockchain network. This

gives blockchains a high level of transparency, including the ability for all users in the network

to check the correctness of the state. Additionally, blockchains are controlled by a decentralized

consensus instead of a centralized network operator. Together these features enable transparent,

powerful networks without the need for a monopolistic centralized coordinator, that can become a

single point of failure. Despite their hype, adoption, and promise, blockchains today still face several

significant issues that hinder their utility:

High fees Blockchains such as Bitcoin and Ethereum have fees that can reach tens of dollars3,

especially in times of congestion. A key driver for digitalization is the reduction of costs. However,

with at least the largest blockchains today, we see that despite their digital nature, they have

significant costs per transaction.

Bad privacy Bitcoin was originally hailed for its privacy features. Satoshi proposed a privacy

model where the public keys or addresses are decoupled from real-world identities. However, since

then, several papers [Mei+13; And+13] as well as multiple companies4, have shown the significant

limitations of this model. In currencies like Bitcoin or Ethereum every transaction amount, as well

as the senders’ and receivers’ addresses, are visible to everyone. This allows tracing the flow of funds

1

CHAPTER 1. INTRODUCTION 2

through the system. As soon as some endpoints are de-anonymized, it is often possible to backtrace

the identities of many parties transacting in the system. This concern is a particular hindrance

to companies that want to use blockchains for important economic activities. For instance, using

Ethereum to pay all their employees would yield in the salaries of these employees being publicly

leaked. Running a supply chain using such a blockchain could leak vital information to competitors.

Ecological Impact Perhaps the most prominent criticism of blockchains, and in particular Bit-

coin is its environmental impact. Bitcoin relies on so-called Proof-of-work consensus. This consensus

requires burning energy in order to gain voting power in the protocol. This has led to significant

and wasteful energy consumption. Bitcoin is estimated to currently have energy consumption on

the level of nation-states such as the Netherlands or the Philipines. In times of climate change

and energy crisis, such wasteful consumption is unacceptable. It is, therefore, paramount to de-

velop alternatives that preserve the attractive properties of proof-of-work consensuses, such as its

decentralized, permissionless nature, while not relying on wasteful energy consumption.

Data broadcasting as the core issue There is a common theme to the issues of blockchains

today. It is related to the data that is posted on the blockchain. In blockchains, generally, one

user creates some data, e.g. a transaction or a transaction block, and then broadcasts it to every

user in the network. Every user then verifies the integrity of the data, e.g. checking the correctness

of the transaction. This stands in contrast to traditional centralized client-server architectures. In

a centralized architecture, only one server (or one cluster) needs to process data. This redundant

processing enables the high level of transparency in blockchains, as each user can independently

verify the integrity of the blockchains state. However, it also is a key cause for the issues blockchains

face today. If many transactions are issued and processed, then this can lead to congestion. In order

to ensure that every node has sufficient capacity to receive and process all transactions, we need to

limit the total throughput a blockchain network can process. This is especially true when we want a

diverse, heterogeneous set of nodes in a wide variety of locations. However, this congestion naturally

increases competition between transactions and drives up fees. This is not just theoretical but the

relationship between congestion and high fees has often been observed in practice.

An additional issue with the broadcasting of transactions is related to privacy. If transactions

contain sensitive information, then an attacker listening to the network can trivially gather this

information. In traditional blockchains such as Bitcoin and Ethereum, information such as the

sender, the receiver, the amount transferred, and smart contract programs and states are publicly

visible. On the contrary, the privacy model of traditional centralized financial systems relies on

trusted parties. No information is revealed publicly, and as long as users trust their bank, they have

sufficient financial privacy for their bank transactions.

Finally, the broadcasting of data requires consensus or agreement between all nodes on what

data has been sent. Bitcoin pioneered using a so-called proof-of-work based consensus[Nak08].

CHAPTER 1. INTRODUCTION 3

In that system, the voting power within the consensus is roughly proportional to the amount of

computation a node has performed. This leads to a competition between nodes who can perform

the most computation, which indirectly leads to a competition of who can burn the most energy. The

computation itself, finding partial per-images of hashes, has no inherent utility. This is incredibly

wasteful and leads to massive energy consumption on the level of nation-states.

1.1 The proof paradigm

In this dissertation, we apply a powerful proof paradigm to tackle these issues. The core idea of

the proof paradigm is to use certificates or proofs that attest that data has certain properties. In

the blockchain setting, instead of broadcasting the data directly, a user broadcasts a proof of data

validity, and nodes process the proofs instead of the data directly. The proofs are cryptographic in

nature and give strong guarantees5 about the integrity of the underlying data. Importantly, while the

data, itself, may be large and reveal private information, we aim to design proofs that are succinct,

efficient to verify, and do not reveal information beyond the integrity of the underlying data. The

issues of blockchains are caused by an asymmetry, where one user’s action requires verification by

all other users. Proof systems can have an inverse asymmetry where one prover produces a proof

that is easy to check for everyone else.

In this dissertation, we develop four different types of proof systems specifically tailored to address

the issues that blockchains face today: In Chapter 2, we introduce Bulletproofs, a zero-knowledge

proof system, designed for private transactions that hide the contents of the transaction, while still

ensuring their validity. Bulletproofs has been deployed in private cryptocurrencies such as Monero

or ZCash[Hop+22], which provide strong privacy guarantees. In Chapter 3, we design HyperPlonk,

a highly efficient proof system that is tailored for large statements, such as proving that an entire

Ethereum block was correctly processed. This is a vital component of so-called rollups. The idea of a

rollup is to bundle transactions and post only a small summary of the transactions on the blockchain.

It provides a proof that all the transactions were valid and the state was correctly updated. The

proof is much shorter and more efficient to verify than the original transactions. HyperPlonk has

precisely these properties and in addition, is designed to be very efficient to compute, even for large

and complex statements. It is currently being implemented by the Ethereum Foundation[KMT22]

as part of their efforts to facilitate rollups.

In Chapter 4, we define and introduce Verifiable Delay Functions (VDFs). VDFs are a proof-

based cryptographic primitive that enables many mutually distrusting parties to generate shared,

unbiased and unpredictable randomness. Such randomness is a vital component of modern proof-of-

space and proof-of-stake consensus systems. These consensus systems serve as ecologically friendly

replacements for the wasteful proof-of-work. VDFs are part of the roadmap for Ethereum’s proof of

stake consensus, ensuring an unbiased, efficient, and fair leader election6. In Chapter 5, we introduce

CHAPTER 1. INTRODUCTION 4

ProtoStar. ProtoStar enables incrementally verifiable computation. It’s a proof system for showing

that t steps of computation were executed correctly, such that verifying the proof is independent of

t. This directly yields a VDF construction, if the underlying t-step computation is sequential, e.g.

a chain of hashes. Furthermore, ProtoStar can be used to prove that all transaction blocks, in a

blockchain, are valid, such that checking the proof is efficient, and that it can be efficiently updated,

once a block is added to the chain.

We now give a more detailed introduction to each of the proof systems developed in this disser-

tation:

1.2 Bulletproofs: Privacy through zero-knowledge.

Bulletproofs is a zero-knowledge proof system. A zero-knowledge proof enables a prover to convince

a verifier that some statement is valid without revealing any information other than the fact that

the statement is true. Bulletproofs can be applied to two different types of statements: firstly, it

applies to general computations, expressed as arithmetic circuits, i.e. a computation consisting of

additions and multiplications. Secondly, we design a specifically efficient variant of Bulletproofs for

so-called range proofs. A range proof shows that some value inside a commitment is within some

small range of numbers. Bulletproofs is characterized by two important features: The proofs do not

rely on a trusted setup and are built on the well-studied discrete logarithm assumption, as well as

the Fiat-Shamir transform, to achieve non-interactive proofs. This stands in contrast to the highly

efficient pairing-based SNARK systems[Gro16; KZG10]. Unlike Bulletproofs, they rely on trusted

setups, where a private-coin setup algorithm produces proving and verification keys. The soundness

of the proof system is reliant on these private coins being deleted post-setup. While it is possible

to distribute the trust of these setups using multi-party computation[BGG19; Gro+18], they have

led to significant, exploitable vulnerabilities in cryptocurrencies such as ZCash[Ben+14a]. Other

alternatives to pairing-based SNARKs are hash-based proof systems such as STARKs[Ben+19a].

However, these proof systems have proofs of about 100s of kilobytes for even medium-sized statements

(e.g. 10k constraints).

The other key feature of Bulletproofs is that they are highly succinct. The statements are

logarithmic in the size of the statement with small concrete constants. A Bulletproof for a circuit of

a million gates is less than 1.7KB, and 32 range proofs of 64-bit length in less than 1kb. Bulletproofs1

remain, to this day, the shortest proofs without trusted setup.

Bulletproofs are built on an inner-product argument (IPA) which was pioneered by Bootle et

al.[Boo+16]. This is a special proof system for showing that given two committed vectors a and b

and a scalar c, c = ⟨a,b⟩. We improve the inner-product argument and reduce the proof size by

a factor of 3 to just 2 log2(n) group elements for vectors of size n. At the core of this IPA there

1Up to additive constants which were improved in Bulletproofs+[Chu+20] and Bulletproofs++[Eag22]

CHAPTER 1. INTRODUCTION 5

is a randomized reduction from a statement about vectors of length n to vectors of length n/2.

Repeating this reduction log2(n) time yields the final protocol. We then use this improved IPA

to build an argument for general arithmetic circuits. The constraints imposed by the arithmetic

circuits are decomposed into multiplication constraints (corresponding to multiplication gates) and

linear combination constraints (corresponding to additions and multiplications by constants). These

constraints are then compiled down to claims about inner products, which can be proven using

the IPA. We also design a specialized range-proof protocol. The range proof shows that a value

inside a homomorphic Pedersen commitment[Ped92] is within some small positive range. While,

in theory, this statement could be proven using our arithmetic circuit protocol and implementing

the commitment function as such a circuit, our protocol is far more direct and efficient. It takes

advantage of the homomorphic nature of the commitment and of Bulletproofs proof system. The

value inside the commitment can be directly fed into the proof statement. Concretely, to show that

a value v is in a range B = [0, 2k), we show that v can be decomposed into k bits b = b1, . . . , bk and

that ⟨b, (1, 2, 4, . . . , 2k−1)⟩ = v.

1.2.1 Application to confidential transactions

Bulletproofs is designed to improve the privacy of blockchain payments. In traditional blockchain

transactions, such as Bitcoin transactions, the transferred amount is publicly visible. Any Bitcoin

transaction destroys one or more specific records (called a UTXOs) and creates one or more new

records such that the total value of the created UTXOs equals the total value of the destroyed

UTXOs. Transaction validation checks the authenticity of a transaction by verifying a signature

and possibly some additional transaction rules. It also checks the balance of the transaction by com-

paring the value of the created and destroyed UTXOs. However, this directly leaks the transacted

amount. Confidential transactions [Max16] resolve this privacy issue by leveraging cryptographic

commitments (See Definition 3.4). A cryptographic commitment is the digital analog of an enve-

lope. The commitment of some value v is hiding, in that it reveals no information about v. It is

also binding in that it can only be opened to v and no other value v′. Confidential transactions

commit to the transferred amounts. However, this seems to hinder the ability that the transaction

remains balanced. Furthermore, we need to guarantee that all created records have positive value,

as otherwise, an adversary could use a transaction to print money. All of these statements can be

proven using a range proof. This proof is then attached to the transaction. The specific system

design leads to a few important design constraints for the range proofs:

Small proofs Because in blockchain systems, we need to broadcast transactions to the entire

network, it is vital that the proof itself is small. Additionally, we need that the proof reveals no

information about the newly created records other than that the transaction is balanced. Finally,

in confidential transactions, there is a particular need for strong security. While, strong security,

CHAPTER 1. INTRODUCTION 6

is important in all cryptography applications, the potential damage of an attack on confidential

transactions is particularly high.

Strong security without trusted setup If an attacker could break the so-called soundness

property of a confidential transaction’s range proof, then they can create a transaction that creates

records with more value than the input records. In a blockchain-based cryptocurrency, this would be

equivalent to printing money out of thin air. Even more detrimental, because of the private nature

of confidential transactions, such an attack would be undetectable. This would enable an attacker

to cause maximal damage to the blockchain system. Because of this, confidential transactions need

range proofs that are very secure, i.e. rely on minimal cryptographic assumptions and no or minimal

trusted setups. Bulletproofs satisfies both of these properties and additionally has more features

tailored to the confidential-transactions application.

Aggregate range proofs Bulletproofs enables proving that multiple values are within the same

range using a single proof. The proof scales logarithmically. Thus proving that k values are

within a range only has an additive additional cost of ⌈log2(k)⌉64 bytes. This is particularly

useful if a transaction has many outputs.

Batch verification A node within a blockchain network needs to verify entire blocks of transac-

tions. If these are confidential transaction then each will have a range proof associated with

them. We propose a batch-verification algorithm for Bulletproofs that enables verifying k Bul-

letproofs faster then k times the cost of verifying a single Bulletproofs. The marginal cost of

verifying a 64-bit range proof is only about 5x, the cost of verifying an ECDSA signature. This

is a relevant comparison as non-confidential transaction validation requires digital signature

verification (which cannot be batched).

Collaborative proof generation Due to the aggregated range proofs feature, Bulletproofs are

particularly efficient for transactions with many outputs. We design a protocol that enables

multiple users to generate a single proof for all of their transactions. This protocol does not

require the users to share any secret values and has minimal overhead over a single-user proof

generation.

Generic Circuit proofs for more complex statements Bulletproofs do not just provide the

ability proof that a committed value is within a range. It can also be used to prove that

some circuit was evaluated correctly. We combine the technique and enable proving a circuit

where some of the inputs are committed. This makes Bulletproofs more composable with more

complex protocols. For example, one could prove that a confidential transaction satisfies the

balance property and additionally that some other transaction rules are satisfied.

CHAPTER 1. INTRODUCTION 7

Impact

Bulletproofs has been deployed in several blockchain systems. Within a year of publishing the first

pre-print Monero [Mon], the largest (both by market capitalization and by number of transactions)

blockchain with private transactions, adopted Bulletproofs. Replacing the previously used range

proofs, which were significantly larger and slower to verify, led to a significant reduction in transaction

size. This, in turn, led to a 97% decrease in transaction fees7. Bulletproofs was further adopted

by other blockchains and systems, such as Grin, Beam, Signal’s MobileCoin and Chase Bank’s

Quorum8. In addition ZCash recently transitioned to a poof system that is based on Bulletproofs’

improved inner-product-argument9. This massive deployment has been made possible by a large

variety of high-quality industry implementations of Bulletproofs. A recent paper[Dao+23] lists 15

such implementations. Bulletproofs has also received attention from academia. The protocol has

been extended to bilinear groups[Bün+21b; Lee21], groups of unknown-order[BFS20; BCS21], and

lattices[Boo+20; ACK21; BF22]. Even though Bulletproofs itself does not have succinct verification,

later work showed how to build IVC from using its inner product argument[BGH19; Bün+20].

Several papers have performed security analyses of several aspects of Bulletproofs. Showing that

it is non-malleable[Gan+21; DG23], secure in the random-oracle[Wik21; AFK22], and given a tighter

security analysis[JT20; GT21]. Other works have given alternative security proofs of Bulletproofs

through elegant reductions to Σ-protocols[AC20] and sumcheck arguments[BCS21].

1.3 HyperPlonk: A proof system for the zkEVM

Zero-knowledge proofs, such as Bulletproofs, enable a prover to convince a verifier that some state-

ment is true without revealing why it’s true. Some zero-knowledge proofs (but not Bulletproofs)

have an equally powerful but orthogonal property called verifiable computation. These proofs enable

showing that a statement is true, and checking the proof is (exponentially) faster than checking the

statement itself. This enables outsourcing computation. A powerful server can run some compu-

tation and attach a proof that this computation was performed correctly. The verifier only checks

the proof and is convinced that the computation has been done correctly. Proof systems that sat-

isfy this verifiable-computation property are also referred to as SNARKs2. Modern SNARKs are

usually built from two separate components. A polynomial interactive-oracle proof (PIOP)[BFS20;

Chi+20] and a polynomial-commitment[KZG10]. The PIOP is an information-theoretic interactive

proof system where the prover’s messages are oracles to (possibly multi-variate) polynomials. The

verifier is public-coin, i.e. all its messages are random challenges. The verifier the checks the proof

by evaluating the polynomial oracles. The polynomials itself may be large in size so to make this effi-

cient we replace the oracles with so-called polynomial commitments. This is a succinct commitment

2Technically, the S in SNARKs refers to succinct or short proofs. This is a necessary but not sufficient requirement
for verifiable computing. Bulletproofs has succinct proofs, but the verifier runs in time linear in the statement.

CHAPTER 1. INTRODUCTION 8

to a polynomial. There exists a specialized SNARK for these commitments that enables the prover

to convince a verifier that the polynomial was correctly evaluated. The Bulletproofs IPA can be

used to build a polynomial commitment. Given any such PIOP for some statement and any secure

polynomial commitment, as well as a secure cryptographic hash function, we can build a SNARK

for that statement[BFS20; Chi+20]. The security and efficiency properties of that statement are the

sum of the properties of the PIOP and the polynomial commitment.

This recipe is attractive because it enables separately designing each component. Additionally,

it has been used to build SNARKs that are highly efficient and only require a minimal, universal

and updatable trusted setup[Mal+19; Chi+20; GWC19; Set20]. Most previous PIOPs were built

using univariate polynomials and required the prover to multiply large polynomials. This can be

done most efficiently using a Fast-Fourrier-Transform in time O(d log(d)) for degree d polynomials.

The degree of these polynomials is usually proportional to the size of the circuit n. Unfortunately,

FFTs introduce several limitations when applied to large polynomials (E.g. d > 1M):

• They become a bottleneck of the computation. For smaller sizes, the computation is usually

bottlenecked by the polynomial commitment. However since this operation scales linearly in

n and FFTs scale super-linearly in n, they eventually become a bottleneck.

• They necessitate the use of FFT-friendly fields. These are fields such that there exists an n-th

root of the identity element 1. This requires using particular elliptic curves and limits the

composability with other protocols.

• The FFTs have complex memory accesses. They require loading the entire polynomial into

memory which becomes a bottleneck if the FFT becomes too large. Other components of the

proof system are data-parallel, i.e. there is no minimum memory size required.

• Plonk, the most widely used PIOP, has achieved part of its popularity due to the use of high-

degree gates. These are gates that do not just perform addition or multiplication but higher

degree operations, such as (x3 + y) · z for three inputs x, y, z. In Plonk and similar systems,

the prover needs to compute and send so-called quotient polynomials. These polynomials are

of degree D · n where D is the highest degree of any gate and n is the number of gates in the

circuit. These quotient polynomials limit the utility of high-degree gates if D gets too large

(in practice, D ≤ 5).

With these limitations in mind we designed HyperPlonk. HyperPlonk is a multi-variate PIOP that

mirrors the features and arithmetization of Plonk[GWC19] but does not require the use of FFTs.

Instead, it is built on the famous sumcheck protocol[Lun+92]. Instead of interpolating the witness as

a univariate polynomial over roots of unity, HyperPlonk uses multi-linear polynomials and encodes

the witness over the boolean hypercube. We carefully replace each sub-component of Plonk to get

rid of the requirement of FFTs. This yields a PIOP where the prover is fully linear in the witness

instead of quasi-linear. Accompanying this HyperPlonk has a few additional attractive features:

CHAPTER 1. INTRODUCTION 9

High degree gates Using multi-linear polynomials we now are able to use much higher degree

custom gates. The reason is that within the sum-check protocol, the prover needs to compute

and send polynomials of size D instead of size n ·D.

Efficient Lookup We design an efficient lookup protocol that enables proving that some value is

within a table of values. This can be useful for range proofs if the table contains all values

within a range. Unlike previous online lookups3, the prover is fully linear in the size of the

table.

Soundness in small fields HyperPlonk can be instantiated such that it is sound even in small,

polynomial-size fields. Concretely, the soundness error is only O(polylogn|F|) instead of O(n
|F|) for

univariate PIOPs.

Batch evaluation of polynomial commitments Using the same sumcheck protocol, we build

an efficient batch evaluation protocol, that enables reducing k multi-linear polynomial evalua-

tions to a single polynomial evaluation. The protocol applies to any homomorphic polynomial

commitment.

Orion+ We also propose Orion+, an improvement on Orion[XZS22b]. Orion+ has significantly

smaller proofs (7kb vs 3MB) while retaining the same asymptotic, linear prover complexity.

1.3.1 Application to Rollups and ZK-EVMs

We designed HyperPlonk specifically for large complex statements. One set of applications where

this is useful are so-called rollups and the ZK-EVM. In these rollups, a sequencer collects a list

of transactions and then proves that these transactions lead to a specific state transition. Using

verifiable computing, it is possible to create proofs that are significantly more efficient to verify than

replaying all the rolled-up transactions. Current efforts aim to roll-up entire blocks with thousands

of transactions. On Ethereum, these transactions can be more than just simple transfers of funds but

complex programs, called smart contracts. Efforts to build rollups for the Ethereum VM (EVM) are

referred to as ZK-EVMs4. Current implementation efforts of the ZK-EVM10, heavily rely on high-

degree gates and lookups. There are also multiple companies11 trying to build hardware solutions to

facilitate efficient rollups. HyperPlonk is designed with these features and to be particularly hardware

friendly. For these reasons, the Ethereum foundation has started to build its own HyperPlonk

implementation (based on the implementation reported in this paper) and include it in their ZK-

EVM efforts12.

3Recently, there has also been an effort in offline lookups where the table can be preprocessed.[Zam+21; EFG22].
These have different applications and can potentially be combined.

4This is mainly a misnomer as the zero-knowledge or ZK property is not important here. We only require that the
proofs or SNARKs have the verifiable computing property.

CHAPTER 1. INTRODUCTION 10

1.4 Verifiable Delay Functions

Early blockchains, such as Bitcoin[Nak08] and Ethereum, were built using proof-of-work consensus.

This means that participants’ voting power is proportional to the amount of computation or work

they perform. Concretely, in Bitcoin, nodes continuously attempt to solve a computational puzzle,

and the person solving it first gets elected as leader, i.e proposes the next block of transactions. The

process is random, such that a node controlling x percent of the network’s computational power,

measured in hashes per second, has an x percent chance of solving the puzzle first. Randomness is

vital for the consensus, ensuring that an adversary will not be able to produce all transaction blocks,

even if it controls a plurality of the computational power. Nodes get rewarded for producing such a

block with newly minted Bitcoin and transaction fees.

Unfortunately, this process is incredibly wasteful. The block production and thus the rewards

are proportional to the entire systems computational power. Thus, nodes are incentivized to try

to solve the puzzle as fast as possible, acquire more computational power, and burn more energy.

Unfortunately, the puzzle itself has no inherent use13. Bitcoin is estimated to use about 100 TWh

per year. That is on the level of nation states such as the Netherlands or the Philippines14. From

another perspective, the energy consumption of a single Bitcoin transaction is equivalent to the

power 20 US Households consume in a day. This underscores the imperative for exploring alternative

solutions. Fortunately, such solutions exist with proof-of-space and proof-of-stake consensus systems.

Informally, in proof-of-space, the voting power is proportional to the storage a user allocates, and

in proof-of-stake, it is proportional to the amount tokens a user owns and allocates. Both methods

do not require heavy computation and are thus much more environmentally friendly than proof of

work. They are now being widely deployed in modern blockchains. Ethereum recently upgraded to

a proof-of-stake consensus15, which is estimated to have reduced Ethereum’s energy consumption

by 99.95%. Proof-of-stake and proof-of-space are not without technical difficulties and limitations.

One important one is related to leader election. Proof-of-work directly provides a mechanism for

randomly electing a leader proportional to the work. For neither of the other protocols, this is the

case. Focussing on proof-of-stake, we have a list of public keys and associated weights (the staked

values) to these keys. A consensus protocol, in every round, needs to select a key proportional to the

weights. The owner of that key then gets to publish the next block. It is important that this selection

is unbiased, even in the face of an adversary that controls some f fraction of stake. Additionally, we

need the selection to be unpredictable up to some point t as otherwise, an adversary could register

keys that have higher chances of winning the leader selection.

These properties can be achieved though a so-called random beacon[Rab83]. A random beacon is

a protocol for periodically emitting uniform, unbiased, and unpredictable values. It can be thought

of as a multi-party protocol between n parties, such that if a beacon value appears at time t, then for

any time t′ < t−k, no adversary can predict the beacon value with more than negligible probability,

and no adversary can bias the output of the beacon by more than a negligible amount. There are

CHAPTER 1. INTRODUCTION 11

several ways to produce a random beacon: One could rely on a trusted party, but this is undesirable

in many applications. Alternatively, one could use a commit-and-reveal protocol where parties

commit to some random value and then, after some time, reveal it. This is the kind of protocol that

is currently used in Ethereum[Ran]. Unfortunately, it is possible to bias it as a node can simply

choose not to reveal the value. Ethereum deals with this by economically incentivizing nodes to

open, but these incentives do not provide strong guarantees. Thirdly, one can rely on threshold

cryptography[Syt+17] to generate a shared secret. The protocols require that f < 1/3rd. They also

have a minimum communication complexity of n2 broadcasts, i.e. each party needs to send n values

to every other party.

1.4.1 An unbiasable, ecological and communication-efficient beacon from

VDFs

With these limitations in mind, we introduce Verifiable Delay Functions in Chapter 4. Verifiable

Delay Functions are a novel cryptographic primitive that, among many other applications, enables

building a secure random beacon, which is secure against n − 1 corruptions and only has an O(n)

communication complexity. VDFs are characterized by the three properties that make up its name.

A VDF is a function that maps each input from some domain to a unique output in its image.

Evaluating the VDF incurs a delay. That is, it T sequential steps to evaluate, and no parallel

polynomial-time adversary can evaluate it faster than ϵT . Finally, it is verifiable, in that it is

possible to verify that the VDF was evaluated correctly in time polylogT . This verification may

take in an optional proof. The beacon construction from VDFs is simple and elegant. We assume a

common ledger or some other verifiable broadcast channel. Each party posts some random value r

to the ledger in some time window [t0, t0 + t]. t has to be large enough such that all honest parties

are able to post a message within that time-frame. Then all posted values, are hashed using a secure

hash function. We then apply a VDF to the output with parameters such that ϵT > t. After time

T some party (could be any honest party), posts the verifiable VDF output. This output is hashed

and becomes the random beacon. To get an intuition for why this is a secure beacon, consider and

adversary that controls n−1 parties and one honest party. Let’s also assume that the hash function

is modeled as a random oracle. The honest party sends its value at the beginning of the time window.

This gives the adversary time t to decide what values to post. However, it cannot evaluate the VDF

in time t, as ϵT > t. Thus, unless it has precomputed the input to the VDF, it cannot learn the

output before t0 + ϵT , and thus the beacon value. Precomputing the input is improbable for an

exponential input domain, as the single honest party chooses its value randomly. Finally, since the

VDF is a deterministic function, an adversary that can bias the output significantly must also be

able to guess the output with non-negligible probability. This contradicts the delay property of the

VDF.

In this dissertation, we formally define VDFs, including the security definitions that enable

CHAPTER 1. INTRODUCTION 12

this beacon construction. We also give several constructions of VDFs. From incremental verifiable

computation as well as from plain verifiable computation, and give several optimizations and concrete

underlying primitives that improve the practicality of these constructions.

1.4.2 Impact

VDFs had a significant theoretical and practical impact. Multiple blockchains such as Chia16 ,

Filecoin17 , and Solana18 use variants of VDFs in their ecological consensus systems. Furthermore,

Ethereum is planning to use a VDF based on incrementally verifiable computation and a delay

function that is nearly identical to the construction in our paper[KMT22]. There has also been

significant academic interest in VDFs. Pietrzak[Pie19a] and Wesolowski [Wes19] gave elegant direct

VDF constructions in groups of unknown order. De Feo, Masson, Petit, and Sanso[De +19] gave

a VDF construction that does not require a proof using isogenies. VDFs have also been used

to show complexity theoretic connections between unique games (PPAD hardness) and repeated

squaring[Cho+19; Eph+20b; LV20]. Further, they have been used to achieve dynamic availability

for proof-of-stake and proof-of-space protocols[DKT21]. Dynamic availability is the ability for honest

nodes to sync with the current state after being offline without additional trust assumptions.

1.5 ProtoStar: Proofs for VDFs and Succinct Blockchains

Verifiable Delay Functions can be built by taking a sequential computation, e.g. chaining of hashes,

and using a SNARK to prove that the computation was executed correctly. This construction has

several disadvantages. Firstly, the SNARK can only be constructed after the computation is done.

Also computing the SNARK, tends to be many orders of magnitude more expensive than performing

the underlying computation. This means that an adversary can learn the output of the VDF, long

before an honest party is able to construct a convincing proof of the VDFs correctness. Secondly,

this construction is incompatible with continuous VDFs[Eph+20a]. In continuous VDFs, the delay

function can always be evaluated for one more step, and at every point, the output can be efficiently

verified. Using a SNARK to achieve the verifiability property of a continuous VDF would imply that

the entire SNARK needs to be recomputed at every step. Fortunately, we describe another VDF

construction in Chapter 4 that does not suffer from these drawbacks. It is built on Incrementally

Verifiable Computation(IVC)[Val08]. IVC enables proving that a t-step computation was performed

correctly, with two important properties: Checking the proof takes at most polylog(t) time and

given the state of the computation and a proof for the first t steps, any prover can continue the

computation and efficiently update the proof. Beyond it’s application to VDFs, IVC has many more

applications to Blockchains and beyond:

Succinct Blockchains IVC can be used to build blockchain protocols such that new nodes, or

nodes that were offline, only need to download and check a constant amount of data. The idea is

CHAPTER 1. INTRODUCTION 13

that along with every transaction block, block producers construct an IVC proof that the entire

blockchain, including the consensus and all transactions, up to that point was valid. Nodes then

download the state or a succinct commitment to the state along with the IVC proof and are

convinced that the blockchain contains only valid transactions and that the consensus is correct.

This is particularly useful in the sleepy model of consensus[PS17] that allows honest nodes to

go offline for long periods of time. This vision of succinct blockchains has been realized in the

Mina Blockchain system[Bon+20b], that utilizes a precursor of ProtoStar[BGH19; Bün+20].

Rollups IVC can be used to compress the verification of multiple blocks in a Blockchain. However,

it can also be used to compress the verification of many transactions within a block. This can

be used to build rollups as described in Section 1.3 or simply to speed up the verifications of

blocks. One interesting property of IVC and its generalization, Proof Carrying Data[Bit+13a],

is that they enable multiple distributed provers to construct a single proof together. This

would allow multiple rollup servers to construct rollup proofs for a distinct set of transactions

and then generate a single proof for the entire rollup block. Each prover’s proving work is only

proportional to the number of transactions in their set.

Proofs of VMs More generally, IVC can be used to prove the correct execution of a t-step virtual

machine. This machine could be the Ethereum Virtual Machine (EVM) or a more classic

architecture such as web assembly. Such proofs, again, have the ability to outsource verifica-

tion. Such VMs consist of a control unit, that indicates what instruction to execute, an logical

unit that executes the specific instructions, and a memory unit that stores the VMs state.

ProtoStar is designed to efficiently support these units with minimal overhead. In systems

such as ProtoStar, the verification is naively as expensive as a single step of the VM. However,

ProtoStar could be combined with SNARKs, such as HyperPlonk, in order to compress even

that final verification step.

1.5.1 Efficient and Flexible IVC from accumulation

IVC is clearly a very powerful primitive with a myriad of applications. However, until recently,

constructing IVC was very expensive, as it relied on so-called recursive SNARKs. The idea is to

take a SNARK and prove that a step of computation was executed correctly. Then construct a

second SNARK that proves the next step of the computation and proofs that the previous SNARK

was correct. This continues for perpetuity. Implementing this recursive step introduced a significant

overhead that limited the practicality of these systems[Ben+14b]. Recently, starting with the break-

through of Halo[BGH19], which is built on the batch-verification of Bulletproofs (see Section 3.3.8),

a series of papers[Bün+20; Bün+21a; KST22; KS22; KS23] have started to remove these practical

limitations. The key insight is that it is unnecessary to prove that the entire SNARK was correct.

Instead, we can batch or accumulate the verification checks and only prove that this accumulation

INTRODUCTION NOTES 14

was performed correctly. This has led to IVC constructions with significantly improved practi-

cal efficiency and additional greatly reduced the cryptographic requirements for constructing IVC.

It is now possible to construct IVC without a trusted setup, simply from the discrete logarithm

assumption, without the need for FFTs[Bün+21a]. In Chapter 5 we introduce ProtoStar, a new

accumulation-based IVC scheme that advances the state of the art in several significant dimensions.

General Recipe ProtoStar is built on a general recipe for constructing such accumulation schemes

that unifies the previous, seemingly ad-hoc constructions. We show that it is possible to

build secure and efficient accumulation schemes from very simple building blocks, namely any

special-sound protocol with an algebraic verifier.

High degree circuits Unlike prior work, which was only able to handle addition and multiplication

gates, ProtoStar is able to handle computations that are of high degree. Both the recursive

circuit and the provers work have only a minimal dependence on the degree of the gate. This

makes ProtoStar significantly more expressive and suitable for complex statements, such as

virtual machine computations.

Lookup Gates ProtoStar is able to handle lookup gates, i.e. checking that some value is in some

pre-computed table, such that the provers work is linear in the number of lookups and inde-

pendent of the table size. This is the most efficient lookup argument of any proof system (IVC

or SNARK) to date.

Non-uniform IVC ProtoStar natively and efficiently supports non-uniform circuits. That is, each

computation step can execute one of a fixed number of circuits. This efficiently implements

the control unit of a virtual machine. The prover’s cost is only linear in the executed circuit,

not all circuits.

Introduction Notes

1https://www.nytimes.com/2019/02/23/opinion/sunday/venezuela-bitcoin-inflation-cryptocurrencies.html

2https://thedefiant.io/stablecoin-volume-hits-record-high-of-7-4t-in-2022

3https://ycharts.com/indicators/ethereum_average_transaction_fee

4https://www.chainalysis.com/,https://www.trmlabs.com/
5The guarantee is similar to the level of guarantee delivered by TLS and other cryptography securing the internet

today.
6https://www.vdfalliance.org/

7https://bitcoinmagazine.com/culture/monero-transaction-fees-reduced-97-after-bulletproofs-upgrade

8https://www.coindesk.com/business/2019/05/28/jpmorgan-adds-privacy-features-to-ethereum-based-quorum-blockchain/

9https://electriccoin.co/blog/explaining-halo-2/

10https://vitalik.ca/general/2022/08/04/zkevm.html

11https://scroll.io/,https://polygon.technology/polygon-zkevm
12https://github.com/han0110/plonkish

https://www.nytimes.com/2019/02/23/opinion/sunday/venezuela-bitcoin-inflation-cryptocurrencies.html
https://thedefiant.io/stablecoin-volume-hits-record-high-of-7-4t-in-2022
https://ycharts.com/indicators/ethereum_average_transaction_fee
https://www.chainalysis.com/
https://www.trmlabs.com/
https://www.vdfalliance.org/
https://bitcoinmagazine.com/culture/monero-transaction-fees-reduced-97-after-bulletproofs-upgrade
https://www.coindesk.com/business/2019/05/28/jpmorgan-adds-privacy-features-to-ethereum-based-quorum-blockchain/
https://electriccoin.co/blog/explaining-halo-2/
https://vitalik.ca/general/2022/08/04/zkevm.html
https://scroll.io/
https://polygon.technology/polygon-zkevm
https://github.com/han0110/plonkish

INTRODUCTION NOTES 15

13The computational puzzle finds partial pre-images of a cryptographic hash function.
14https://digiconomist.net/bitcoin-energy-consumption

15https://ethereum.org/en/roadmap/merge/

16https://docs.chia.net/proof-of-time/

17https://spec.filecoin.io

18https://solana.com/news/proof-of-history

1.6 Preliminaries and Notation

https://digiconomist.net/bitcoin-energy-consumption
https://ethereum.org/en/roadmap/merge/
https://docs.chia.net/proof-of-time/
https://spec.filecoin.io
https://solana.com/news/proof-of-history

INTRODUCTION NOTES 16

Bibliographical Notes

This dissertation is based on the following jointly authored publications:

Chapter 2 is based on “Bulletproofs: Short Proofs for Confidential Transactions and More,”

jointly authored with Dan Boneh, Jonathan Bootle, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell and published at the IEEE Symposium on Security and Privacy (“Oakland”)

in 2018[Bün+18].

Chapter 3 is based on “HyperPlonk: Plonk with Linear-Time Prover and High-Degree Custom

Gates,” jointly authored with Binyi Chen, Dan Boneh and Zhenfei Zhang, published at the

Annual International Conference on the Theory and Applications of Cryptology and Informa-

tion Security (“EUROCRYPT”) in 2023[Che+23].

Chapter 4 is based on ”Verifiable Delay Functions,” jointly authored with Dan Boneh, Joseph

Bonneau, and Ben Fisch, published at the International Cryptology Conference (“CRYPTO”)

in 2018 [Bon+18].

Chapter 5 is based on ”ProtoStar: Generic Efficient Accumulation/Folding for Special Sound Pro-

tocols,” jointly authored with Binyi Chen, available as a manuscript on EPRINT as document

2023/620 [BC23].

Chapter 2

Bulletproofs: Privacy through

Zero-Knowledge

2.1 Introduction

Blockchain-based cryptocurrencies enable peer-to-peer electronic transfer of value by maintaining

a global distributed but synchronized ledger, the blockchain. Any independent observer can verify

both the current state of the blockchain as well as the validity of all transactions on the ledger. In

Bitcoin, this innovation requires that all details of a transaction are public: the sender, the receiver,

and the amount transferred. In general, we separate privacy for payments into two properties: (1)

anonymity, hiding the identities of sender and receiver in a transaction and (2) confidentiality, hiding

the amount transferred. While Bitcoin provides some weak anonymity through the unlinkability of

Bitcoin addresses to real world identities, it lacks any confidentiality. This is a serious limitation for

Bitcoin and could be prohibitive for many use cases. Would employees want to receive their salaries

in bitcoin if it meant that their salaries were published on the public blockchain?

To address the confidentiality of transaction amounts, Maxwell [Max16] introduced confidential

transactions (CT), in which every transaction amount involved is hidden from public view using a

commitment to the amount. This approach seems to prevent public validation of the blockchain; an

observer can no longer check that the sum of transaction inputs is greater than the sum of transaction

outputs, and that all transaction values are positive. This can be addressed by including in every

transaction a zero-knowledge proof of validity of the confidential transaction.

Current proposals for CT zero-knowledge proofs [Poe+19] have either been prohibitively large

or required a trusted setup. Neither is desirable. While one could use succinct zero-knowledge

proofs (SNARKs) [Ben+13; Gen+13] they require a trusted setup, which means that everyone

needs to trust that the setup was performed correctly. One could avoid trusted setup by using

17

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 18

a STARK [Ben+19a], but the resulting range proofs while asymptotically efficient are practically

larger than even the currently proposed solutions.

Short non-interactive zero-knowledge proofs without a trusted setup, as described in this paper,

have many applications in the realm of cryptocurrencies. In any distributed system where proofs

are transmitted over a network or stored for a long time, short proofs reduce overall cost.

2.1.1 Our Contributions

We present Bulletproofs, a new zero-knowledge argument of knowledge1 system, to prove that a

secret committed value lies in a given interval. Bulletproofs do not require a trusted setup. They

rely only on the discrete logarithm assumption, and are made non-interactive using the Fiat-Shamir

heuristic.

Bulletproofs builds on the techniques of Bootle et al. [Boo+16], which yield communication-

efficient zero-knowledge proofs. We present a replacement for their inner-product argument that

reduces overall communication by a factor of 3. We make Bulletproofs suitable for proving statements

on committed values. Examples include a range proof, a verifiable shuffle, and other applications

discussed below. We note that a range proof using the protocol of [Boo+16] would have required

implementing the commitment opening algorithm as part of the verification circuit, which we are

able to eliminate.

Distributed Bulletproofs generation. We show that Bulletproofs support a simple and efficient

multi-party computation (MPC) protocol that allows multiple parties with secret committed values

to jointly generate a single small range proof for all their values, without revealing their secret values

to each other. One version of our MPC protocol is constant-round but with linear communication.

Another variant requires only logarithmic communication, but uses a logarithmic number of rounds.

When a confidential transaction has inputs from multiple parties (as in the case of CoinJoin), this

MPC protocol can be used to aggregate all the proofs needed to construct the transaction into a

single short proof.

Proofs for arithmetic circuits. While we focus on confidential transactions (CT), where our

work translates to significant practical savings, we stress that the improvements are not limited to

CT. We present Bulletproofs for general NP languages. The proof size is logarithmic in the number

of multiplication gates in the arithmetic circuit for verifying a witness. The proofs are much shorter

than [Boo+16] and allow inputs to be Pedersen commitments to elements of the witness. We also

give a proof system for R1CS that allows proving statements about a committed vector of values.

Optimizations and evaluation. We provide a complete implementation of Bulletproofs that

includes many further optimizations described in Section 2.7. For example, we show how to batch the

verification of multiple Bulletproofs so that the cost of verifying every additional proof is significantly

1Proof systems with computational soundness like Bulletproofs are sometimes called argument systems. We will
use the terms proof and argument interchangeably.

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 19

reduced. We also provide efficiency comparisons with the range proofs currently used for confidential

transactions [Max16; ano] and with other proof systems. Our implementation includes a general

tool for constructing Bulletproofs for any NP language. The tool reads in arithmetic circuits in the

Pinocchio [Par+13] format which lets users use their toolchain. This toolchain includes a compiler

from C to the circuit format. We expect this to be of great use to implementers who want to use

Bulletproofs.

2.1.2 Applications

We first discuss several applications for Bulletproofs along with related work specific to these appli-

cations. Additional related work is discussed in Section 2.1.3.

Confidential Transactions and Mimblewimble

Bitcoin and other similar cryptocurrencies use a transaction-output-based system where each trans-

action fully spends the outputs of previously unspent transactions. These unspent transaction

outputs are called UTXOs. Bitcoin allows a single UTXO to be spent to many distinct outputs,

each associated with a different address. To spend a UTXO a user must provide a signature, or more

precisely a scriptSig, that enables the transaction SCRIPT to evaluate to true [Bon+15]. Apart from

the validity of the scriptSig, miners verify that the transaction spends previously unspent outputs,

and that the sum of the inputs is greater than the sum of the outputs.

Maxwell [Max16] introduced the notion of a confidential transaction, where the input and output

amounts in a transaction are hidden in Pedersen commitments [Ped92]. To enable public validation,

the transaction contains a zero-knowledge proof that the sum of the committed inputs is greater

than the sum of the committed outputs, and that all the outputs are positive, namely they lie in

the interval [0, 2n], where 2n is much smaller than the group size. All current implementations of

confidential transactions [Max16; MP15; Poe+19; NM+16] use range proofs over committed values,

where the proof size is linear in n. These range proofs are the main contributor to the size of a

confidential transaction. In current implementations[Max16], a confidential transaction with only

two outputs and 32 bits of precision is 5.4 KB bytes, of which 5 KB are allocated to the range proof.

Even with recent optimizations the range proofs would still take up 3.8 KB.

We show in Section 2.7 that Bulletproofs greatly improve on this, even for a single range proof

while simultaneously doubling the range proof precision at marginal additional cost (64 bytes). The

logarithmic proof size additionally enables the prover to aggregate multiple range proofs, e.g. for

transactions with multiple outputs, into a single short proof. With Bulletproofs, m range proofs

are merely O(log(m)) additional group elements over a single range proof. This is already useful

for confidential transactions in their current form as most Bitcoin transactions have two or more

outputs. It also presents an intriguing opportunity to aggregate multiple range proofs from different

parties into one proof, as would be needed, for example, in a CoinJoin transaction [Max13]. In

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 20

Section 2.4.5, we present a simple and efficient MPC protocol that allows multiple users to generate

a single transaction with a single aggregate range proof. The users do not have to reveal their secret

transaction values to any of the other participants.

Confidential transaction implementations are available in side-chains[Poe+19], private blockchains[And17],

and in the popular privacy-focused cryptocurrency Monero [NM+16]. All these implementations

would have subsequently switched to using Bulletproofs. In Monero this led to a 97% reduction in

transaction fees2.

Mimblewimble. Recently an improvement was proposed to confidential transactions, called Mim-

blewimble [Jed16; ano], which provides further savings.

Jedusor [Jed16] realized that a Pedersen commitment to 0 can be viewed as an ECDSA public key,

and that for a valid confidential transaction the difference between outputs, inputs, and transaction

fees must be 0. A prover constructing a confidential transaction can therefore sign the transaction

with the difference of the outputs and inputs as the public key. This small change removes the

need for a scriptSig which greatly simplifies the structure of confidential transactions. Poelstra [ano]

further refined and improved Mimblewimble and showed that these improvements enable a greatly

simplified blockchain in which all spent transactions can be pruned and new nodes can efficiently

validate the entire blockchain without downloading any old and spent transactions. Along with

further optimizations, this results in a highly compressed blockchain. It consists only of a small subset

of the block-headers as well as the remaining unspent transaction outputs and the accompanying

range proofs plus an un-prunable 32 bytes per transaction. Mimblewimble also allows transactions

to be aggregated before sending them to the blockchain.

A Mimblewimble blockchain grows with the size of the UTXO set. Using Bulletproofs, it would

only grow with the number of transactions that have unspent outputs, which is much smaller than

the size of the UTXO set. Overall, Bulletproofs can not only act as a drop-in replacement for the

range proofs in confidential transactions, but it can also help make Mimblewimble a practical scheme

with a blockchain that is significantly smaller than the current Bitcoin blockchain. Subsequent, to

the initial publication of Bulletproofs both public Mimblewimble implementations, Grin and Beam,

adopted Bulletproof’s range proofs.

Provisions

Dagher et al. [Dag+15] introduced the Provisions protocol which allows Bitcoin exchanges to prove

that they are solvent without revealing any additional information. The protocol crucially relies on

range proofs to prevent an exchange from inserting fake accounts with negative balances. These

range proofs, which take up over 13GB, are the main contributors to the proof sizes of almost 18GB

for a large exchange with 2 million customers. The proof size is in fact linear in the number of

customers. Since in this protocol, one party (the exchange) has to construct many range proofs at

2https://bitcoinmagazine.com/culture/monero-transaction-fees-reduced-97-after-bulletproofs-upgrade

https://bitcoinmagazine.com/culture/monero-transaction-fees-reduced-97-after-bulletproofs-upgrade

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 21

once, the general Bulletproofs protocol from Section 2.4.3 is a natural replacement for the NIZK

proof used in Provisions. With the proof size listed in Section 2.7, we obtain that the range proofs

would take up less than 2 KB with our protocol. Additionally, the other parts of the proof could be

similarly compressed using the protocol from Section 2.5. The proof would then be dominated by

one commitment per customer, with size 62 MB. This is roughly 300 times smaller then the current

implementation of Provisions.

Verifiable shuffles

Consider two lists of committed values x1, . . . , xn and y1, . . . , yn. The goal is to prove that the

second list is a permutation of the first. This problem is called a verifiable shuffle. It has many

applications in voting [Fur+03; Nef01], mix-nets [Cha82], and solvency proofs [Dag+15]. Neff [Nef01]

gave a practical implementation of a verifiable shuffle and later work improved on it [Gro10a; GI08].

Currently the most efficient shuffle [BG12] has size O(
√
n).

Bulletproofs can be used to create a verifiable shuffle of size O(log n). The two lists of commit-

ments are given as inputs to the circuit protocol from Section 2.5. The circuit can implement a shuffle

by sorting the two lists and then checking that they are equal. A sorting circuit can be implemented

using O(n · log(n)) multiplications which means that the proof size will be only O(log(n)). This is

much smaller than previously proposed protocols. Given the concrete efficiency of Bulletproofs, a

verifiable shuffle using Bulletproofs would be very efficient in practice. Constructing the proof and

verifying it takes linear time in n.

NIZK Proofs for Smart Contracts

The Ethereum [Woo14] system uses highly expressive smart contracts to enable complex transac-

tions. Smart contracts, like any other blockchain transaction, are public and provide no inherent

privacy. To bring privacy to smart contracts, non-interactive zero-knowledge (NIZK) proofs have

been proposed as a tool to enable complex smart contracts that do not leak the user inputs [Kos+16;

MSH17; Cam+17]. However, these protocols are limited as the NIZK proof itself is not suitable for

verification by a smart contract. The reason is that communication over the blockchain with a smart

contract is expensive, and the smart contract’s own computational power is highly limited. SNARKs,

which have succinct proofs and efficient verifiers, seem like a natural choice, but current practical

SNARKs [Ben+13] require a complex trusted setup. The resulting common reference strings (CRS)

are long, specific to each application, and possess trapdoors. In Hawk [Kos+16], for instance, a

different CRS is needed for each smart contract, and either a trusted party is needed to generate it,

or an expensive multi-party computation is needed to distribute the trust among a few parties. On

the other hand, for small applications like boardroom voting, one can use classical sigma protocols

[MSH17], but the proof-sizes and expensive verification costs are prohibitive for more complicated

applications. Recently, Campanelli et al. [Cam+17] showed how to securely perform zero-knowledge

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 22

contingent payments (ZKCPs) in Bitcoin, while attacking and fixing a previously proposed protocol

[Max]. ZKCPs enable the trustless, atomic and efficient exchange of a cryptocurrency vs. some

digital good. While ZKCPs support a wide area of applications they fundamentally work for only

a single designated verifier and do not allow for public verification. For some smart contracts that

have more than two users, public verification is often crucial. In an auction, for example, all bidders

need to be convinced that all bids are well formed.

Bulletproofs improves on this by enabling small proofs that do not require a trusted setup. The

Bulletproofs verifier is not cheap, but there are multiple ways to work around this. First, a smart

contract may act optimistically and only verify a proof if some party challenges its validity. Incentives

can be used to ensure that rational parties never create an incorrect proof nor challenge a correct

proof. This can be further improved by using an interactive referee delegation model [CRR11],

previously proposed for other blockchain applications [BGB17; TR]. In this model, the prover

provides a proof along with a succinct commitment to the verifier’s execution trace. A challenger

that disagrees with the computation also commits to his computation trace and the two parties

engage in an interactive binary search to find the first point of divergence in the computation. The

smart contract can then execute this single computation step and punish the party which provided

a faulty execution trace. The intriguing property of this protocol is that even when a proof is

challenged, the smart contract only needs to verify a single computation step, i.e. a single gate of

the verification circuit. In combination with small Bulletproofs, this can enable more complex but

privacy preserving smart contracts. Like in other applications, these NIZK proofs would benefit from

the MPC protocol that we present in Section 2.4.5 to generate Bulletproofs distributively. Consider

an auction smart contract where bidders in the first round submit commitments to bids and in the

second round open them. A NIZK can be used to prove properties about the bids, e.g. they are in

some range, without revealing them. Using Bulletproofs’ MPC multiple bidders can combine their

Bulletproofs into a single proof. Furthermore, the proof will hide which bidder submitted which bid.

Short Non-Interactive Proofs for Arithmetic Circuits without a Trusted Setup

Non-interactive zero-knowledge protocols for general statements are not possible without using a

common reference string, which should be known by both the prover and the verifier. Many efficient

non-interactive zero-knowledge proofs and arguments for arithmetic circuit satisfiability have been

developed [Mic94; KP98; GS08; Gen+13; Ben+13; Ben+18b], and highly efficient protocols are

known. However, aside from their performance, these protocols differ in the complexity of their

common reference strings. Some, such as those in[Ben+13], are highly structured, and sometimes

feature a trapdoor, while some are simply chosen uniformly at random. Security proofs assume that

the common reference string was honestly generated. In practice, the common reference string can

be generated by a trusted third party, or using a secure multi-party computation protocol. The

latter helps to alleviate concerns about embedded trapdoors, as with the trusted setup ceremony

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 23

used to generate the public parameters for [Ben+14a].

Zero-knowledge SNARKs have been the subject of extensive research [Gro10b; Bit+12a; Gen+13;

Bit+13a; Par+13; Ben+13; Gro16]. They generate constant-sized proofs for any statement, and have

extremely fast verification time. However, they have highly complex common reference strings which

require lengthy and computationally intensive protocols [BGG19] to generate distributively. They

also rely on strong unfalsifiable assumptions such as the knowledge-of-exponent assumption.

A uniformly-random common reference string, on the other hand, can be derived from common

random strings, like the digits of π or by assuming that hash functions behave like a random oracle.

Examples of non-interactive protocols that do not require a trusted setup include [Mic94; Boo+16;

Boo+17; Ben+17a; Ben+18b].

Ben-Sasson et al. present a proof system [Ben+17b] and implementation [Ben+17a] called Scal-

able Computational Integrity (SCI). While SCI has a simple setup, and relies only on collision-

resistant hash functions, the system is not zero-knowledge and still experiences worse performance

than [Ben+13; Boo+16]. The proof sizes are roughly 42 MB large in practice for a reasonable circuit.

In subsequent work Ben-Sasson et al. presented STARKs [Ben+18b], which are zero-knowledge and

more efficient than SCI. However even with these improvements the proof size is still over 200 KB

(and grows logarithmically) at only 60-bit security for a circuit of size 217. A Bulletproof for such

a circuit at twice the security would be only about 1 KB. Constructing STARKs is also costly in

terms of memory requirements because of the large FFT that is required to make proving efficient.

Ames et al. [Ame+17] presented a proof system with linear verification time but only square

root proof size building on the MPC in the head technique. Wahby [Wah+18] recently present

a cryptographic zero-knowledge proof system which achieves square root verifier complexity and

proof size based on the proofs for muggles [GKR08] techniques in combination with a sub-linear

polynomial commitment scheme.

2.1.3 Additional Related Work

Much of the research related to electronic payments that predates Bitcoin [Nak08] focused on efficient

anonymous and confidential payments [CHL05; Cha82] . With the advent of blockchain-based cryp-

tocurrencies, the question of privacy and confidentiality in transactions has gained a new relevance.

While the original Bitcoin paper [Nak08] claimed that Bitcoin would provide anonymity through

pseudonymous addresses early work on Bitcoin showed that the anonymity is limited [Mei+13;

And+13]. Given these limitations, various methods have been proposed to help improve the privacy

of Bitcoin transactions. CoinJoin [Max13], proposed by Maxwell, allows users to hide informa-

tion about the amounts of transactions by merging two or more transactions. This ensures that

among the participants who join their transactions, it is impossible to tell which transaction in-

puts correspond to which transaction outputs. However, users do require some way of searching

for other users, and furthermore, should be able to do so without relying on a trusted third party.

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 24

ESORICS:RufMorKat14 [RMK14] tried to fulfill this requirement by taking developing the ideas

of CoinJoin and proposing a new Bitcoin mixing protocol which is completely decentralized. Mon-

ero [Mon] is a cryptocurrency which employs cryptographic techniques to achieve strong privacy

guarantees. These include stealth addresses, ring-signatures [Sab13], and ring confidential trans-

actions [NM+16]. ZeroCash [Ben+14a] offers optimal privacy guarantees but comes at the cost of

expensive transaction generation and the requirement of a trusted setup.

Range proofs. Range proofs are proofs that a secret value, which has been encrypted or committed

to, lies in a certain interval. Range proofs do not leak any information about the secret value, other

than the fact that they lie in the interval. Lipmaa [Lip03] presents a range proof which uses integer

commitments, and Lagrange’s four-square theorem which states that every positive integer y can be

expressed as a sum of four squares. Groth [Gro05] notes that the argument can be optimized by

considering 4y + 1, since integers of this form only require three squares. The arguments require

only a constant number of commitments. However, each commitment is large, as the security of

the argument relies on the Strong RSA assumption. Additionally, a trusted setup is required to

generate the RSA modulus or a prohibitively large modulus needs to be used [San99]. Camenisch et

al. [CCs08] use a different approach. The verifier provides signatures on a small set of digits. The

prover commits to the digits of the secret value, and then proves in zero-knowledge that the value

matches the digits, and that each commitment corresponds to one of the signatures. They show that

their scheme can be instantiated securely using both RSA accumulators [Bd94] and the Boneh-Boyen

signature scheme [BB04]. However, these range proofs require a trusted setup. Approaches based on

the n-ary digits of the secret value are limited to proving that the secret value is in an interval of the

form
[
0, nk − 1

]
. One can produce range proofs for more general intervals by using homomorphic

commitments to translate intervals, and by using a combination of two different range proofs to

conduct range proofs for intervals of different widths. However, [CLs10] presented an alternative

digital decomposition which enables an interval of general width to be handled using a single range

proof.

2.2 Preliminaries

Before we present Bulletproofs, we first review some of the underlying tools. In what follows, a

PPT adversary A is a probabilistic interactive Turing Machine that runs in polynomial time in the

security parameter λ. We will drop the security parameter λ from the notation when it is implicit.

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 25

2.2.1 Assumptions

Definition 2.1 (Discrete Log Relation). For all PPT adversaries A and for all n ≥ 2 there exists

a negligible function µ(λ) such that

P

[
(G,+) = Setup(1λ), G1, . . . , Gn ←$ G;

a1, . . . , an ∈ Zp ← A(G, G1, . . . , Gn)
: ∃ai ̸= 0 ∧

n∏
i=1

ai ·Gi = 0G ∈ G

]
≤ µ(λ)

We say
∑n

i=1 ai ·Gi = 0G is a non trivial discrete log relation between g1, . . . , gn. The Discrete

Log Relation assumption states that an adversary can’t find a non-trivial relation between randomly

chosen group elements. For n ≥ 1 this assumption is equivalent to the discrete-log assumption.

2.2.2 Commitments

Definition 2.2 (Commitment). A non-interactive commitment scheme consists of a pair of proba-

bilistic polynomial time algorithms (Setup,Commit). The setup algorithm p ← Setup(1λ) generates

public parameters p for the scheme, for security parameter λ. The commitment algorithm Commitp

defines a function M×R → C for message space M, randomness space R and commitment space

C determined by p. For a message x ∈ M, the algorithm draws r ←$ R uniformly at random, and

computes commitment com = Commitp(x; r).

For ease of notation we write Commit = Commitp.

Definition 2.3 (Homomorphic Commitments). A homomorphic commitment scheme is a non-

interactive commitment scheme such thatM,R and C are all abelian groups, and for all x1, x2 ∈M,

r1, r2 ∈ R, we have

Commit(x1; r1) + Commit(x2; r2) = Commit(x1 + x2; r1 + r2)

Definition 2.4 (Hiding Commitment). A commitment scheme is said to be hiding if for all PPT

adversaries A there exists a negligible function µ(λ) such that.∣∣∣∣∣∣∣∣P
b = b′

∣∣∣∣∣∣∣∣
p← Setup(1λ);

(x0, x1) ∈M2 ← A(p), b←$ {0, 1}, r ←$R,
com = Commit(xb; r), b

′ ← A(p, com)

− 1

2

∣∣∣∣∣∣∣∣ ≤ µ(λ)

where the probability is over b, r,Setup and A. If µ(λ) = 0 then we say the scheme is perfectly

hiding.

Definition 2.5 (Binding Commitment). A commitment scheme is said to be binding if for all PPT

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 26

adversaries A there exists a negligible function µ such that.

P

[
Commit(x0; r0) = Commit(x1; r1) ∧ x0 ̸= x1

∣∣∣∣∣ p← Setup(1λ),

x0, x1, r0, r1 ← A(p)

]
≤ µ(λ)

where the probability is over Setup and A. If µ(λ) = 0 then we say the scheme is perfectly binding.

In what follows, the order p of the groups used is implicitly dependent on the security parameter

λ to ensure that discrete log in these groups is intractable for PPT adversaries.

Definition 2.6 (Pedersen Commitment). M,R = Zp, C = (G,+) of order p.

Setup : G,H ←$ G
Commit(x; r) = (x ·G+ r ·H)

Definition 2.7 (Pedersen Vector Commitment). M = Zn
p , R = Zp, C = (G,+) with G of order p

Setup : G = (G1, . . . , Gn), H ←$ G
Commit(x = (x1, . . . , xn); r) = r ·H + ⟨x,G⟩ = r ·H +

∑
i xi ·Gi ∈ G

The Pedersen vector commitment is perfectly hiding and computationally binding under the

discrete logarithm assumption. We will often set r = 0, in which case the commitment is binding

but not hiding.

2.2.3 Zero-Knowledge Arguments of Knowledge

Bulletproofs are zero-knowledge arguments of knowledge. A zero-knowledge proof of knowledge is a

protocol in which a prover can convince a verifier that some statement holds without revealing any

information about why it holds. A prover can for example convince a verifier that a confidential

transaction is valid without revealing why that is the case, i.e. without leaking the transacted

values. An argument is a proof which holds only if the prover is computationally bounded and

certain computational hardness assumptions hold. We now give formal definitions.

We will consider arguments consisting of three interactive algorithms (Setup,P,V), all running

in probabilistic polynomial time. These are the common reference string generator Setup, the prover

P, and the verifier V. On input 1λ, algorithm Setup produces a common reference string σ. The

transcript produced by P and V when interacting on inputs s and t is denoted by tr ← ⟨P(s),V(t)⟩.
We write ⟨P(s),V(t)⟩ = b depending on whether the verifier rejects, b = 0, or accepts, b = 1.

Let R ⊂ {0, 1}∗×{0, 1}∗×{0, 1}∗ be a polynomial-time-decidable ternary relation. Given σ, we

call w a witness for a statement u if (σ, u, w) ∈ R, and define the CRS-dependent language

Lσ = {x | ∃w : (σ, x, w) ∈ R}

as the set of statements x that have a witness w in the relation R.

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 27

Definition 2.8 (Argument of Knowledge). The triple (Setup,P,V) is called an argument of knowl-

edge for relation R if it satisfies the following two definitions.

Definition 2.9 (Perfect completeness). (Setup,P,V) has perfect completeness if for all non-uniform

polynomial time adversaries A

P

[
(σ, u, w) ̸∈ R or ⟨P(σ, u, w),V(σ, u)⟩ = 1

∣∣∣∣∣ σ ← Setup(1λ)

(u,w)← A(σ)

]
= 1

Definition 2.10 (Computational Witness-Extended Emulation). (Setup,P,V) has witness-extended

emulation if for all deterministic polynomial time P∗ there exists an expected polynomial time em-

ulator Ext such that for all pairs of interactive adversaries A1,A2 there exists a negligible function

µ(λ) such that

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P

[
A1(tr) = 1

∣∣∣∣∣ σ ← Setup(1λ), (u, s)← A2(σ),

tr ← ⟨P∗(σ, u, s),V(σ, u)⟩

]
−

P

 A1(tr) = 1

∧(tr is accepting =⇒ (σ, u, w) ∈ R)

∣∣∣∣∣∣∣∣
σ ← Setup(1λ),

(u, s)← A2(σ),

(tr, w)← ExtO(σ, u)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ)

where the oracle is given by O = ⟨P∗(σ, u, s),V(σ, u)⟩, and permits rewinding to a specific point

and resuming with fresh randomness for the verifier from this point onwards. We can also define

computational witness-extended emulation by restricting to non-uniform polynomial time adversaries

A1 and A2.

We use witness-extended emulation to define knowledge-soundness as used for example in [Boo+16]

and defined in [GI08; Lin03]. Informally, whenever an adversary produces an argument which sat-

isfies the verifier with some probability, then there exists an emulator producing an identically

distributed argument with the same probability, but also a witness. The value s can be considered

to be the internal state of P∗, including randomness. The emulator is permitted to rewind the

interaction between the prover and verifier to any move, and resume with the same internal state for

the prover, but with fresh randomness for the verifier. Whenever P∗ makes a convincing argument

when in state s, Ext can extract a witness, and therefore, we have an argument of knowledge of w

such that (σ, u, w) ∈ R.

Definition 2.11 (Public Coin). An argument of knowledge (Setup,P,V) is called public coin if all

messages sent from the verifier to the prover are chosen uniformly at random and independently of

the prover’s messages, i.e., the challenges correspond to the verifier’s randomness ρ.

An argument of knowledge is zero knowledge if it does not leak information about w apart from

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 28

what can be deduced from the fact that (σ, x, w) ∈ R. We will present arguments of knowledge that

have special honest-verifier zero-knowledge. This means that given the verifier’s challenge values, it

is possible to efficiently simulate the entire argument without knowing the witness.

Definition 2.12 (Perfect Special Honest-Verifier Zero-Knowledge). A public coin argument of

knowledge (Setup,P,V) is a perfect special honest verifier zero-knowledge (SHVZK) argument of

knowledge for R if there exists a probabilistic polynomial time simulator Sim such that for all pairs

of interactive adversaries A1,A2

Pr

[
(σ, u, w) ∈ R and A1(tr) = 1

∣∣∣∣∣ σ ← Setup(1λ), (u,w, ρ)← A2(σ),

tr ← ⟨P(σ, u, w),V(σ, u; ρ)⟩

]

= Pr

[
(σ, u, w) ∈ R and A1(tr) = 1

∣∣∣∣∣ σ ← Setup(1λ), (u,w, ρ)← A2(σ),

tr ← S(u, ρ)

]

where ρ is the public coin randomness used by the verifier.

In this definition the adversary chooses a distribution over statements and witnesses but is

still not able to distinguish between the simulated and the honestly generated transcripts for valid

statements and witnesses.

We now define range proofs, which are proofs that the prover knows an opening to a commitment,

such that the committed value is in a certain range. Range proofs can be used to show that an integer

commitment is to a positive number or that two homomorphic commitments to elements in a field

of prime order will not overflow modulo the prime when they are added together.

Definition 2.13 (Zero-Knowledge Range Proof). Given a commitment scheme (Setup,Commit)

over a message space M which is a set with a total ordering, a Zero-Knowledge Range Proof is a

SHVZK argument of knowledge for the relation RRange:

RRange : (p, (com, l, r), (x, ρ)) ∈ RRange ↔ com = Commit(x; ρ) ∧ l ≤ x < r

2.2.4 Notation

Let G denote a cyclic additive group of prime order p and let Zp denote the ring of integers modulo p.

Let Gn and Zn
p be vector spaces of dimension n over G and Zp respectively. Let Z⋆

p denote Zp \ {0}.
Generators of G are denoted by G,H, V, U ∈ G. Group elements are capitalized and blinding factors

are denoted by Greek letters, i.e. C = a·G+αH ∈ G is a Pedersen commitment to a. If not otherwise

clear from context x, y, z ∈ Z⋆
p are uniformly distributed challenges. x ←$ Z⋆

p denotes the uniform

sampling of an element from Z⋆
p. Throughout the paper, we will also be using vector notations

defined as follows. Bold font denotes vectors, i.e. a ∈ Fn is a vector with elements a1, . . . , an ∈ F.
Capitalized bold font denotes matrices, i.e. A ∈ Fn×m is a matrix with n rows and m columns such

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 29

that ai,j is the element of A in the ith row and jth column. For a scalar c ∈ Zp and a vector a ∈ Zn
p ,

we denote by b = c · a ∈ Zn
p the vector where bi = c · ai. Furthermore, let ⟨a,b⟩ =

∑n
i=1 ai · bi

denotes the inner product between two vectors a,b ∈ Fn and a ◦ b = (a1 · b1, . . . , an · bn) ∈ Fn the

Hadamard product or entry wise multiplication of two vectors.

We also define vector polynomials p(X) =
∑d

i=0 pi · Xi ∈ Zn
p [X] where each coefficient pi is a

vector in Zn
p . The inner product between two vector polynomials l(X), r(X) is defined as

⟨l(X), r(X)⟩ =
d∑

i=0

i∑
j=0

⟨li, rj⟩ ·Xi+j ∈ Zp[X] (2.1)

Let t(X) = ⟨l(X), r(X)⟩, then the inner product is defined such that t(x) = ⟨l(x), r(x)⟩ holds for

all x ∈ Zp, i.e. evaluating the polynomials at x and then taking the inner product is the same as

evaluating the inner product polynomial at x.

For a vector G = (G1, . . . , Gn) ∈ Gn and a ∈ Zn
p we write C = ⟨a,G⟩ =

∑n
i=1 ai ·Gi ∈ G. This

quantity is a binding (but not hiding) commitment to the vector a ∈ Zn
p . Given such a commitment

C and a vector b ∈ Zn
p with non-zero entries, we can treat C as a new commitment to a ◦ b. To

so do, define G′
i = (b−1

i) · Gi such that C =
∑n

i=1(ai · bi) · G′
i. The binding property of this new

commitment is inherited from the old commitment.

Let a ∥ b denote the concatenation of two vectors: if a ∈ Zn
p and b ∈ Zm

p then a ∥ b ∈ Zn+m
p .

For 0 ≤ ℓ ≤ n, we use Python notation to denote slices of vectors:

a[:ℓ] = (a1, . . . , aℓ) ∈ Fℓ, a[ℓ:] = (aℓ+1, . . . , an) ∈ Fn−ℓ.

For k ∈ Z⋆
p we use kn to denote the vector containing the first n powers of k, i.e.

kn = (1, k, k2, . . . , kn−1) ∈ (Z⋆
p)

n.

For example, 2n = (1, 2, 4, . . . , 2n−1). Equivalently k−n = (k−1)
n
= (1, k−1, . . . , k−n+1).

Finally, we write
{
(Public Input;Witness) : Relation

}
to denote the relation Relation using the

specified Public Input and Witness.

2.3 Improved Inner-Product Argument

Bootle et al. [Boo+16] introduced a communication efficient inner-product argument and show how

it can be leveraged to construct zero-knowledge proofs for arithmetic circuit satisfiability with low

communication complexity. The argument is an argument of knowledge that the prover knows the

openings of two binding Pedersen vector commitments that satisfy a given inner product relation.

We reduce the communication complexity of the argument from 6 log2(n) in [Boo+16] to only

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 30

2 log2(n), where n is the dimension of the two vectors. We achieve this improvement by modify-

ing the relation being proved. Our argument is sound, but is not zero-knowledge. We then show

that this protocol gives a public-coin, communication efficient, zero-knowledge range proof on a

set of committed values, and a zero-knowledge proof system for arbitrary arithmetic circuits (Sec-

tions 2.4 and 2.5). By applying the Fiat-Shamir heuristic we obtain short non-interactive proofs

(Section 2.4.4).

Overview. The inputs to the inner-product argument are independent generators G,H ∈ Gn, a

scalar c ∈ Zp, and P ∈ G. The argument lets the prover convince a verifier that the prover knows

two vectors a,b ∈ Zn
p such that

P = ⟨a,G⟩+ ⟨b,H⟩ and c = ⟨a,b⟩.

We refer to P as a binding vector commitment to a,b. Throughout the section we assume that the

dimension n is a power of 2. If need be, one can easily pad the inputs to ensure that this holds.

More precisely, the inner product argument is an efficient proof system for the following relation:

Ripa =
{
(G,H ∈ Gn, P ∈ G, c ∈ Zp ; a,b ∈ Zn

p) : P = ⟨a,G⟩+ ⟨b,H⟩ ∧ c = ⟨a,b⟩
}
. (2.2)

The simplest proof system for (2.2) is one where the prover sends the vectors a,b ∈ Zn
p to the

verifier. The verifier accepts if these vectors are a valid witness for (2.2). This is clearly sound,

however, it requires sending 2n elements to the verifier. Our goal is to send only 2 log2(n) elements.

We show how to do this when the inner product c = ⟨a,b⟩ is given as part of the vector

commitment P . That is, for a given P ∈ G, the prover proves that it has vectors a,b ∈ Zn
p for which

P = ⟨a,G⟩+ ⟨b,H⟩+ ⟨a,b⟩ · U . More precisely, we design a proof system for the relation:

{
(G,H ∈ Gn, U, P ∈ G ; a,b ∈ Zn

p) : P = ⟨a,G⟩+ ⟨b,H⟩+ ⟨a,b⟩ · U
}
. (2.3)

We show in Protocol 2.1 below that a proof system for (2.3) gives a proof system for (2.2) with the

same complexity. Hence, it suffices to give a proof system for (2.3).

To give some intuition for how the proof system for the relation (2.3) works let us define a hash

function H : Z2n+1
p → G as follows. First, set n′ = n/2 and fix generators G,H ∈ Gn, U ∈ G. Then

the hash function H takes as input a,a′,b,b′ ∈ Zn′

p and c ∈ Zp, and outputs

H(a,a′,b,b′, c) = ⟨a,G[:n′]⟩+ ⟨a′,G[n′:]⟩+ ⟨b,H[:n′]⟩+ ⟨b′,H[n′:]⟩+ c · U ∈ G.

Now, using the setup in (2.3), we can write P as P = H
(
a[:n′],a[n′:], b[:n′],b[n′:], ⟨a,b⟩

)
. Note that

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 31

H is additively homomorphic in its inputs, i.e.

H(a1,a
′
1,b1,b

′
1, c1) ·H(a2,a

′
2,b2,b

′
2, c2) = H(a1 + a2, a′1 + a′2, b1 + b2, b′

1 + b′
2, c1 + c2).

Consider the following protocol for the relation (2.3), where P ∈ G is given as input:

• The prover computes L,R ∈ G as follows:

L = H
(

0n′
, a[:n′], b[n′:], 0n′

, ⟨a[:n′],b[n′:]⟩
)

R = H
(

a[n′:], 0n′
, 0n′

, b[:n′], ⟨a[n′:],b[:n′]⟩
)

and recall that P = H
(

a[:n′], a[n′:], b[:n′], b[n′:], ⟨a,b⟩
)
.

It sends L,R ∈ G to the verifier.

• The verifier chooses a random x←$ Zp and sends x to the prover.

• The prover computes a′ = xa[:n′] + x−1a[n′:] ∈ Zn′

p and b′ = x−1b[:n′] + xb[n′:] ∈ Zn′

p

and sends a′,b′ ∈ Zn′

p to the verifier.

• Given (L,R,a′,b′), the verifier computes P ′ = x2 · L+ P + x−2 ·R and outputs “accept” if

P ′ = H
(
x−1a′, xa′, xb′, x−1b′, ⟨a′,b′⟩

)
. (2.4)

It is easy to verify that a proof from an honest prover will always be accepted. Indeed, the left hand

side of (2.4) is

x2·L+P+x−2·R = H
(
a[:n′] + x−2a[n′:], x2a[:n′] + a[n′:], x2b[n′:] + b[:n′], b[n′:] + x−2b[:n′], ⟨a′,b′⟩

)
which is the same as the right hand side of (2.4).

In this proof system, the proof sent from the prover is the four tuple (L,R,a′,b′) and contains

only n + 2 elements. This is about half the length of the trivial proof where the prover sends the

complete a,b ∈ Zn
p to the verifier.

To see why this protocol is a proof system for (2.3) we show how to extract a valid witness

a,b ∈ Zn
p from a successful prover. After the prover sends L,R we rewind the prover three times to

obtain three tuples (xi,a
′
i,b

′
i) for i = 1, . . . , 3, where each tuple satisfies (2.4), namely

L(x2
i) · P ·R(x−2

i) = H(x−1
i a′i, xia

′
i, xib

′
i, x−1

i b′
i, ⟨a′i,b′

i⟩). (2.5)

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 32

Assuming xi ̸= ±xj for 1 ≤ i < j ≤ 3, we can find ν1, ν2, ν3 ∈ Zp such that

3∑
i=1

x2
i νi = 0 and

3∑
i=1

νi = 1 and

3∑
i=1

x−2
i νi = 0.

Then setting

a =

3∑
i=1

(νi · x−1
i a′i, νi · xia

′
i) ∈ Zn

p and b =

3∑
i=1

(νi · xib
′
i, νi · x−1

i b′
i) ∈ Zn

p

we obtain that P = H
(
a[:n′],a[n′:],b[:n′],b[n′:], c

)
where c =

∑3
i=1 νi · ⟨a′i,b′

i⟩. We will show in

the proof of Theorem 2.1 below that with one additional rewinding, to obtain a fourth relation

satisfying (2.5), we must have c = ⟨a,b⟩ with high probability. Hence, the extracted a,b are a valid

witness for the relation (2.3), as required.

Shrinking the proof by recursion. Observe that the test in (2.4) is equivalent to testing that

P ′ = ⟨a′,
(
x−1 ·G[:n′] + x ·G[n′:]

)
⟩+ ⟨b′,

(
x ·H[:n′] + x−1 ·H[n′:]

)
⟩+ ⟨a′,b′⟩ · U.

Hence, instead of the prover sending the vectors a′,b′ to the verifier, they can recursively engage

in an inner-product argument for P ′ with respect to generators (x−1 ·G[:n′] + x ·G[n′:], x ·H[:n′] +

x−1 ·H[n′:], U). The dimension of this problem is only n′ = n/2.

The resulting log2 n depth recursive protocol is shown in Protocol 2.2. This log2 n round pro-

tocol is public coin and can be made non-interactive using the Fiat-Shamir heuristic. The total

communication of Protocol 2.2 is only 2⌈log2(n)⌉ elements in G plus 2 elements in Zp. Specifically,

the prover sends the following terms:

(L1, R1), . . . , (Llog2 n, Rlog2 n), a, b

where a, b ∈ Zp are sent at the tail of the recursion. The prover’s work is dominated by 8n group

exponentiations and the verifier’s work by 4n exponentiations. In Section 2.3.1 we present a more

efficient verifier that performs only 1 multi-exponentiation of size 2n + 2 log(n). In Section 2.7 we

present further optimizations.

Proving security. The inner product protocol for the relation (2.2) is presented in Protocol 2.1.

This protocol uses internally a fixed group element u ∈ G for which there is no known discrete-log

relation among G,H, u. The heart of Protocol 2.1 is Protocol 2.2 which is a proof system for the

relation (2.3). In Protocol 2.1 the element u is raised to a verifier chosen power x to ensure that the

extracted vectors a,b from Protocol 2.2 satisfy ⟨a,b⟩ = c.

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 33

PIP’s input: (G,H;P, c;a,b)

VIP’s input: (G,H;P ; c)

VIP : X ←$ Z⋆
p (2.6)

VIP → PIP : x (2.7)

P ′ ← P + (x · c) · U (2.8)

Run Protocol 2.2 on Input (G,H, c · U,P ′ ; a,b) (2.9)

Protocol 2.1: Proof system for Relation (2.2) using Protocol 2.2. Here u ∈ G is a fixed group element
with an unknown discrete-log relative to G,H ∈ Gn.

The following theorem shows that Protocol 2.1 is a proof system for (2.2).

Theorem 2.1 (Inner-Product Argument). The argument presented in Protocol 2.1 for the rela-

tion (2.2) has perfect completeness and statistical witness-extended-emulation for either extracting a

non-trivial discrete logarithm relation between G,H, u or extracting a valid witness a,b.

The proof for Theorem 2.1 is given in Section 2.9.

2.3.1 Inner-Product Verification through Multi-Exponentiation

Protocol 2.2 has a logarithmic number of rounds and in each round the prover and verifier compute

a new set of generators G′,H′. This requires a total of 4n exponentiations: 2n in the first round, n

in the second and n
2j−3 in the jth. We can reduce the number of exponentiations to a single multi-

exponentiation of size 2n by delaying all the exponentiations until the last round. This technique

provides a significant speed-up if the proof is compiled to a non interactive proof using the Fiat-

Shamir heuristic (as in Section 2.4.4).

Let g and h be the generators used in the final round of the protocol and xj be the challenge

from the jth round. In the last round the verifier checks that a ·G+ b ·H + (a · b) · U = P , where

a, b ∈ Zp are given by the prover. By unrolling the recursion we can express these final g and h in

terms of the input generators G,H ∈ Gn as:

g =

n∑
i=1

si ·Gi ∈ G, h =

n∑
i=1

s−1
i ·Hi ∈ G

where s = (s1, . . . , sn) ∈ Zn
p only depends on the challenges (x1, . . . , xlog2(n)

). The scalars s1, . . . , sn ∈

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 34

Improved inner product argument Πipa:

(pp = (G,H, U);P ; (a,b)) ∈ Ripa : P = ⟨a,G⟩+ ⟨b,H⟩+ ⟨a,b⟩ · U

1 : Prover Pipa(pp;P ∈ G;a,b) Verifier Vipa(pp;P)

. if n = 1 .

2 : a, b Check a ·G+ b ·H + (a · b) · U ?
= P

. else .

3 : n′ ← n

2

4 : cL ← ⟨a[:n′],b[n′:]⟩ ∈ Zp

5 : cR ← ⟨a[n′:],b[:n′]⟩ ∈ Zp

6 : L← ⟨a[:n′]||b[n′:],G[n′:]||H[:n′]⟩+ cL · U ∈ G

7 : R← ⟨a[n′:]||b[:n′],G[:n′]||H[n′:]⟩+ cR · U ∈ G L,R

8 : x x←$ Z∗
p

9 : G′ ← x−1 ·G[:n′] + x ·G[n′:] G′ ← x−1 ·G[:n′] + x ·G[n′:]

10 : H′ ← x ·H[:n′] + x−1 ·H[n′:] H′ ← x ·H[:n′] + x−1 ·H[n′:]

11 : P ′ ← x2 · L+ P + x−1 ·R P ′ ← x2 · L+ P + x−1 ·R

12 : a′ ← x · a[:n′] + x−1a[n′:]

13 : b′ ← x−1 · b[:n′] + xb[n′:]

. Run Πipa on input (pp = (G′,H′, U);P ′;a′b′ .

14 :

Protocol 2.2: Improved Inner-Product Argument

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 35

Zp are calculated as follows:

for i = 1, . . . , n: si =

log2(n)∏
j=1

x
b(i,j)
j where b(i, j) =

1 the jth bit of i− 1 is 1

−1 otherwise

Now the entire verification check in the protocol reduces to the following single multi-exponentiation

of size 2n+ 2 log2(n) + 1:

⟨a · s,G⟩+ ⟨b · s−1,H⟩+ (a · b) · U ?
= P +

log2(n)∑
j=1

x2
j · Lj + x−2

j ·Rj .

Because a multi-exponentiation can be done much faster than n separate exponentiations, as we

discuss in Section 2.7, this leads to a significant savings.

2.4 Range Proof Protocol with Logarithmic Size

We now present a novel protocol for conducting short and aggregatable range proofs. The protocol

uses the improved inner product argument from Protocol 2.1. First, in Section 2.4.1, we describe

how to construct a range proof that requires the verifier to check an inner product between two

vectors. Then, in Section 2.4.2, we show that this check can be replaced with an efficient inner-

product argument. In Section 2.4.3, we show how to efficiently aggregate m range proofs into one

short proof. In Section 2.4.4, we discuss how interactive public coin protocols can be made non-

interactive by using the Fiat-Shamir heuristic, in the random oracle model. In Section 2.4.5 we

present an efficient MPC protocol that allows multiple parties to construct a single aggregate range

proof. Finally, in Section 2.4.6, we discuss an extension that enables a switch to quantum-secure

range proofs in the future.

2.4.1 Inner-Product Range Proof

We present a protocol which uses the improved inner-product argument to construct a range proof.

The proof convinces the verifier that a commitment V contains a number v that is in a certain range,

without revealing v. Bootle et al. [Boo+16] give a proof system for arbitrary arithmetic circuits,

and in Section 2.5 we show that our improvements to the inner product argument also transfer to

this general proof system. It is of course possible to prove that a commitment is in a given range

using an arithmetic circuit, and the work of [Boo+16] could be used to construct an asymptotically

logarithmic sized range proof (in the length of v). However, the circuit would need to implement

the commitment function, namely a multi-exponentiation for Pedersen commitments, leading to a

large complex circuit.

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 36

We construct a range proof more directly by exploiting the fact that a Pedersen commitment V

is an element in the same group G that is used to perform the inner product argument. We extend

this idea in Section 2.5 to construct a proof system for circuits that operate on committed inputs.

Formally, let v ∈ Zp and let V ∈ G be a Pedersen commitment to v using randomness γ. The

proof system will convince the verifier that v ∈ [0, 2n − 1]. In other words, the proof system proves

the following relation which is equivalent to the range proof relation in Definition 2.13:

Rrange =
{
(G,H ∈ G;V, n ; v, γ ∈ Zp) : V = v ·G+ γ ·H ∧ v ∈ [0, 2n − 1]

}
. (2.10)

Let aL = (a1, . . . , an) ∈ {0, 1}n be the vector containing the bits of v, so that ⟨aL,2n⟩ = v. The

prover Prange commits to aL using a constant size vector commitment A ∈ G. It will convince the

verifier that v is in [0, 2n − 1] by proving that it knows an opening aL ∈ Zn
p of A and v, γ ∈ Zp such

that V = v ·G+ γ ·H and

⟨aL,2n⟩ = v and aL ◦ aR = 0n and aR = aL − 1n (2.11)

This proves that a1, . . . , an are all in {0, 1}, as required and that aL is composed of the bits of v. The

high level goal of the following protocol is to convert these 2n+1 constraints as a single inner-product

constraint. This will allow us to use Protocol 2.1 to efficiently argue that an inner-product relation

holds. To do this we take a random linear combination (chosen by the verifier) of the constraints.

If the original constraints were not satisfied then it is inversely proportional in the challenge space

unlikely that the combined constraint holds.

Concretley, we use the following observation: to prove that a committed vector b ∈ Zn
p satisfies

b = 0n it suffices for the verifier to send a random y ∈ Zp to the prover and for the prover to prove

that ⟨b,yn⟩ = 0. If b ̸= 0n then the equality will hold with at most negligible probability n/p.

Hence, if ⟨b,yn⟩ = 0 the verifier is convinced that b = 0n.

Using this observation, and using a random y ∈ Zp from the verifier, the prover can prove

that (2.11) holds by proving that

⟨aL,2n⟩ = v and ⟨aL , aR ◦ yn⟩ = 0 and ⟨aL − 1n − aR , yn⟩ = 0. (2.12)

We can combine these three equalities into one using the same technique: the verifier chooses a

random z ∈ Zp and then the prover proves that

z2 · ⟨aL,2n⟩+ z · ⟨aL − 1n − aR , yn⟩+ ⟨aL , aR ◦ yn⟩ = z2 · v.

This equality can be re-written as:〈
aL − z · 1n , yn ◦ (aR + z · 1n) + z2 · 2n

〉
= z2 · v + δ(y, z) (2.13)

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 37

where δ(y, z) = (z−z2) ·⟨1n,yn⟩−z3⟨1n,2n⟩ ∈ Zp is a quantity that the verifier can easily calculate.

We thus reduced the problem of proving that (2.11) holds to proving a single inner-product identity.

If the prover could send to the verifier the two vectors in the inner product in (2.13) then the

verifier could check (2.13) itself, using the commitment V to v, and be convinced that (2.11) holds.

However, these two vectors reveal information about aL and therefore the prover cannot send them

to the verifier. We solve this problem by introducing two additional blinding terms sL, sR ∈ Zn
p to

blind these vectors.

Specifically, to prove the statement (2.10), Prange and Vrange engage in the following zero knowledge

protocol:

Prange on input v, γ computes: (2.14)

aL ∈ {0, 1}n s.t.⟨aL,2n⟩ = v (2.15)

aR ← aL − 1n ∈ Zn
p (2.16)

α←$ Zp (2.17)

A← α ·H + ⟨aL,G⟩+ ⟨aR,H⟩ ∈ G // commitment to aL and aR (2.18)

sL, sR ←$ Zn
p // choose blinding vectors sL, sR (2.19)

ρ←$ Zp (2.20)

S ← ρ ·H + ⟨sL,G⟩+ ⟨sR,H⟩ ∈ G // commitment to sL and sR (2.21)

Prange → Vrange : A,S (2.22)

Vrange : y, z ←$ Z⋆
p // challenge points (2.23)

Vrange → Prange : y, z (2.24)

With this setup, let us define two linear vector polynomials l(X), r(X) in Zn
p [X], and a quadratic

polynomial t(X) ∈ Zp[X] as follows:

l(X) = (aL − z · 1n) + sL ·X ∈ Zn
p [X]

r(X) = yn ◦ (aR + z · 1n + sR ·X) + z2 · 2n ∈ Zn
p [X]

t(X) = ⟨l(X), r(X)⟩ = t0 + t1 ·X + t2 ·X2 ∈ Zp[X]

where the inner product in the definition of t(X) is as in (2.1). The constant terms of l(X) and

r(X) are the inner product vectors in (2.13). The blinding vectors sL and sR ensure that the prover

can publish l(x) and r(x) for one x ∈ Z⋆
p without revealing any information about aL and aR.

The constant term of t(x), denoted t0, is the result of the inner product in (2.13). The prover

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 38

needs to convince the verifier that this t0 satisfies (2.13), namely

t0 = v · z2 + δ(y, z).

To so do, the prover commits to the remaining coefficients of t(X), namely t1, t2 ∈ Zp. It then

convinces the verifier that it has a commitment to the coefficients of t(X) by checking the value of

t(X) at a random point x ∈ Z⋆
p. Specifically, they do:

Prange computes: (2.25)

τ1, τ2 ←$ Zp (2.26)

Ti ← ti ·G+ τi ·H ∈ G, i = {1, 2} // commit to t1, t2 (2.27)

Prange → Vrange : T1, T2 (2.28)

Vrange : x←$ Z⋆
p (2.29)

Vrange → Prange : x // a random challenge (2.30)

Prange computes: (2.31)

l← l(x) = aL − z · 1n + sL · x ∈ Zn
p (2.32)

r← r(x) = yn ◦ (aR + z · 1n + sR · x) + z2 · 2n ∈ Zn
p (2.33)

t̂← ⟨l, r⟩ ∈ Zp // t̂ = t(x) (2.34)

τx ← τ2 · x2 + τ1 · x+ z2 · γ ∈ Zp // blinding value for t̂ (2.35)

µ← α+ ρ · x ∈ Zp // α, ρ blind A,S (2.36)

Prange → Vrange : τx, µ, t̂, l, r (2.37)

The verifier checks that l and r are in fact l(x) and r(x) and checks that t(x) = ⟨l, r⟩. In order

to construct a commitment to aR ◦ yn the verifier switches the generators of the commitment

from H ∈ Gn to H′ = (y−n) ◦ H. This has the effect that A is now a vector commitment to

(aL, aR◦yn) with respect to the new generators (G,H′, h). Similarly S is now a vector commitment

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 39

to (sL, sR ◦ yn). The remaining steps of the protocol are:

H ′
i ← (y−i+1) ·Hi ∈ G, ∀i ∈ [1, n] // H′ = y−1n ◦H

t̂G+ τxH
?
= z2V + δ(y, z)G · xT1 + x2T2 // check that t̂ = t(x) = t0 + t1x+ t2x

2 (2.38)

P ← A+ x · S (2.39)

− z · ⟨1,G⟩

+ ⟨(z · yn + z2 · 2n),H′⟩ ∈ G // compute a commitment to l(x), r(x)

P
?
= µ ·H + ⟨l,G⟩+ ⟨r,H′⟩ // check that l, r are correct (2.40)

t̂
?
= ⟨l, r⟩ ∈ Zp // check that t̂ is correct (2.41)

Equation (2.38) is the only place where the verifier uses the given Pedersen commitment V to v.

Corollary 2.2 (Range Proof). The range proof presented in Section 2.4.1 has perfect completeness,

perfect special honest verifier zero-knowledge, and computational witness extended emulation.

Proof. The range proof is a special case of the aggregated range proof from section 2.4.3 with m = 1.

This is therefore a direct corollary of Theorem 2.3.

2.4.2 Logarithmic Range Proof

Finally, we can describe the efficient range proof that uses the improved inner product argument.

In the range proof protocol from Section 2.4.1, Prange transmits l and r, whose size is linear in n.

Our goal is a proof whose size is logarithmic in n.

We can eliminate the transfer of l and r using the inner-product argument from Section 2.3.

These vectors are not secret, and hence a protocol that only provides soundness is sufficient.

To use the inner-product argument, observe that verifying (2.40) and (2.41) is the same as

verifying that the witness l, r satisfies the inner product relation (2.2) on public input
(
G, H′, P −

µ ·H, t̂
)
. That is, P ∈ G is a commitment to two vectors l, r ∈ Zn

p whose inner product is t̂. We can

therefore replace (2.37) with a transfer of (τx, µ, t̂), as before, and an execution of an inner product

argument. Then instead of transmitting l and r, which has a communication cost of 2 · n elements,

the inner-product argument transmits only 2 · ⌈log2(n)⌉+2 elements. In total, the prover sends only

2 · ⌈log2(n)⌉+ 4 group elements and 5 elements in Zp.

2.4.3 Aggregating Logarithmic Proofs

In many of the range proof applications described in Section 2.1.2, a single prover needs to perform

multiple range proofs at the same time. For example, a confidential transaction often contains

multiple outputs, and in fact, most transactions require a so-called change output to send any

unspent funds back to the sender. In Provisions [Dag+15] the proof of solvency requires the exchange

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 40

to conduct a range proof for every single account. Given the logarithmic size of the range proof

presented in Section 2.4.2, there is some hope that we can perform a proof for m values which is

more efficient than conducting m individual range proofs. In this section, we show that this can be

achieved with a slight modification to the proof system from Section 2.4.1.

Concretely, we present a proof system for the following relation:

{
(G,H ∈ G, V ∈ Gm ; v,γ ∈ Zm

p) : Vj = γj ·H + vj ·G∧ vj ∈ [0, 2n − 1] ∀j ∈ [1,m]
}

(2.42)

The prover is very similar to the prover for a simple range proof with n · m bits, with the fol-

lowing slight modifications. In line (2.15), the prover should compute aL ∈ Zn·m
p such that

⟨2n,aL[(j−1)·n : j·n−1]⟩ = vj for all j in [1,m], i.e. aL is the concatenation of all of the bits for

every vj . We adjust l(X) and r(X) accordingly so that

l(X) = (aL − z · 1n·m) + sL ·X ∈ Zn·m
p [X] (2.43)

r(X) = yn·m ◦ (aR + z · 1n·m + sR ·X) +

m∑
j=1

z1+j ·
(
0(j−1)·n ∥ 2n ∥ 0(m−j)·n

)
∈ Zn·m

p (2.44)

In the computation of τx, we need to adjust for the randomness of each commitment Vj , so that

τx = τ1 · x+ τ2 · x2 +
∑m

j=1 z
1+j · γj . Further, δ(y, z) is updated to incorporate more cross terms.

δ(y, z) = (z − z2) · ⟨1n·m,yn·m⟩ −
m∑
j=1

zj+2 · ⟨1n,2n⟩

The verification check (2.38) needs to be updated to include all the Vj commitments.

t̂ ·G+ τx ·H
?
= δ(y, z) ·G+ z2 · ⟨zm,V⟩+ x · T1 + x2 · T2 (2.45)

Finally, we change the definition of P (2.39) such that it is a commitment to the new r.

P = A+ x · S − z · ⟨1,G⟩+ z · ⟨yn·m,H′⟩+
m∑
j=1

zj+1 · ⟨2n,H′
[(j−1)·n : j·n−1]⟩

The aggregated range proof which makes use of the inner product argument uses 2 · ⌈log2(n ·m)⌉+4

group elements and 5 elements in Zp. Note that the proof size only grows by an additive term of

2 · log2(m) when conducting multiple range proofs as opposed to a multiplicative factor of m when

creating m independent range proofs.

Theorem 2.3. The aggregate range proof presented in Section 2.4.3 has perfect completeness, perfect

honest verifier zero-knowledge and computational witness extended emulation.

The proof for Theorem 2.3 is presented in Section 2.10. It mirrors the proof of Theorem 2.4,

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 41

which is described in greater detail in Section 2.11.

2.4.4 Non-Interactive Proof through Fiat-Shamir

So far we presented the proof as an interactive protocol with a logarithmic number of rounds.

The verifier is a public coin verifier, as all the honest verifier’s messages are random elements

from Z⋆
p. We can therefore convert the protocol into a non-interactive protocol that is secure and

full zero-knowledge in the random oracle model using the Fiat-Shamir transform[BR93]. All random

challenges are replaced by hashes of the transcript up to that point, including the statement itself.

Subsequent works have shown that this approach is secure, even for multi-round protocols[Wik21;

AFK21].

For example, one could set y = H(st, A, S) and z = H(A,S, y), where st is the statement. For a

range proof st would be {V, n}, and for a circuit proof it would be the description of the circuit. It is

very important to include the statement st in the hash as otherwise an adversary can prove invalid

statements, as shown by Dao et al.[Dao+23]. Since implementing Fiat-Shamir can be error-prone,

we recommend using an established library to do so, such as Merlin3, which was developed as part

of an implementation of Bulletproofs in Rust4.

To avoid a trusted setup we can use a hash function to generate the public parameters G,H, G,H

from a small seed. The hash function needs to map {0, 1}∗ to G, which can be built as in [BLS04].

This also makes it possible to provide random access to the public parameters. Alternatively, a

common random string can be used.

2.4.5 A Simple MPC Protocol for Bulletproofs

In several of the applications described in Section 2.1.2, the prover could potentially consist of

multiple parties who each want to generate a single range proof. For instance, multiple parties may

want to create a single joined confidential transaction, where each party knows some of the inputs and

outputs and needs to create range proofs for their known outputs. The joint transaction would not

only be smaller than the sum of multiple transactions, it would also hide which inputs correspond to

which outputs and provide some level of anonymity. These kinds of transactions are called CoinJoin

transactions [Max13]. In Provisions, an exchange may distribute the private keys to multiple servers

and split the customer database into separate chunks, but it still needs to produce a single short

proof of solvency. Can these parties generate one Bulletproof without sharing the entire witness with

each other? The parties could certainly use generic multi-party computation techniques to generate

a single proof, but this might be too expensive and incur significant communication costs. This

motivates the need for a simple MPC protocol specifically designed for Bulletproofs which requires

little modification to the prover and is still efficient.

3https://github.com/zkcrypto/merlin
4https://github.com/zkcrypto/bulletproofs

https://github.com/zkcrypto/merlin
https://github.com/zkcrypto/bulletproofs

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 42

Note that for aggregate range proofs, the inputs of one range proof do not affect the output of

another range proof. Given the composable structure of Bulletproofs, it turns out that m parties

each having a Pedersen commitment (Vk)
m
k=1 can generate a single Bulletproof that each Vk commits

to a number in some fixed range. The protocol either uses a constant number of rounds but com-

munication that is linear in both m and the binary encoding of the range, or it uses a logarithmic

number of rounds and communication that is only linear in m. We assume for simplicity that m is

a power of 2, but the protocol could be easily adapted for other m. We use the same notation as in

the aggregate range proof protocol, but use k as an index to denote the kth party’s message. That

is A(k) is generated just like A but using only the inputs of party k.

The MPC protocol works as follows, we assign a set of distinct generators (G(k),H(k))mk=1 to each

party and define G as the interleaved concatenation of all G(k) such that gi = g
((i−1) mod m+1)

⌈ i
m ⌉ .

Define H and H(k) in an analogous way.

We first describe the protocol with linear communication. In each of the 3 rounds of the protocol,

the ones that correspond to the rounds of the range proof in Section 2.4.1, each party simply

generates its part of the proof, i.e. the A(k), S(k);T
(k)
1 , T

(k)
2 ; τ

(k)
x , µ(k), t̂(k), l(k), r(k) using its inputs

and generators. These shares are then sent to a dealer (which could be one of the parties), who simply

adds them homomorphically to generate the respective proof component, e.g. A =
∑l

k=1 A
(k) and

τx =
∑l

k=1 τ
(k)
x . In each round, the dealer generates the challenges using the Fiat-Shamir heuristic

and the combined proof components and sends them to each party. Finally, each party sends l(k), r(k)

to the dealer who computes l, r as the interleaved concatenation of the shares. The dealer runs the

inner product argument and generates the final proof. The protocol is complete as each proof

component is simply the (homomorphic) sum of each parties’ proof components, and the challenges

are generated as in the original protocol. It is also secure against honest but curious adversaries as

each share constitutes part of a separate zero-knowledge proof.

The communication can be reduced by running a second MPC protocol for the inner product

argument. The generators were selected in such a way that up to the last log2(l) rounds each

parties’ witnesses are independent and the overall witness is simply the interleaved concatenation

of the parties’ witnesses. Therefore, parties simply compute L(k), R(k) in each round and a dealer

computes L,R as the homomorphic sum of the shares. The dealer then again generates the challenge

and sends it to each party. In the final round the parties send their witness to the dealer who

completes Protocol 2.2. A similar protocol can be used for arithmetic circuits if the circuit is

decomposable into separate independent circuits. Constructing an efficient MPC protocol for more

complicated circuits remains an open problem.

2.4.6 Perfectly Binding Commitments and Proofs

Bulletproofs, like the range proofs currently used in confidential transactions, are computationally

binding. An adversary that could break the discrete logarithm assumption could generate acceptable

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 43

range proofs for a value outside the correct range. On the other hand, the commitments are perfectly

hiding and Bulletproofs are perfect zero-knowledge, so that even an all powerful adversary cannot

learn which value was committed to. Commitment schemes which are simultaneously perfectly-

binding and perfectly-hiding commitments are impossible, so when designing commitment schemes

and proof systems, we need to decide which properties are more important. For cryptocurrencies,

the binding property is more important than the hiding property [Fcw]. An adversary that can

break the binding property of the commitment scheme or the soundness of the proof system can

generate coins out of thin air and thus create uncontrolled but undetectable inflation rendering the

currency useless. Giving up the privacy of a transaction is much less harmful as the sender of the

transaction or the owner of an account is harmed at worst. Unfortunately, it seems difficult to create

Bulletproofs from binding commitments. The efficiency of the system relies on vector commitments

which allow the commitment to a long vector in a single group element. By definition, for perfectly

binding commitment schemes, the size of the commitment must be at least the size of the message

and compression is thus impossible. The works [GSV98; GVW01] show that in general, interactive

proofs cannot have communication costs smaller than the witness size, unless some very surprising

results in complexity theory hold.

While the discrete logarithm assumption is believed to hold for classical computers, it does not

hold against a quantum adversary. It is especially problematic that an adversary can create a

perfectly hiding UTXO at any time, planning to open to an arbitrary value later when quantum

computers are available. To defend against this, we can use the technique from Ruffing and Malavolta

[Fcw] to ensure that even though the proof is only computationally binding, it is later possible to

switch to a proof system that is perfectly binding and secure against quantum adversaries. In order

to do this, the prover simply publishes γ · G, which turns the Pedersen commitment to v into an

ElGamal commitment. Ruffing and Malavolta also show that given a small message space, e.g.

numbers in the range [0, 2n], it is impossible for a computationally bounded prover to construct a

commitment that an unbounded adversary could open to a different message in the small message

space.

Note that the commitment is now only computationally hiding, but that switching to quantum-

secure range proofs is possible. Succinct quantum-secure range proofs remain an open problem,

but with a slight modification, the scheme from Poelstra et al. [Poe+19] can achieve statistical

soundness. Instead of using Pedersen commitments, we propose using ElGamal commitments in

every step of the protocol. An ElGamal commitment is a Pedersen commitment with an additional

commitment gr to the randomness used. The scheme can be improved slightly if the same gr is used

in multiple range proofs. In order to retain the hiding property, a different h must be used for every

proof.

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 44

2.5 Zero-Knowledge Proof for Arithmetic Circuits

Bootle et al. [Boo+16] present an efficient zero-knowledge argument for arbitrary arithmetic circuits

using 6 log2(n)+13 elements, where n is the multiplicative complexity of the circuit. We can use our

improved inner product argument to get a proof of size 2 log2(n)+13 elements, while simultaneously

generalizing to include committed values as inputs to the arithmetic circuit. Including committed

input wires is important for many applications (notably range proofs) as otherwise the circuit would

need to implement a commitment algorithm. Concretely a statement about Pedersen commitments

would need to implement the group exponentiation for the group that the commitment is an element

of.

Following [Boo+16], we present a proof for a Hadamard-product relation. A multiplication gate

of fan-in 2 has three wires; ‘left’ and ‘right’ for the input wires, and ‘output’ for the output wire. In

the relation, aL is the vector of left inputs for each multiplication gate. Similarly, aR is the vector of

right inputs, and aO = aL ◦aR is the vector of outputs. [Boo+16] shows how to convert an arbitrary

arithmetic circuit with n multiplication gates into a relation containing a Hadamard-product as

above, with an additional Q ≤ 2 · n linear constraints of the form

⟨wL,q,aL⟩+ ⟨wR,q,aR⟩+ ⟨wO,q,aO⟩ = cq

for 1 ≤ q ≤ Q, with wL,q,wR,q,wO,q ∈ Zn
p and cq ∈ Zp.

We include additional commitments Vi as part of our statement, and give a protocol for a more

general relation, where the linear consistency constraints include the openings vj of the commitments

Vj . For simplicity and efficiency we present the scheme with Vi being Pedersen commitments. The

scheme can be trivially adapted to work with other additively homomorphic schemes by changing

the commitments to t(X) and adapting the verification in line (2.50).

2.5.1 Inner-Product Proof for Arithmetic Circuits

The high level idea of the protocol is to convert the Hadamard-product relation along with the

linear constraints into a single inner product relation. Similar to the range proof protocol the prover

verifiably produces a random linear combination of the Hadamard and the linear constraints to

form a single inner product constraint. If the combination is chosen randomly by the verifier, as

in our protocol, then with overwhelming probability the inner-product constraint implies the other

constraints.

In Section 2.5.2 we show that the inner product relation can be replaced with an efficient inner

product argument which yields short proofs for arbitrary circuits where input wires can come from

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 45

Pedersen commitments. Formally we present a proof system for the following relation.

{(G,H ∈ G,G,H ∈ Gn,V ∈ Gm,WL,WR,WO ∈ ZQ×n
p ,WV ∈ ZQ×m

p , c ∈ ZQ
p ;aL,aR,aO ∈ Zn

p ,v,γ ∈ Zm
p) :

Vj = vj ·G+ γj ·H ∀j ∈ [1,m] ∧ aL ◦ aR = aO ∧WL · aL +WR · aR +WO · aO = WV · v + c}
(2.46)

Let WV ∈ ZQ×m
p be the weights for a commitment Vj . The presented proof system only works

for relations whereWV is of rankm, i.e. the columns of the matrix are all linearly independent. This

restriction is minor as we can construct commitments that fulfill these linearly dependent constraints

as a homomorphic combination of other commitments. Consider a vector w′
V = a ·WV ∈ Zm

p for

a vector of scalars a ∈ ZQ
p then we can construct commitment V ′ = ⟨a ·WV ,V⟩. Note that if

the relation holds, then we can conclude that ⟨wL,j ,aL⟩ + ⟨wR,j ,aR⟩ + ⟨wO,j ,aO⟩ = ⟨w′
V ,v⟩ + c.

The protocol is presented in Protocol 2.3. It is split into two parts. In the first part P commits to

l(X), r(X), t(X) in the second part P convinces V that the polynomials are well formed and that

⟨l(X), r(X)⟩ = t(X).

Theorem 2.4. The proof system presented in Protocol 2.3 has perfect completeness, perfect honest

verifier zero-knowledge and computational witness extended emulation.

The proof of Theorem 2.4 is presented in Section 2.11.

2.5.2 Logarithmic-Sized Protocol

As for the range proof, we can reduce the communication cost of the protocol by using the inner

product argument. Concretely transfer (2.47) is altered to simply τx, µ, t̂ and additionally P and V

engage in an inner product argument on public input (G,H′, P − µ ·H, t̂). Note that the statement

proven is equivalent to the verification equations (2.52) and (2.49). The inner product argument

has only logarithmic communication complexity and is thus highly efficient. Note that instead of

transmitting l, r the inner product argument only requires communication of 2·⌈log2(n)⌉+2 elements

instead of 2 ·n. In total the prover sends 2 · ⌈log2(n)⌉+8 group elements and 5 elements in Zp. Using

the Fiat-Shamir heuristic as in 2.4.4 the protocol can be turned into an efficient non interactive

proof. We report implementation details and evaluations in Section 2.7.

Theorem 2.5. The arithmetic circuit protocol using the improved inner product argument (Proto-

col 2.2) has perfect completeness, statistical zero-knowledge and computational soundness under the

discrete logarithm assumption.

Proof. Completeness follows from the completeness of the underlying protocols. Zero-knowledge

follows from the fact that l and r can be efficiently simulated, and because the simulator can simply

run Protocol 2.2 given the simulated witness (l, r). The protocol also has a knowledge-extractor,

as the extractor of the range proof can be extended to extract l and r by calling the extractor

of Protocol 2.2. The extractor uses O(n3) valid transcripts in total, which is polynomial in λ if

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 46

Input: (G,H ∈ G,G,H ∈ Gn;WL,WR,WO ∈ ZQ×n
p ,

WV ∈ ZQ×m
p , c ∈ ZQ

p ;aL,aR,aO ∈ Zn
p ,γ ∈ Zm

p)

P’s input: (G,H,G,H;WL,WR,WO,WV , c;aL,aR,aO,γ)

V’s input: (G,H,G,H;WL,WR,WO,WV , c)

Output: {V accepts,V rejects }
P computes:

α, β, ρ←$ Zp

AI = α ·H + ⟨aL,G⟩+ ⟨aR,H⟩ ∈ G // commit to aL,aR

AO = β ·H + ⟨aO,G⟩ ∈ G // commitment to aO

sL, sR ←$ Zn
p // choose blinding vectors sL, sR

S = ρ ·H + ⟨sL,G⟩+ ⟨sR,H⟩ ∈ G // commitment to sL, sR

P→ V : AI , AO, S

V : y, z ←$ Z⋆
p

V→ P : y, z

P and V compute:

yn = (1, y, y2, . . . , yn−1) ∈ Zn
p // challenge per witness

zQ+1
[1:] = (z, z2, . . . , zQ) ∈ ZQ

p // challenge per constraint

δ(y, z) = ⟨y−n ◦ (zQ+1
[1:] ·WR), z

Q+1
[1:] ·WL⟩ // independent of the witness

P computes:

l(X) = aL ·X + aO ·X2 + y−n ◦ (zQ+1
[1:] ·WR) ·X

+ sL ·X3 ∈ Zn
p [X]

r(X) = yn ◦ aR ·X − yn + zQ+1
[1:] · (WL ·X +WO)

+ yn ◦ sR ·X3 ∈ Zn
p [X]

t(X) = ⟨l(X), r(X)⟩ =
6∑

i=1

ti ·Xi ∈ Zp[X]

w = WL · aL +WR · aR +WO · aO

t2 = ⟨aL,aR ◦ yn⟩ − ⟨aO,y
n⟩+ ⟨zQ+1

[1:] ,w⟩+ δ(y, z) ∈ Zp // t2 = d(y, z) + ⟨zQ+1
[1:] , c+WV · v⟩

τi ←$ Zp ∀i ∈ [1, 3, 4, 5, 6]

Ti = ti ·G+ τi ·H ∀i ∈ [1, 3, 4, 5, 6]

P→ V : T1, T3, T4, T5, T6 // commitments to t1, t3, t4, t5, t6

Protocol 2.3: Part 1: Computing commitments to l(X), r(X) and t(X)

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 47

V : x←$ Z∗
p // Random challenge

V→ P : x

P computes:

l = l(x) ∈ Zn
p

r = r(x) ∈ Zn
p

t̂ = ⟨l, r⟩ ∈ Zp

τx =

6∑
i=1,i ̸=2

τi · xi + x2 · ⟨zQ+1
[1:] ,WV · γ⟩ ∈ Zp // blinding value for t̂

µ = α · x+ β · x2 + ρ · x3 ∈ Zp // Blinding value for P

P→ V : τx, µ, t̂, l, r (2.47)

V computes and checks:

H ′
i = y−i+1 ·Hi ∀i ∈ [1, n] // H′ = ⟨y−1n

n,H⟩

WL = ⟨zQ+1
[1:] ·WL,H

′⟩ // Weights for aL

WR = ⟨y−n ◦ (zQ+1
[1:] ·WR),G⟩ // Weights for aR (2.48)

WO = ⟨zQ+1
[1:] ·WO,H

′⟩ // Weights for aO

t̂
?
= ⟨l, r⟩ // Check that t̂ is correct (2.49)

t̂ ·G+ τx ·H
?
= x2 · (δ(y, z) + ⟨zQ+1

[1:] , c⟩) ·G

+ ⟨x2 · (zQ+1
[1:] ·WV),V⟩+ x · T1 +

6∑
i=3

xi · Ti // t̂ = t(x) =

6∑
i=1

ti · xi (2.50)

P = x ·AI + (x2) ·AO − ⟨yn,H′⟩+ x ·WL

+ x ·WR +WO + (x3) · S // commitment to l(x), r(x) (2.51)

P
?
= µ ·H + ⟨l,G⟩+ ⟨r,H′⟩ // Check that l = l(x) and r = r(x) (2.52)

if all checks succeed: V accepts

else: V rejects

Protocol 2.3: Part 2: Polynomial identity check for ⟨l(x), r(x)⟩ = t(x)

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 48

n = O(λ). The extractor is thus efficient and either extracts a discrete logarithm relation or a valid

witness. However, if the generators G,H, G,H are independently generated, then finding a discrete

logarithm relation between them is as hard as breaking the discrete log problem. If the discrete

log assumption holds in G then a computationally bounded P cannot produce discrete-logarithm

relations between independent generators. The proof system is therefore computationally sound.

2.6 Bulletproofs for R1CS with committed witness

In Section 2.5, we introduce an argument for arithmetic circuits using a Hadamard relation. This

argument enables proving properties about Pedersen committed values. However, it does not support

proving statements about values inside a vector commitment. Also, the characterization of NP is

slightly less standard than the commonly use R1CS representation[Gen+13; Chi+20], which enjoys

wide library support[con22]. Additionally a recent result showed that proof systems for R1CS can

be transformed into proof systems for higher degree statements, through a generalization called

CCS[STW23].

We, therefore, will use the succinct argument of knowledge Πipa to build a succinct argument of

knowledge for the following R1CS relation, where a prefix of the witness is committed in a vector

commitment T . Formally we define this prefixed R1CS for some parameters n,m, r ∈ N:

RR1CS :=
{
(A,B,C, T) ; (x,a)

}
where

(1) A,B,C ∈ Zm×n
p , T ∈ G, x ∈ Zr

p, a ∈ Zn−r
p , z := (x,a) ∈ Zn

p ,

(2) (Az) ◦ (Bz) = (Cz),

(3) T =

(([
x ∥ u

v

]))
(Note that u ∈ Zn−r

p and v ∈ Zn
p can be set to 0..

(2.53)

where P ←

(([
a

b

]))
∈ G is defined such that P = ⟨a,G⟩ + ⟨b,G⟩. We also make use of the

following homomorphic operations.

Additive Homomorphism For P ←

(([
a

b

]))
and P ′ ←

(([
a′

b′

]))
, let P+P ′ =

(([
a+ a′

b+ b′

]))
=

⟨a+ a′,G⟩+ ⟨b+ b′,G⟩

Generator Transformation We also enable multiplying the committed values by constants, through

re-defining the generators. This is indicated thorugh multiplication by a matrix M =

(
y

z

)

with non-zero entries. The transformation is denoted by M ◦P :=

(([
a ◦ y
b ◦ z

]))
= ⟨a◦y,G′⟩+

b ◦ zH′, such that G′ = y−1 ◦G, i.e. G′
i = y−1

i ·Gi and analogously for Hi.

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 49

Setup: The prover and verifier have an RR1CS statement (A,B,C, T) and the commitment key

G,H ∈ Gn+m and u ∈ G. The prover has a witness z := (x,a) ∈ Zn
p .

• step 1: The prover sends to the verifier

S′ ←

(([
(0r,a) ∥ Az

0n ∥ Bz

]))
∈G

• step 2: The verifier samples α, β, γ, δ ←$ Zp and sends them to the prover.

• step 3: Both the prover and verifier locally compute

µ← αγ ∈ Zp, w ← ⟨αm,βm⟩+ δ2 · ⟨αn, c ◦ δ⟩

c← µmA+ βmB − γmC ∈ Zn
p , (encodes the R1CS program)

δ ← (δ, . . . , δ, 1n−r) ∈ Zn
p , δ−1 ← (1/δ, . . . , 1/δ, 1n−r) ∈ Zn

p ,

S′′ ← D ◦ ((1/δ) · T + S′) = (1/δ) · T +D ◦ S′ =

(([
z ◦ δ−1 ∥ γn ◦Az

0n ∥ Bz

]))
∈G,

where D :=

(
1 γm

1 1

)

P ← S′′ +

(([
δ2 ·αn ∥ −βm

c ◦ δ ∥ −αm

]))
∈G.

The role of δ ∈ Zp is to defend against spurious non-zero entries in T and S′.

• step 4: The prover computes

u ← (z ◦ δ−1 + δ2 ·αn, (γm ◦Az)− βm) ∈ Zn+m
p ,

v ← (c ◦ δ, Bz−αm) ∈ Zn+m
p .

If z ∈ Zn
p is a valid witness then P =

(([
u

v

]))
and ⟨u,v⟩ = w.

That is, (u,v) is a valid witness for the Ripa statement (P,w).

• step 5: The prover and verifier compute H′ ∈ Gn+m such that,

H ′
i = H∀i ∈ [1, n] ∧H ′

n+j = γ−jHn+j∀j ∈ [1,m]

and compute pp = (G ∈ Gn+m,H′ ∈ Gn+m). Then they run Protocol 2.1 on input

(pp;P,w;u,v)

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 50

The proof system requires committing to two vectors of length n+m and the prover sends just

one commitment before the inner-product argument. Thus, the resulting communication complexity

is just 2 log2(n+m) + 3 elements.

Note that the proof system itself is not zero-knowledge. It can be made zero-knowledge using

hiding commitments and the zero-knowledge variant of the inner product argument, presented in

[Chu+20].

Theorem 2.6. The proof system presented in this section has perfect completeness and knowledge-

soundness for RR1CS against polynomial time adversaries under the discrete logarithm assumption.

Proof. For completeness observe that

⟨u,v⟩ = ⟨δ−1 ◦ z+ δ2αn, δ ◦ (µmA+ βmB − γmC)⟩+ ⟨γm ◦Az − βm, Bz−αm⟩

= µmAz+ βmBz− γmCz+ γm(Az ◦Bz)−αmAz− βmBz+ ⟨αm,βm⟩+ ⟨αn, δ2δ ◦ c⟩

= ⟨αm,βm⟩+ δ2⟨αn, δ ◦ c⟩

The last equation holds if Az ◦Bz = Cz which is precisely the requirement for a valid witness.

To show that the protocol has witness-extended emulation, we show that it has (max(n+1,m+

1),m + 1,m + 1, 6, 3log2(n+m))- special soundness (see Definiton 5.3) for the relation R′
R1CS(x) =

(x,w) ∈ RR1CS ∨ (pp,w) ∈ Rdlog, where Rdlog is the relation that describes non-trivial discrete

logarithm relation for the generators in pp. The first 4 levels of the transcript tree correspond to

α, β, γ and δ respectively, whereas the last log2(n+m) correspond to the inner product argument. In

order to show that the protocol has special soundness, we show that we can construct an extractor

Ext that computes a witness from any appropriately sized transcript trees. Ext first computes

witnesses for the inner product relation Ripa using the lower log2(n + m) levels. This yields a

(max(n + 1,m + 1),m + 1,m + 1, 6)-tree where each leaf ℓ is labeled with a commitment P (ℓ) ∈ G

a scalar w(ℓ) ∈ Fp and vectors v(ℓ),u(ℓ), such that P (ℓ) =

(([
v(ℓ)

u(ℓ)

]))
and ⟨v(ℓ),u(ℓ)⟩ = w(ℓ).

P (ℓ) and w(ℓ) are derived from the transcript, where as u(ℓ) and v(ℓ) are computed by calling the

inner-product-argument’s extractor. From the verification equation, we can write.

S′ + δ−1T = (P −

(([
δ2αn ∥ −βm

c ◦ δ ∥ −αm

]))
) ◦D−1

Now given two transcripts labled with distinct challenges δ and δ′ we can extract openings for S′

and T , such that

S′ =

(([
s1 ∈ Fr||s2 ∈ Fn−r||s3 ∈ Fm

s′1 ∈ Fr||s′2 ∈ Fn−r||s′3 ∈ Fm

]))

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 51

and

T =

(([
t1 ∈ Fr||t2 ∈ Fn−r||t3 ∈ Fm

t′1 ∈ Fr||t′2 ∈ Fn−r||t′3 ∈ Fm

]))
If for any transcript leaf ℓ these openings are not consistent with the extracted vℓ, uℓ, then we

can compute break of the binding property of the commitment, i.e. a non-trivial discrete logarithm

between the generators. This happens with negligible probability by assumption. Otherwise, given

these witnesses we get that

u = t1 · δ−1 + s1 + δ2αr||t2 · δ−1 + s2 + δ2αn−r · αr||(δ−1t3 + s3) · γm − βm

and

v = t′1 · δ−1 + s′1 + c[1:r] · δ||t′2 · δ−1 + s′2 + c[r+1,n]||t′3 · δ−1 + s′3 −αm

, for each leaf ℓ with w = ⟨α,β⟩. This implies that

⟨u,v⟩ =
3∑

j=−2

δjdj = ⟨αm,βm⟩+ δ2⟨αn, δ ◦ c⟩ (2.54)

Focussing on the constant coefficient in δ we get that

d0 = ⟨t1, c[1:r]⟩+ ⟨s1, s′1⟩+ ⟨s2, s′2 + c[r + 1, n]⟩+ ⟨γm ◦ s3, s′3⟩ − ⟨αm,γm ◦ s3⟩ − ⟨βm, s′3⟩

and

d2 = ⟨αn, s′1||s′2⟩+ ⟨αn−r · αr, c[r+1,n]⟩

Since for any given α, β, γ (2.54) holds for 6 distinct δ, we have that d0 = ⟨αm,βm⟩ and d2 =

⟨αn−r · αr, c[r+1,n]⟩. This implies that ⟨αn, s′1||s′2⟩ = 0. Since this holds for n+ 1 different values of

α we have that s′1||s′2 = 0n. Plugging this in we get that

d2 = ⟨t1||s2, c⟩+ ⟨γm ◦ s3, s′3⟩ − ⟨αm,γm ◦ s3⟩ − ⟨βm, s′3⟩ = ⟨αm,βm⟩

Expanding c = µmA+ βmB − γmC, and using that µ = αβ we get that,

⟨t1||s2,µmA⟩ − ⟨µm, s3⟩+ ⟨t1||s2,βmB⟩ − ⟨βm, s′3⟩ − ⟨t1||s2,γmC⟩+ ⟨γms3, s
′
3⟩ = 0 (2.55)

By construction of the transcript tree (2.55) holds for m+ 1 values of α, β, γ. Given that (2.55)

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 52

is a tri-variate degree m polynomial in α, β, γ the equality must hold everywhere and we get that,

A(t1||s2) = s3

B(t1||s2) = s′3

C(t1||s2) = s3 ◦ s′3

This shows that z = (t1||s2) is a valid witness. As the transcript tree size, max(m + 1, n + 1) ·
(m+ 1)3 · 3log2(n+m), is polynomial in λ we can use Lemma 3 [AC20] to show that the protocol has

knowledge soundness, with negligible knowledge error.

2.7 Performance

2.7.1 Theoretical Performance

In Table 2.1 we give analytical measurements for the proof size of different range proof protocols.

We compare both the proof sizes for a single proof and for m proofs for the range [0, 2n − 1]. We

compare Bulletproofs against [Poe+19] and a Σ-protocol range proof where the proof commits to

each bit and then shows that the commitment is to 0 or 1. The table shows that Bulletproofs have a

Table 2.1: Range proof size for m proofs. m = 1 is the special case of a single range proof

m range proofs for range [0, 2n − 1]

G elements # Zp elements

Σ Protocol [CD98] mn 3mn+ 1
Poelstra et al. [Poe+19] 0.63 ·mn 1.26 ·mn+ 1
Bulletproofs 2

(
log2(n) + log2(m)

)
+ 4 5

significant advantage when providing multiple range proofs at once. The proof size for the protocol

presented in Section 2.4.3 only grows by an additive logarithmic factor when conducting m range

proofs, while all other solutions grow multiplicatively in m.

2.7.2 An Optimized Verifier Using Multi-Exponentiation and Batch Ver-

ification

In many of the applications discussed in Section 2.1.2 the verifier’s runtime is of particular interest.

For example, with confidential transactions every full node needs to check all confidential transactions

and all associated range proofs. We therefore now present a number of optimizations for the non-

interactive verifier. We present the optimizations for a single range proof but they all carry over to

aggregate range proofs and the arithmetic circuit protocol.

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 53

Single multi-exponentiation. In Section 2.3.1 we showed that the verification of the inner product

can be reduce to a single multi-exponentiation. We can further extend this idea to verify the

whole range proof using a single multi-exponentiation of size 2n + 2 log2(n) + 7. Notice that the

Bulletproofs verifier only performs two checks (2.41) and (Protocol 2.2, line 2). The idea is to delay

exponentiation until those checks are actually performed and then to combine them into a single

check. We, therefore, unroll the inner product argument as described in Section 2.3.1 using the

input from the range proof. The resulting protocol is presented below with xu being the challenge

from Protocol 2.1, and xj being the challenge from round j of Protocol 2.2. Lj and Rj are the L,R

values from round j of Protocol 2.2. The verifier runs the following verification procedure:

input: proof π =
{
A,S, T1, T2, (Lj , Rj)

log(n)
j=1 ∈ G, τ, t̂, µ, a, b ∈ Zp

}
(2.56)

compute challenges from π : {y, z, x, xu, (xj)
log2(n)
j=1 } (2.57)

δ(y, z) = (z − z2) · ⟨1n,yn⟩ − z3⟨1n,2n⟩ (2.58)

(t̂− δ(y, z)) ·G+ τx ·H − z2 · V − x · T1 − x2 · T2
?
= 0G ∈ G (2.59)

b(i, j) =

1 if the jth bit of i− 1 is 1

−1 otherwise
(2.60)

for i = 1, . . . , n: (2.61)

li =

log2 n∏
j=1

x
b(i,j)
j · a+ z ∈ Zp, ri = y1−i · (

log2 n∏
j=1

x
−b(i,j)
j · b− z2 · 2i−1)− z ∈ Zp (2.62)

l = (l1, . . . , ln) ∈ Zn
p (2.63)

r = (r1, . . . , rn) ∈ Zn
p (2.64)

⟨l,G⟩+ ⟨r,H⟩+ xu · (a · b− t̂) ·G+ µ ·H −A− x · S (2.65)

−
log2(n)∑
j=1

x2
j · Lj −

log2(n)∑
j=1

x−2
j ·Rj

?
= 0G ∈ G (2.66)

Here 0G is the identity in G. We can combine the two multi-exponentiations in line (2.59) and (2.66)

by using a random value c ←$ Zp. This is because if c · A+ B = 0G ∈ G for a random c then with

high probability A = 1 ∧B = 1.

Various algorithms are known to compute the multi-exponentiations (2.66) and (2.59) efficiently.

As explained in [Ber+12], algorithms like Pippenger’s [Pip80] perform a number of group operations

that scales with O n
log(n) , i.e. sub-linearly. For realistic problem sizes these dominate verification

time.

Computing scalars. A further optimization concerns the computation of the li and ri values.

Instead of computing x(i) =
∏log2 n

j=1 x
b(i,j)
j for each i, we can compute each challenge product using

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 54

only one multiplication in Zp by applying batch division. First we compute x(1) = (
∏log2 n

j=1 xj)
−1 to

get the first challenge value using a single inversion. Then computing x(2) = x(1)x2
1, x3 = x(1)x2

2,

and for example x(7) = x(3)x2
5. In general in order to compute x(i) we let k be the next lower power

of 2 of i − 1 and compute x(i) = x(i−k) · x2
k+1 which takes only one additional multiplication in Zp

and no inversion. Further, note that the squares of the challenges are computed anyway in order to

check equation (2.66).

Batch verification. A further important optimization concerns the verification of multiple proofs.

In many applications described in Section 2.1.2 the verifier needs to verify multiple (separate) range

proofs at once. For example a Bitcoin node receiving a block of transactions needs to verify all

transactions and thus range proofs in parallel. As noted above, verification boils down to a large

multi-exponentiation. In fact, 2n + 2 of the generators only depend on the public parameters, and

only 2 log(n) + 5 are proof-dependent. We can therefore apply batch verification[BGR98] in order

to reduce the number of expensive exponentiations. Batch verification is based on the observation

that checking x · G = 0G ∧ y · G = 0G can be checked by drawing a random scalar α from a large

enough domain and checking (αx+ y) ·G = 0G. With high probability, the latter equation implies

that x · G = 0G ∧ y · G = 0G, but the latter is more efficient to check. The same trick applies

to multi-exponentiations and can save 2n exponentiations per additional proof. This is equivalent

to the trick that is used for combining multiple exponentiations into one with the difference that

the bases are equivalent. Verifying m distinct range proofs of size n now only requires a single

multi-exponentiation of size 2n+ 2 +m · (2 · log(n) + 5) along with O(m · n) scalar operations.
Note that this optimization can even be applied for circuits and proofs for different circuits if

the same public parameter are used.

Even for a single verification we can take advantage of the fact that most generators are fixed

in the public parameters. Both the verifier and the prover can used fast fixed-base exponentiation

with precomputation [Gor98] to speed-up all the multi-exponentiations.

2.7.3 Implementation and Performance

To evaluate the performance of Bulletproofs in practice we give a reference implementation in C

and integrate it into the popular library libsecp256k1 which is used in many cryptocurrency clients.

libsecp256k1 uses the elliptic curve secp256k15 which has 128 bit security.

In their compressed form, secp256k1 points can be stored as 32 bytes plus one bit. We use all

of the optimizations described above, except the pre-computation of generators. The prover uses

constant time operations until the computation of l and r. By Theorem 2.2, the inner product

argument does not need to hide l and r and can therefore use variable time operations. The verifier

has no secrets and can therefore safely use variable time operations like the multi-exponentiations.

5http://www.secg.org/SEC2-Ver-1.0.pdf

http://www.secg.org/SEC2-Ver-1.0.pdf

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 55

All experiments were performed on an Intel i7-6820HQ system throttled to 2.00 GHz and using

a single thread. Less than 100 MB of memory was used in all experiments. For reference, verifying

an ECDSA signature takes 86 µs on the same system. Table 2.2 shows that in terms of proof size

Bulletproofs bring a significant improvement over the 3.8 KB proof size in [Poe+19]. A single 64-bit

range proof is 688 bytes. An aggregated proof for 32 ranges is still just 1 KB whereas 32 proofs from

[Poe+19] would have taken up 121 KB. The cost to verify a single 64-bit range proof is 3.9 ms but

using batch verification of many proofs the amortized cost can be brought down to 450 µs or 5.2

ECDSA verifications. Verifying an aggregated proof for 64 ranges takes 61 ms or 1.9 ms per range.

The marginal cost of verifying an additional proof is 2.67 ms or 83 µs per range. This is less than

verifying an ECDSA signature, which cannot take advantage of the same batch validation.

To aid future use of Bulletproofs we also implemented Protocol 2.3 for arithmetic circuits and

provide a parser for circuits in the Pinocchio [Par+13] format to the Bulletproofs format. This

hooks Bulletproofs up to the Pinocchio toolchain which contains a compiler from a subset of C to

the circuit format. To evaluate the implementation we analyze several circuits for hash preimages

in Table 2.3 and Figure 2.3.

Specifically, a SHA256 circuit generated by jsnark6 and a Pedersen hash function over an embed-

ded elliptic curve similar to Jubjub7 are benchmarked. A Bulletproof for knowing a 384-bit Pedersen

hash preimage is about 1 KB and takes 61 ms to verify. The marginal cost of verifying an additional

proof is 2.1 ms. The SHA256 preimage proof is 1.4 KB and takes 750 ms to verify. The marginal

cost of verifying additional proofs is 41.5 ms. Figure 2.3 shows that the proving and verification

time grow linearly. The batch verification first grows logarithmically and then linearly. For small

circuits the logarithmic number of exponentiations dominate the cost while for larger circuits the

linear scalar operations do.

2.8 A General Forking Lemma

We briefly describe the forking lemma of [Boo+16] that will be needed in the proofs.

Suppose that we have a (2µ + 1)-move public-coin argument with µ challenges, x1, . . . , xµ in

sequence. Let ni ≥ 1 for 1 ≤ i ≤ µ. Consider
∏µ

i=1 ni accepting transcripts with challenges in the

following tree format. The tree has depth µ and
∏µ

i=1 ni leaves. The root of the tree is labeled with

the statement. Each node of depth i < µ has exactly ni children, each labeled with a distinct value

of the ith challenge xi.

This can be referred to as an (n1, . . . , nµ)-tree of accepting transcripts. Given a suitable tree

of accepting transcripts, one can compute a valid witness for our inner-product argument, range

proof, and argument for arithmetic circuit satisfiability. This is a natural generalization of special-

soundness for Sigma-protocols, where µ = 1 and n = 2. Combined with Theorem 2.7, this shows that

6See https://github.com/akosba/jsnark.
7See https://z.cash/technology/jubjub.html.

https://github.com/akosba/jsnark

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 56

Figure 2.1: Sizes for range proofs

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 8 16 24 32 40 48 56 64

K
B

Range (bits)

Sigma Protocol
Confidental Assets

Bulletproofs

Figure 2.2: Timings for range proofs
Figure 2.3: Timings for arithmetic

circuits (Pedersen Hash)

 0.1

 1

 10

 100

 1000

 10000

 8 32 128 512 2048 8192

m
s

Number of multiplication gates

Proving time
Verification time

Batch verification time

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 57

Table 2.2: Range proofs: performance and proof size

Problem size Gates π Size Timing (ms)
(bytes) prove verify batch

Range proofs (range × aggregation size)
8 bit 8 482 3.7 0.9 0.28
16 bit 16 546 7.2 1.4 0.33
32 bit 32 610 15 2.4 0.38
64 bit 64 675 29 3.9 0.45
64 bit × 2 128 739 57 6.2 0.55
per range 64 370 29 3.1 0.28

64 bit × 4 256 803 111 10.4 0.71
per range 64 201 28 2.6 0.18

64 bit × 8 512 932 213 18.8 1.08
per range 64 117 27 2.4 0.13

64 bit × 16 1024 932 416 33.2 1.58
per range 64 59 26 2.1 0.10

64 bit × 32 2048 996 812 61.0 2.67
per range 64 32 25 1.9 0.083

64 bit × 64 4096 1060 1594 114 4.91
per range 64 17 25 1.8 0.077

64 bit × 128 8192 1124 3128 210 9.75
per range 64 8.8 25 1.6 0.076

64 bit × 256 16384 1189 6171 392 21.03
per range 64 4.6 24 1.5 0.082

64 bit × 512 32768 1253 12205 764 50.7
per range 64 2.5 24 1.5 0.10

The first 4 instances are n-bit range proofs and the later ones are m aggregated 64-bit proofs and the normalized

costs per range. “Batch” is the marginal cost of verifying an additional proof, computed by batch-verifying 100

proofs, subtracting the cost to verify one, and dividing by 99.

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 58

Table 2.3: Protocol 2.3: Performance numbers and proof sizes

Input size Gates π Size Timing (ms)
(bytes) prove verify batch

Pedersen hash preimage (input size)
48 bit 128 864 88 6.4 0.72
96 bit 256 928 172 10.6 0.93
192 bit 512 992 335 19.1 1.33
384 bit 1024 1056 659 33.6 2.12
768 bit 2048 1120 1292 61.6 3.66
1536 bit 4096 1184 2551 114.9 6.93
3072 bit 8192 1248 5052 213.4 13.20

Unpadded SHA256 preimage
512 bit 25400 1376 19478 749.9 41.52

Bulletproofs for proving knowledge of x s.t. H(x) = y for different sized x’s. The first 7 rows are for the Pedersen

hash function and the final row is for SHA256. “Batch” is the marginal cost of verifying an additional proof,

computed by batch-verifying 100 proofs, subtracting the cost to verify one, and dividing by 99.

the protocols have witness-extended emulation, and hence, the prover cannot produce an accepting

transcript unless they know a witness. For simplicity in the following lemma, we assume that

the challenges are chosen uniformly from Zp where |p| = λ, but any sufficiently large challenge

space would suffice. The success probability of a cheating prover scales inversely with the size of

the challenge space and linearly with the number of accepting transcripts that an extractor needs.

Therefore if
∏µ

i=1 ni is negligible in 2λ, then a cheating prover can create a proof that the verifier

accepts with only negligible probability.

Theorem 2.7 (Forking Lemma, [Boo+16]). Let (Setup,P,V) be a (2k + 1)-move, public coin in-

teractive protocol. Let χ be a witness extraction algorithm that succeeds with probability 1 − µ(λ)

for some negligible function µ(λ) in extracting a witness from an (n1, . . . , nk)-tree of accepting tran-

scripts in probabilistic polynomial time. Assume that
∏k

i=1 ni is bounded above by a polynomial in

the security parameter λ. Then (Setup,P,V) has witness-extended emulation.

The theorem is slightly different than the one from [Boo+16]. We allow the extractor χ to fail

with negligible probability. Whenever this happens the Emulator Ext as defined by Definition 2.10

also simply fails. Even with this slight modification, this slightly stronger lemma still holds as Ext

overall still only fails with negligible probability.

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 59

2.9 Proof of Theorem 2.1

Proof. Perfect completeness follows directly because Protocol 2.1 converts an instance for relation

(2.2) into an instance for relation (2.3). Protocol 2.2 is trivially complete. For witness extended

emulation we show that there exists an efficient extractor χ that uses n2 transcripts, as needed by

Theorem 2.7.

First we show how to construct an extractor χ1 for Protocol 2.2 which on input (G,H, U, P),

either extracts a witness a,b such that relation (2.3) holds, or discovers a non-trivial discrete loga-

rithm relation between G,H, U . Note that the hardness of computing a discrete log relation between

G′,H′, U implies the hardness of computing one between G,H, U as defined in Protocol 2.2. We

will, therefore, use an inductive argument showing that in each step we either extract a witness or

a discrete log relation.

If n = |G| = 1, then the prover reveals the witness (a, b) in the protocol and the relation

P = gahbua·b can simply be checked directly.

Next, we show that for each recursive step that on input (G,H, U, P), we can efficiently extract

from the prover a witness a,b or a non-trivial discrete logarithm relation between G,H, U . The

extractor runs the prover to get L and R. Then, by rewinding the prover four times and giving it

four challenges x1, x2, x3, x4, such that xi ̸= ±xj for 1 ≤ i < j ≤ 4, the extractor obtains four pairs

a′i,b
′
i ∈ Zn′

p such that

x2
iL+ P + x−2

i R =

⟨a′i,
(
x−1
i ·G[:n′] + xi ·G[n′:]

)
⟩

+⟨b′
i,
(
xi ·H[:n′] + x−1

i ·H[n′:]

)
⟩

+⟨a′i,b′
i⟩ · U

for i = 1, . . . , 4. (2.67)

We can use the first three challenges x1, x2, x3, to compute ν1, ν2, ν3 ∈ Zp such that

3∑
i=1

νi · x2
i = 1,

3∑
i=1

νi = 0,
3∑

i=1

νi · x−2
i = 0.

Then taking a linear combination of the first three equalities in (2.67), with ν1, ν2, ν3 as the co-

efficients, we can compute aL,bL ∈ Zn
p and cL ∈ Zp such that L = ⟨aL,G⟩ + ⟨bL,H⟩ + cL · U .

Repeating this process with different combinations, we can also compute aP ,aR,bP ,bR ∈ Zn
p and

cP , cR ∈ Zp such that

R = ⟨aR,G⟩+ ⟨bR,H⟩+ cR · U, P = ⟨aP ,G⟩+ ⟨bP ,H⟩+ cP · U.

Now, for each x ∈ {x1, x2, x3, x4} and the corresponding a′,b′ ∈ Zn′

p we can rewrite (2.67) as:

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 60

⟨aL · x2 + aP + aR · x−2,G⟩+ ⟨bL · x2 + bP + bR · x−2,H⟩+ (cL · x2 + cP + cR · x−2) · U

= x2 · L+ P + x−2 ·R

= ⟨a′ · x−1,G[:n′]⟩+ ⟨a′ · x,G[n′:]⟩+ ⟨b′ · x,H[:n′]⟩+ ⟨b′ · x−1,H[n′:]⟩+ (⟨a′,b′⟩) · U.

This implies that

a′ · x−1 = aL,[:n′] · x2 + aP,[:n′] + aR,[:n′] · x−2

a′ · x = aL,[n′:] · x2 + aP,[n′:] + aR,[n′:] · x−2

b′ · x = bL,[:n′] · x2 + bP,[:n′] + bR,[:n′] · x−2

b′ · x−1 = bL,[n′:] · x2 + bP,[n′:] + bR,[n′:] · x−2

⟨a′,b′⟩ = cL · x2 + cP + cR · x−2

(2.68)

If any of these equalities do not hold, we directly obtain a non-trivial discrete logarithm relation

between the generators (G1, . . . , Gn, H1, . . . ,Hn, U).

If the equalities hold, we can deduce that for each challenge x ∈ {x1, x2, x3, x4}

aL,[:n′] · x3 + (aP,[:n′] − aL,[n′:]) · x+ (aR,[:n′] − aP,[n′:]) · x−1 − aR,[n′:] · x−3 = 0 (2.69)

bL,[n′:] · x3 + (bP,[n′:] − bL,[:n′]) · x+ (bR,[n′:] − bP,[:n′]) · x−1 − bR,[:n′] · x−3 = 0 (2.70)

The equality (2.69) follows from the first two equations in (2.68). Similarly, (2.70) follows from the

third and fourth equations in (2.68).

The only way (2.69) and (2.70) hold for all 4 challenges x1, x2, x3, x4 ∈ Zp is if

aL,[:n′] = aR,[n′:] = bR,[:n′] = bL,[n′:] = 0,

aL,[n′:] = aP,[:n′], aR,[:n′] = aP,[n′:] (2.71)

bL,[:n′] = bP,[n′:], bR,[n′:] = bP,[:n′].

Plugging these relations into (2.68) we obtain that for every x ∈ {x1, x2, x3, x4} we have that

a′ = aP,[:n′] · x+ aP,[n′:] · x−1 and b′ = bP,[:n′] · x−1 + bP,[n′:] · x.

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 61

Now, using these values we can see that the extracted cL, cP and cR have the expected form:

cL · x2 + cP + cR · x−2 = ⟨a′,b′⟩

= ⟨aP,[:n′] · x+ aP,[n′:] · x−1 , bP,[:n′] · x−1 + bP,[n′:] · x⟩

= ⟨aP,[:n′],bP,[n′:]⟩ · x2 + ⟨aP,[:n′],bP,[:n′]⟩+ ⟨aP,[n′:],bP,[n′:]⟩+ ⟨aP,[n′:],bP,[:n′]⟩ · x−2

= ⟨aP,[:n′],bP,[n′:]⟩ · x2 + ⟨aP ,bP ⟩+ ⟨aP,[n′:],bP,[:n′]⟩ · x−2.

Since this relation holds for all x ∈ {x1, x2, x3, x4} it must be that

⟨aP ,bP ⟩ = cP .

The extractor, thus, either extracts a discrete logarithm relation between the generators, or the

witness (aP ,bP) for the relation (2.3).

Using Theorem 2.7 we can see that the extractor uses 4log2(n) = n2 transcripts in total and thus

runs in expected polynomial time in n and λ.

We now show that using Protocol 2.1 we can construct an extractor χ that extracts a valid witness

for relation (2.3). The extractor uses the extractor χ1 of Protocol 2.2. On input (G,H, u, P, c) χ

runs the prover with on a challenge x and uses the extractor χ1 to obtain a witness a,b such that:

P + (x · c) · U = ⟨a,G⟩ + ⟨b,H⟩ + (x · ⟨a,b⟩) · U . Rewinding P, supplying him with a different

challenge x′ and rerunning the extractor χ1 yields a second witness (a′,b′). Again the soundness of

Protocol 2.2 implies that P +x′ · c ·U = ⟨a′,G⟩+ ⟨b′,H⟩+(x′ · ⟨a′,b′⟩) ·U . From the two witnesses,

we can compute:

((x− x′) · c) · U = ⟨a− a′,G⟩+ ⟨b− b′,H⟩+ (x · (⟨a,b⟩)− x′ · (⟨a′,b′⟩)) · U

Unless a = a′ and b = b′ we get a not trivial discrete log relation between G,H and U . Otherwise

we get ((x − x′) · c) · U = ((x − x′) · ⟨a,b⟩) · U =⇒ c = ⟨a,b⟩. Thus, (a,b) is a valid witness

for relation (2.3). Since χ forks the prover once, and uses the efficient extractor χ1 twice, it is

also efficient. Using the forking lemma (Theorem 2.7) we conclude that the protocol has witness

extended emulation.

2.10 Proof of Theorem 2.3

Proof. Perfect completeness follows from the fact that t0 = δ(y, z)+z2 ·⟨zm,v⟩ for all valid witnesses.

To prove perfect honest-verifier zero-knowledge we construct a simulator that produces a distribution

of proofs for a given statement (G,H ∈ G,G,H ∈ Gn·m,V ∈ Gm) that is indistinguishable from

valid proofs produced by an honest prover interacting with an honest verifier. The simulator chooses

all proof elements and challenges according to the randomness supplied by the adversary from their

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 62

respective domains or computes them directly as described in the protocol. S and T1 are computed

according to the verification equations, i.e.:

S = −x−1 · (−µ ·H +A− ⟨z · 1n·m + l,G⟩+ ⟨z · yn·m − r,H′⟩+
m∑
j=1

⟨zj+1 · 2n,H′
[(j−1)·m:j·m]⟩)

T1 = −x−1 · (−τx ·H + ⟨δ(y, z)− t̂, G⟩+ ⟨z2 · zm,V⟩+ x2 · T2)

Finally, the simulator runs the inner-product argument with the simulated witness (l, r) and the

verifier’s randomness. All elements in the proof are either independently randomly distributed or

their relationship is fully defined by the verification equations. The inner product argument remains

zero knowledge as we can successfully simulate the witness, thus revealing the witness or leaking

information about it does not change the zero-knowledge property of the overall protocol. The

simulator runs in time O(V + PInnerProduct) and is thus efficient.

In order to prove computational witness extended emulation, we construct an extractor χ as

follows. The extractor χ runs the prover with n ·m different values of y, (m + 2) different values

of z, and 3 different values of the challenge x. Additionally it invokes the extractor for the inner

product argument on each of the transcripts. This results in 3 · (m + 2) · n ·m · O(n2) valid proof

transcripts.

For each transcript the extractor χ first runs the extractor χInnerProduct for the inner-product

argument to extract a witness l, r to the inner product argument such that µ ·H + ⟨l,G⟩+ ⟨r,H⟩ =
P ∧ ⟨l, r⟩ = t̂. Using 2 valid transcripts and extracted inner product argument witnesses for dif-

ferent x challenges, we can compute linear combinations of (2.40) such that in order to compute

α, ρ,aL,aR, sL, sR such that A = α ·H+ ⟨aL,G⟩+ ⟨aR,H⟩, as well as S = ρ ·H+ ⟨sL,G⟩+ ⟨sR,H⟩.
If for any other set of challenges (x, y, z) the extractor can compute a different representation

of A or S, then this yields a non-trivial discrete logarithm relation between independent generators

H,G,H which contradicts the discrete logarithm assumption.

Using these representations of A and S, as well as l and r, we then find that for all challenges

x, y and z

l = aL − z · 1n·m + sL · x

r = yn·m ◦ (aR + z · 1n·m + sR · x) +
m∑
j=1

z1+j ·
(
0(j−1)·n||2n||0(m−j)·n

)
If these equalities do not hold for all challenges and l, r from the transcript, then we have two distinct

representations of the same group element using a set of independent generators. This would be a

non-trivial discrete logarithm relation.

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 63

For given values of y and z, we now takes 3 transcripts with different x’s and uses linear combi-

nations of equation (2.45) to compute τ1, τ2, t1, t2 such that

T1 = t1 ·G+ τ1 ·H ∧ T2 = t1 ·G+ τ2 ·H

Additionally we can compute a v, γ such that v · G + γ ·H =
∑m

j=1 z
j+1 · Vj Repeating this for m

different z challenges, we can compute (vj , γj)
m
j=1 such that vj ·G+ γj ·H = Vj ∀j ∈ [1,m]. If for

any transcript δ(y, z) +
∑m

j=1 z
j+2 · vj + t1 · x + t2 · x2 ̸= t̂ then this directly yields a discrete log

relation between G and H, i.e. a violation of the binding property of the Pedersen commitment. If

not, then for all y, z challenges and 3 distinct challenges X = xj , j ∈ [1, 3]:

2∑
i=0

ti ·Xi − p(X) = 0

with t0 = δ(y, z) +
∑m

j=1 z
j+2 · ⟨vj ,2

n⟩ and p(X) =
∑2

i=0 pi ·Xi = ⟨l(X), r(X)⟩. Since the polyno-

mial t(X) − p(X) is of degree 2, but has at least 3 roots (each challenge xj), it is necessarily the

zero polynomial, i.e. t(X) = ⟨l(X), r(X)⟩.
Since this implies that t0 = p0, the following holds for all y, z challenges:

∑m
j=1 z

j+2 · ⟨vj ,2
n⟩+ δ(y, z)

=

⟨aL,yn·m ◦ aR⟩+ z · ⟨aL − aR,y
n·m⟩+

∑m
j=1 z

j+1⟨aL,[(j−1)·n:j·n],2
n⟩

−z2 · ⟨1n·m,yn·m⟩ −
∑m

j=1 z
j+2 · ⟨1n,2n⟩ ∈ Zp

If this equality holds for n · m distinct y challenges and m + 2 distinct z challenges, then we can

infer the following.

aL ◦ aR = 0n·m ∈ Zn·m
p

aR = aL − 1n·m ∈ Zn·m
p

vj = ⟨aL,[(j−1)·n:j·n],2
n⟩ ∈ Zp∀j ∈ [1,m]

The first two equations imply that aL ∈ {0, 1}n·m. The last equation imply that vj ∈ [0, 2n−1] for

all j ∈ [1,m]. Since GviHγi = Vi ∀j ∈ [1,m] we have that (v,γ) is valid witness for relation (2.42).

The extractor rewinds the prover 3 · (m + 2) · n · m · O(n2) times. Extraction is efficient and the

number of transcripts is polynomial in λ because n,m = O(λ). Note that extraction either returns

a valid witness or a discrete logarithm relation between independently chosen generators. We define

χ′ being equal to χ but failing whenever χ extracts a discrete log relation. By the Discrete Log

Relation assumption this happens with at most negligible probability. We can, therefore, apply the

forking lemma and see that computational witness emulation holds.

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 64

2.11 Proof of Theorem 2.4

Proof. Perfect completeness follows from the fact that

t2 = δ(y, z) + ⟨zQ+1
[1:] ,WL · aL + WR · aR + WO · aO⟩ = δ(y, z) + ⟨zQ+1

[1:] ,WV · v + c⟩ (2.72)

whenever the prover knows a witness to the relation and is honest.

To prove perfect honest-verifier zero-knowledge we construct an efficient simulator that produces

a distribution of proofs for a given statement(
G,H ∈ G,G,H ∈ Gn,V ∈ Gm, (wL,q,wR,q,wO,q)

Q
q=1 ∈ Zn×3

p , (wV,q)
Q
q=1 ∈ Zm

p , c ∈ ZQ
p

)
and the verifier’s randomness that is indistinguishable from valid proofs produced by an honest

prover interacting with an honest verifier. The simulator acts as follows:

Compute x, y, z using V’s randomness

µ, τx ←$ Zp

l, r←$ Zn
p

t̂ = ⟨l, r⟩

AI , AO ←$ G

S = −x−3 ·
(

x ·AI + x2 ·AO − ⟨l,G⟩ − ⟨yn + r,H′⟩+ x ·WL + x ·WR +WO − µ ·H
)

T3, T4, T5, T6 ←$ G

T1 = −x−1 ·
(
−τx ·H + x2 · (δ(y, z) + ⟨zQ+1

[1:] , c⟩)− t̂ ·G+ ⟨x2 · (zQ+1
[1:] ·WV),V⟩+

∑6
i=3 x

i · Ti

)
Output: (AI , AO, S; y, z;T1, (Ti)

6
3;x; τx, µ, t̂, l, r)

The values AI , AO, l, r, µ, τx produced by an honest prover interacting with an honest verifier are

random independent elements, i.e. if s, ρ, α, τ1, (τi)
6
3, ρ as well as x, y, z are chosen independently

and randomly. t̂ is the inner product of l, r as in any verifying transcript. The simulated S is fully

defined by equations (2.52). The honestly produced T are perfectly hiding commitments and as such

random group elements. Their internal relation given t̂ and τx is fully defined by equation (2.50),

which is ensured by computing T1 accordingly. Therefore, the transcript of the proof is identically

distributed to an honestly computed proof with uniformly selected challenges. The simulator runs

in time O(V) and is thus efficient.

In order to prove computational witness extended emulation we construct an extractor χ as

follows. The χ runs the prover with n different y, (Q + 1) different z and 7 different x challenges.

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 65

This results in 7 · (Q+1) ·n valid proof transcripts. We takes 3 valid transcripts for x ∈ {x1, x2, x3}
and fixed y and z. From the transmitted l, r, t̂ for each combination of challenges, we compute

ν1, ν2, ν3 such that
3∑

i=1

νi · xi = 1 ∧
3∑

i=1

νi · x2 =

3∑
i=1

νi · x3
i = 0

Taking the linear combinations of equation (2.52) with (ν1, ν2, ν3) as coefficients, we compute α ∈
Zp,aL,aR ∈ Zn

p such that α ·H + ⟨aL,G⟩+ ⟨aR,H⟩ = AI . If for any other set of challenges we can

compute different α′,a′L,a
′
R such that

α′ ·H + ⟨a′L,G⟩+ ⟨a′R,H⟩ = AI = αH + ⟨aL,G⟩+ ⟨aR,H⟩,

then this yields a non-trivial discrete log relation between independent generators H,G,H which

contradicts the discrete log relation assumption. Similarly, we can use the same challenges and

equation (2.52) to compute unique β, ρ ∈ Zp,aO,L,aO,R, sL, sR ∈ Zn
p such that β ·H + ⟨aO,L,G⟩+

⟨aO,R,H⟩ = AO and ρ ·H + ⟨sL,G⟩+ ⟨sR,H⟩ = S.

Using Equation (2.52), we can replace AI , AO, S with the computed representations and read

l, r, t̂ from the transcripts. We then find that for all challenges x, y, z:

l = aL · x+ aO,L · x2 + y−n ◦ (zQ+1
[1:] ·WR) ·X + sL · x3

r = yn ◦ aR · x− yn + zQ+1
[1:] · (WL · x+WO) + yn ◦ aO,R · x2 + yn ◦ sR · x3

t̂ = ⟨l, r⟩

If these equalities do not hold for all challenges and l, r from the transcript, then we necessarily have

a non-trivial discrete log relation between the generators G,H and h.

We now show that t2 indeed has the form described in (2.72). For a given y, z the extractor

takes 6 transcripts with different x’s and uses linear combinations of equation (2.50) to compute

(τi, ti), i ∈ [1, 3, . . . , 6] such that Ti = ti · G + τi · H. Note that the linear combinations have to

cancel out the other xi ·Ti terms as well as x2 · ⟨zQ+1
[1:] ·WV ,V⟩. Using these (τi, ti) we can compute

v, γ such that v · G + γ · H = ⟨zQ+1
[1:] ·WV ,V⟩. Repeating this for m different z challenges, we

can compute (vj , γj)
m
j=1 using linear combinations of v · G + γ · H = ⟨zQ+1

[1:] ·WV ,V⟩ such that

vj ·G+γj ·H = Vj ∀j ∈ [1,m]. This will however only succeed if the weight vectors wV,j are linearly

independent, i.e if the matrix WV has rank m. This necessarily implies that Q ≥ m. If for any

transcript t1 · x +
∑6

i=3 ti · xi + x2 · (⟨zQ+1
[1:] ,WV · v + c⟩+ δ(y, z)) ̸= t̂ then this directly yields a a

discrete log relation between G and H.

If not, then for all y, z challenges and 7 distinct challenges x = xj , j ∈ [1, 7]:

6∑
i=1

ti · x− p(x) = 0 (2.73)

CHAPTER 2. BULLETPROOFS: PRIVACY THROUGH ZERO-KNOWLEDGE 66

with t2 = ⟨zQ+1
[1:] ,WV · v+ c⟩+ δ(y, z) and p(x) =

∑6
i=1 pi · xi = ⟨l(x), r(x)⟩ . Since the polynomial

t(x) − p(x) is of degree 6, but has at least 7 roots (each challenge xj), it is necessarily the zero

polynomial, i.e. t(x) = ⟨l(x), r(x)⟩. Finally, we show that this equality implies that we can extract

a witness (aL,aR,aO ∈ Zn
p ,v,γ ∈ Zm

p) which satisfies the relation.

The quadratic coefficient of p is:

p2 = ⟨aL,yn ◦ aR⟩ − ⟨aO,L,y
n⟩+ ⟨zQ+1

[1:] ,WL · aL +WR,q · aR +WO · aO,L⟩+ δ(y, z) ∈ Zp

The polynomial equality implies that any challenge y, z, p2 = t2. Using a fixed y and (Q+1) different

z challenges we can infer that all coefficients of p2(z) − t2(z) have to be zero. Using n different y

challenges, i.e. n · (Q+ 1) total transcripts we can infer the following equalities:

aL ◦ aR − aO,L = 0n ∈ Zn
p (2.74)

WL · aL +WR · aR +WO · aO,L = WV · v + c ∈ ZQ
p (2.75)

From equation (2.74) we can directly infer that aL ◦ aR = aO,L. Equations (2.75) are exactly the

linear constraints on the circuit gates.

Defining aO = aO,L, we can conclude that (aL,aR,aO,v,γ) is indeed a valid witness. Extraction

is efficient and the number of transcripts is polynomial in λ because n,m = O(λ). Note that extrac-

tion either returns a valid witness or a non-trivial discrete logarithm relation between independently

chosen generators. We define χ′ being equal to χ but failing whenever χ extracts a discrete log

relation. By the discrete log relation assumption, this happens with at most negligible probability.

We can, therefore, apply the forking lemma and see that computational witness emulation holds.

Chapter 3

HyperPlonk: A proof system for

the zkEVM

3.1 Introduction

Proof systems [GMR89; BM88] have a long and rich history in cryptography and complexity theory.

In recent years, the efficiency of proof systems has dramatically improved and this has enabled a

multitude of new real-world applications that were not previously possible. In this paper, we focus

on succinct non-interactive arguments of knowledge, also called SNARKs [Bit+12a]. Here, succinct

refers to the fact that the proof is short and verification time is fast, as explained below. Recent years

have seen tremendous progress in improving the efficiency of the prover [Wah+18; Mal+19; Xie+19;

Ame+17; Ben+19b; Zha+20; Chi+20; Bün+18; GW20a; Set20; Boo+22b; Gol+21; XZS22a].

Let us briefly review what a (preprocessing) SNARK is. We give a precise definition in Section 3.2.

Fix a finite field F, and consider the relation R(C,x,w) that is true whenever x ∈ Fn, w ∈ Fm, and

C(x,w) = 0, where C is the description of an arithmetic circuit over F that takes n +m inputs. A

SNARK enables a prover P to non-interactively and succinctly convince a verifier V that P knows a

witness w ∈ Fm such that R(C,x,w) holds, for some public circuit C and x ∈ Fn.

In more detail, a SNARK is a tuple of four algorithms (Setup, I,P,V), where Setup(1λ) is a

randomized algorithm that outputs parameters gp, and I(gp, C) is a deterministic algorithm that

pre-processes the circuit C and outputs prover parameters pp and verifier parameters vp. The

prover P(pp,x,w) is a randomized algorithm that outputs a proof π, and the verifier V(vp,x, π) is a

deterministic algorithm that outputs 0 or 1. The SNARK must be complete, knowledge sound, and

succinct, as defined in Section 3.2. Here succinct means that if C contains s gates, and x ∈ Fn, then

the size of the proof should be Oλ(log s) and the verifier’s running time should be Õλ(n+ log s). A

SNARK is often set in the random oracle model where all four algorithms can query the oracle. If

67

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 68

the Setup algorithm is randomized, then we say that the SNARK requires a trusted setup; otherwise,

the SNARK is said to be transparent because Setup only has access to public randomness via the

random oracle. Optionally, we might want the SNARK to be zero-knowledge, in which case it is

called a zkSNARK.

Modern SNARKs are constructed by compiling an information-theoretic object called an Inter-

active Oracle Proof (IOP) [BCS16] to a SNARK using a suitable cryptographic commitment scheme.

There are several examples of this paradigm. Some SNARKs use a univariate polynomial commit-

ment scheme to compile a Polynomial-IOP to a SNARK. Examples include Sonic [Mal+19],Marlin [Chi+20],

and Plonk [GW20a]. Other SNARKs use a multivariate linear (multilinear) commitment scheme to

compile a multilinear-IOP to a SNARK. Examples include Hyrax [Wah+18], Libra [Xie+19], Spar-

tan [Set20], Quarks [SL20], and Gemini [Boo+22b]. Yet other SNARKs use a vector commitment

scheme (such as a Merkle tree) to compile a vector-IOP to a SNARK. The STARK system [Ben+18b]

is the prime example in this category, but other examples include Aurora [Ben+19b], Virgo [Zha+20],

Brakedown [Gol+21], and Orion [XZS22a]. While STARKs are post-quantum secure, require no

trusted setup, and have an efficient prover, they generate a relatively long proof (tens of kilobytes

in practice). The paradigm of compiling an IOP to a SNARK using a suitable commitment scheme

lets us build universal SNARKs where a single trusted setup can support many circuits. In earlier

SNARKs, such as [Gro16; Gen+13; Bit+13b], every circuit required a new trusted setup.

The Plonk system. Among the IOP-based SNARKs that use a Polynomial-IOP, the Plonk sys-

tem [GW20a] has emerged as one of the most widely adopted in industry. This is because Plonk

proofs are very short (about 400 bytes in practice) and fast to verify. Moreover, Plonk supports

custom gates, as we will see in a minute. An extension of Plonk, called PlonKup [Pea+22], further

extends Plonk to incorporate lookup gates using the Plookup IOP of [GW20a].

One difficulty with Plonk, compared to some other schemes, is the prover’s complexity. For a

circuit C with s arithmetic gates, the Plonk prover runs in time Oλ(s log s). The primary bottlenecks

come from the fact that the prover must commit to and later open several degree O(s) polynomials.

When using the KZG polynomial commitment scheme [KZG10], the prover must (i) compute a

multi-exponentiation of size O(s) in a pairing-friendly group where discrete log is hard, and (ii)

compute several FFTs and inverse-FFTs of dimension O(s). When using a FRI-based polynomial

commitment scheme [Ben+18a; KPV19; Zha+20], the prover computes an O(cs)-sized FFT and

O(cs) hashes, where 1/c is the rate of a certain Reed-Solomon code. The performance further

degrades for circuits that contain high-degree custom gates, as some FFTs and multi-exponentiations

have size proportional to the degree of the custom gates.

In practice, when the circuit size s is bigger than 220, the FFTs become a significant part of the

running time. This is due to the quasi-linear running time of the FFT algorithm, while other parts

of the prover scale linearly in s. The reliance on FFT is a direct result of Plonk’s use of univariate

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 69

polynomials. We note that some proof systems eliminate the need for an FFT by moving away from

Plonk altogether [Set20; Boo+22b; Gol+21; XZS22a; Dra19].

Hyperplonk. In this paper, we introduce HyperPlonk, an adaptation of the Plonk IOP and its

extensions to operate over the boolean hypercube Bµ := {0, 1}µ. We present HyperPlonk as a

multilinear-IOP, which means that it can be compiled using a suitable multilinear commitment

scheme to obtain a SNARK (or a zkSNARK) with an efficient prover.

HyperPlonk inherits the flexibility of Plonk to support circuits with custom gates, but presents

several additional advantages. First, by moving to the boolean hypercube we eliminate the need for

an FFT during proof generation. We do so by making use of the classic SumCheck protocol [Lun+92],

and this reduces the prover’s running time from Oλ(s log s) to Oλ(s). The efficiency of SumCheck is

the reason why many of the existing multilinear SNARKs [Wah+18; Xie+19; Set20; SL20; Boo+22b]

use the boolean hypercube. Here we show that Plonk can similarly benefit from the SumCheck

protocol.

Second, and more importantly, we show that the hypercube lets us incorporate custom gates

more efficiently into HyperPlonk. A custom gate is a function G : Fℓ → F, for some ℓ. An arithmetic

circuit C with a custom gate G, denoted C[G], is a circuit with addition and multiplication gates

along with a custom gate G that can appear many times in the circuit. The circuit may contain

multiple types of custom gates, but for now, we will restrict to one type to simplify the presentation.

These custom gates can greatly reduce the circuit size needed to compute a function, leading to a

faster prover. For example, if one needs to implement the S-box in a block cipher, it can be more

efficient to implement it as a custom gate.

Custom gates are not free. Let G : Fℓ → F be a custom gate that computes a multivariate

polynomial of total degree d. Let C[G] be a circuit with a total of s gates. In the Plonk IOP,

the circuit C[G] results in a prover that manipulates univariate polynomials of degree O(s · d).
Consequently, when compiling Plonk using KZG [KZG10], the prover needs to do a group multi-

exponentiation of size O(sd) as well as FFTs of this dimension. This restricts custom gates in Plonk

to gates of low degree.

We show that the prover’s work in HyperPlonk is much lower. Let G : Fℓ → F be a custom gate

that can be evaluated using k arithmetic operations. In HyperPlonk, the bulk of the prover’s work

when processing C[G] is only O(sk log2 k) field operations. Moreover, when using KZG multilinear

commitments [PST13], the total number of group exponentiations is only O(s+ d log s), where d is

the total degree of G. This is much lower than Plonk’s O(sd) group exponentiations. It lets us use

custom gates of much higher degree in HyperPlonk.

Making Plonk and its Plonkup extension work over the hypercube raises interesting challenges,

as discussed in Section 3.1.1. In particular, adapting the Plookup IOP [GW20a], used to implement

table lookups, requires changing the protocol to make it work over the hypercube (see Section 3.3.7).

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 70

The resulting version of HyperPlonk that supports lookup gates is called HyperPlonk+ and is described

in Section 3.5. There are also subtleties in making HyperPlonk zero knowledge. In Section 3.8, we

describe a general compiler to transform a multilinear-IOP into one that is zero knowledge.

Batch openings and commit-and-prove SNARKs. The prover in HyperPlonk needs to open

several multilinear polynomials at random points. We present a new sum-check-based batch-opening

protocol (Section 3.3.8) that can batch many openings into one, significantly reducing the prover

time, proof size, and verifier time. Our protocol takes O(k · 2µ) field operations for the prover for

batching k of µ-variate polynomials, compared to O(k2µ·2µ) for the previously best protocol [Tha20].

Under certain conditions, we also obtain a more efficient batching scheme with complexity O(2µ),

which yields a very efficient commit-and-prove protocol.

Improved multilinear commitments. Since HyperPlonk relies on a multilinear commitment

scheme, we revisit two approaches to constructing multilinear commitments and present significant

improvements to both.

First, in Section 3.7 we use our commit-and-prove protocol to improve the Orion multilinear

commitment scheme [XZS22a]. Orion is highly efficient: the prover time is strictly linear, taking

only O(2µ) field operations and hashes for a multilinear polynomial in µ variables (no group ex-

ponentiations are used). The proof size is O(λµ2) hash and field elements, and the verifier time is

proportional to the proof size. In Section 3.7 we describe Orion+, that has the same prover complex-

ity, but has O(µ) proof size and O(µ) verifier time, with good constants. In particular, for security

parameter λ = 128 and µ = 25 the proof size with Orion+ is only about 7 KBs, compared with

5.5 MB with Orion, a nearly 1000x improvement. Using Orion+ in HyperPlonk gives a strictly linear

time prover.

Second, in Section 3.9, we show how to generically transform a univariate polynomial commitment

scheme into a multilinear commitment scheme using the tensor-product univariate Polynomial-IOP

from [Boo+22b]. This yields a new construction for multilinear commitments from FRI [Ben+18a]

by applying the transformation to the univariate FRI-based commitment scheme from [KPV19].

This approach leads to a more efficient FRI-based multilinear commitment scheme compared to the

prior construction in [Zha+20], which uses recursive techniques. Using this commitment scheme in

HyperPlonk gives a quantum-resistant quasilinear-time prover.

Another permutation PIOP for small fields. Looking ahead, the HyperPlonk IOP builds

upon a linear-time polynomial IOP for the permutation check relation. However, for µ-variate

polynomials, the linear-time permutation PIOP has soundness error O(2
µ

|F|), which limits its usage

with polynomial-sized fields [Boo+22a]. To remedy this, we also propose another permutation PIOP

with a much smaller soundness error, that is, O(µ
2

|F|). The tradeoff is that the PIOP has quasi-linear

(rather than linear) prover time.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 71

Application RR1CS Spartan RPLONK+ Jellyfish HyperPlonk

3-to-1 Rescue Hash 288 [Aly+20] 422 ms 144 [Sys22] 40 ms 88 ms
Zexe’s recursive circuit 222 [Xio+22] 6 min 217 [Xio+22] 13.1s 5.1s
Rollup of 50 private tx 225 39 min 220 [Sys22] 110 s 38.2 s

Table 3.1: The prover runtime of Hyperplonk, Spartan [Set20], and Jellyfish Plonk, for popular
applications. The first column (next to the column of the applications) shows the number of R1CS
constraints for each application. The third column shows the corresponding number of constraints
in HyperPlonk+. Note that the Zexe and the Rollup applications are using the BW6-761 curve. For
more detail see Section 3.6.5.

Evaluation results. After applying the optimizations in Appendix 3.10, when instantiated with

the pairing-based multilinear commitment scheme of [PST13], the proof size of Hyperplonk is µ+5

group elements and 4µ + 29 field elements1. Using BLS12-381 as the pairing group, we obtain

4.7KB proofs for µ = 20 and 5.5KB proofs for µ = 25. For comparison, Kopis [SL20] and Gem-

ini [Boo+22b], which also have linear-time provers, report proofs of size 39KB and 18KB respectively

for µ = 20. In Table 3.1 and Table 3.6 we show that our prototype HyperPlonk implementation out-

performs an optimized commercial-strength Plonk system for circuits with more than 214 gates.

It also shows the effects of PLONK arithmetization compared to R1CS by comparing the prover

runtime for several important applications. Hyperplonk outperforms Spartan [Set20] for these ap-

plications by a factor of over 60. We discuss the evaluation further in Section 3.6.

3.1.1 Technical overview

In this section we give a high level overview of how to make Plonk and its extensions work over

the hybercube. We begin by describing Plonk in a modular way, breaking it down into a sequence

of elementary components shown in Figure 3.1. In Section 3.3 we show how to instantiate each

component over the hybercube.

Some components of Plonk in Figure 3.1 rely on the simple linear ordering of the elements of a

finite cyclic group induced by the powers of a generator. On the hypercube there is no natural simple

ordering, and this causes a problem in the Plookup protocol [GW20a] that is used to implement a

lookup gate. To address this we modify the Plookup argument in Section 3.5 to make it work over

the hypercube. We give an overview of our approach below.

A review of Plonk. Let us briefly review the Plonk SNARK. Let C[G] : Fn+m → F be a circuit

with a total of s gates, where each gate has fan-in two and can be one of addition, multiplication,

or a custom gate G : F2 → F. Let x ∈ Fn be a public input to the circuit. Plonk represents the

1The constants depend linearly on the degree of the custom gates. These numbers are for simple degree 2 arithmetic
circuits.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 72

resulting computation as a sequence of n+ s+ 1 triples2: =

M̂ :=
{(

Li, Ri, Oi

)
∈ F3

}
i=0,...,n+s

. (3.1)

This M̂ is a matrix with three columns and n+ s+1 rows. The first n rows encode the n public

input; the next s rows represent the left and right inputs and the output for each gate; and the final

row enforces that the final output of the circuit is zero. We will see how in a minute.

In basic (univariate) Plonk, the prover encodes the cells of M̂ using a cyclic subgroup Ω ⊆ F of

order 3(n+ s+1). Specifically, let ω ∈ Ω be a generator. Then the prover interpolates and commits

to a polynomial M ∈ F[X] such that

M(ω3i) = Li, M(ω3i+1) = Ri, M(ω3i+2) = Oi for i = 0, . . . , n+ s.

Now the prover needs to convince the verifier that the committed M encodes a valid computation

of the circuit C. This is the bulk of Plonk system.

Hyperplonk. In HyperPlonk we instead use the boolean hypercube to encode M̂ . From now on,

suppose that n+s+1 is a power of two, so that n+s+1 = 2µ. The prover interpolates and commits

to a multilinear polynomial M ∈ F[Xµ+2] = F[X1, . . . , Xµ+2] such that

M
(
0, 0, ⟨i⟩

)
= Li, M

(
0, 1, ⟨i⟩

)
= Ri, M

(
1, 0, ⟨i⟩

)
= Oi, for i = 0, . . . , n+ s. (3.2)

Here ⟨i⟩ is the µ-bit binary representation of i. Note that a multilinear polynomial on µ+2 variables

is defined by a vector of 2µ+2 = 4× 2µ coefficients. Hence, it is always possible to find a multilinear

polynomial that satisfies the 3 × 2µ constraints in (3.2). Next, the prover needs to convince the

verifier that the committed M encodes a valid computation of the circuit C. To do so, we need to

adapt Plonk to work over the hypercube.

Let us start with the pre-processing algorithm I(gp, C) that outputs prover and verifier pa-

rameters pp and vp. The verifier parameters vp encode the circuit C[G] as a commitment to four

multilinear polynomials (S1, S2, S3, σ), where S1, S2, S3 ∈ F[Xµ] and σ ∈ F[Xµ+2]. The first three

are called selector polynomials and σ is called the wiring polynomial. We will see how they are

defined in a minute. There is one more auxiliary multilinear polynomial I ∈ F[Xµ] that encodes the

input x ∈ Fn. This polynomial is defined as I(⟨i⟩) = xi for i = 0, . . . , n− 1, and is zero on the rest

of the boolean cube Bµ. The verifier, on its own, computes a commitment to the polynomial I to

ensure that the correct input x ∈ Fn is being used in the proof. Computing a commitment to I can

be done in time Oλ(n), which is within the verifier’s time budget.

With this setup, the Plonk prover P convinces the verifier that the committed M satisfies two

2A more general Plonkish arithmetization [Zca22] supports wider tuples, but triples are sufficient here.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 73

polynomial identities:

The gate identity: Let S1, S2, S3 : Fµ → {0, 1} be the three selector polynomials that the pre-

processing algorithm I(gp, C) committed to in vp. To prove that all gates were evaluated correctly,

the prover convinces the verifier that the following identity holds for all x ∈ Bµ := {0, 1}µ:

0 = S1(x) ·
(
M(0, 0,x)︸ ︷︷ ︸

L[x]

+M(0, 1,x)︸ ︷︷ ︸
R[x]

)
+ S2(x) ·M(0, 0,x)︸ ︷︷ ︸

L[x]

·M(0, 1,x)︸ ︷︷ ︸
R[x]

+ S3(x) ·G
(
M(0, 0,x)︸ ︷︷ ︸

L[x]

, M(0, 1,x)︸ ︷︷ ︸
R[x]

)
− M(1, 0,x)︸ ︷︷ ︸

O[x]

+ I(x)

(3.3)

where [x] =
∑µ−1

i=0 xi2
i is the integer whose binary representation is x ∈ Bµ. For each i = 0, . . . , n+s,

the selector polynomials S1, S2, S3 are defined to do the “right” thing:

• for an addition gate: S1(⟨i⟩) = 1, S2(⟨i⟩) = S3(⟨i⟩) = 0 (so Oi = Li +Ri)

• for a multiplication gate: S1(⟨i⟩) = S3(⟨i⟩) = 0, S2(⟨i⟩) = 1 (so Oi = Li ·Ri)

• for a G gate: S1(⟨i⟩) = S2(⟨i⟩) = 0, S3(⟨i⟩) = 1 (so Oi = G(Li, Ri))

• when i < n or i = n+ s: S1(⟨i⟩) = S2(⟨i⟩) = S3(⟨i⟩) = 0 (so Oi = I(⟨i⟩)).

The last bullet ensures that Oi is equal to the i-th input for i = 0, . . . , n − 1, and that the final

output of the circuit, On+s, is equal to zero.

The wiring identity: Every wire in the circuit C induces an equality constraint on two cells in the

matrix M̂ . In HyperPlonk, the wiring constraints are captured by a permutation σ̂ : Bµ+2 → Bµ+2.

The prover needs to convince the verifier that

M(x) = M(σ̂(x)) for all x ∈ Bµ+2 := {0, 1}µ+2. (3.4)

To do so, the pre-processing algorithm I(gp, C) commits to a multilinear polynomial σ : Fµ+2 → F
that satisfies σ(x) = [σ̂(x)] for all x ∈ Bµ+2 (recall that [σ̂(x)] is the integer whose binary represen-

tation is σ̂(x) ∈ Bµ+2). The prover then convinces the verifier that the following two sets are equal

(both sets are subsets of F2):

{(
[x],M(x)

)}
x∈Bµ+2

=
{(

[σ̂(x)],M(x)
)}

x∈Bµ+2

. (3.5)

This equality of sets implies that (3.4) holds.

Proving the gate identity. The prover convinces the verifier that the Gate identity holds by

proving that the polynomial defined by the right hand side of (3.3) is zero for all x ∈ Bµ. This is

done using a ZeroCheck IOP, defined in Section 3.3.2. If the custom gate G has total degree d and

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 74

there are s gates in the circuit, then the total number of coefficientsx of the polynomial in (3.3) is

(d + 1)(s + n + 1) which is about (d · s). If this were a univariate polynomial, as in Plonk, then

a ZeroCheck would require a multi-exponentiation of dimension (d · s) and an FFT of the same

dimension. When the polynomial is defined over the hypercube, the ZeroCheck is implemented

using the SumCheck protocol in Section 3.3.1, which requires no FFTs. In that section we describe

two optimizations to the SumCheck protocol for the settings where the multivariate polynomial has

a high degree d in every variable:

• First, in every round of SumCheck the prover sends a polynomial commitment to a univariate

polynomial of degree d, instead of sending the polynomial in the clear as in regular SumCheck.

This greatly reduces the proof size.

• Second, in standard SumCheck, the prover opens the univariate polynomial commitment at

three points: at 0, 1, and at a random r ∈ F. We optimize this step by showing that opening

the commitment at a single point is sufficient. This further shortens the final proof.

The key point is that the resulting ZeroCheck requires the prover to do only about s + d · µ group

exponentiations, which is much smaller than d · s in Plonk. The additional arithmetic work that

the prover needs to do depends on the number of multiplication gates in the circuit implementing

the custom gate G, not on the total degree of G, as in Plonk. As such, we can support much larger

custom gates than Plonk.

In summary, proof generation time is reduced for two reasons: (i) the elimination of the FFTs,

and (ii) the better handling of high-degree custom gates.

Proving the wiring identity. The prover convinces the verifier that the Wiring identity holds

by proving the set equality in (3.5). We describe a set equality protocol over the hypercube in

Section 3.3.4. Briefly, we use a technique from Bayer and Groth [BG12], that is also used in Plonk,

to reduce this problem to a certain ProductCheck over the hypercube (Section 3.3.3). We then use

an idea from Quarks [SL20] to reduce the hypercube ProductCheck to a ZeroCheck, which then

reduces to a SumCheck. This sequence of reductions is shown in Figure 3.1. Again, no FFTs are

needed.

Table lookups. An important extension to Plonk supports circuits with table lookup gates. The

table is represented as a fixed vector t ∈ F2µ−1. A table lookup gate ensures that a specific cell in

the matrix M̂ is contained in t. For example, one can set t to be the field elements in {0, 1, . . . , B}
for some B (padding the vector by 0 as needed). Now, checking that a cell in M̂ is contained in t

is a simple way to implement a range check.

Let f, t : Bµ → F be two multilinear polynomials. Here the polynomial t encodes the table t,

where the table values are t(Bµ). The polynomial f encodes the cells of M̂ that need to be checked.

An important step in supporting lookup gates in Plonk is a way for the prover to convince the

verifier that f(Bµ) ⊆ t(Bµ), when the verifier has commitments to f and t. The Plookup proof

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 75

SumCheck

ZeroCheck

ProductCheck

MultiSetEquality

Wiring Identity PlookupGate Identity

HyperPlonk

HyperPlonk+

Figure 3.1: The multilinear polynomial-IOPs that make up HyperPlonk.

system by Gabizon and Williamson [GW20a] is a way for the prover to do just that. More recently

preprocessed alternatives to lookup have been developed[Zap+22a; PK22]. These perform better if

the table is known, e.g. a range of values but are in general orthogonal to Plookup.

The problem is that Plookup is designed to work when the polynomials are defined over a cyclic

subgroup G ⊆ F∗ of order q with generator ω ∈ G. In particular, Plookup requires a function

next : F → F that induces an ordering of G. This function must satisfy two properties: (i) the

sequence

ω, next(ω), next
(
next(ω)

)
, . . . , next(q−1)(ω) (3.6)

should traverse all of G, and (ii) the function next should be a linear function. This is quite easy

in a cyclic group: simply define next(x) := ωx.

To adapt Plookup to the hypercube we need a linear function next : Fµ → Fµ that traverses

all of Bµ as in (3.6), starting with some element x0 ∈ Bµ. However, such an F-linear function

does not exist. Nevertheless, we construct in Section 3.3.7 a quadratic function from Fµ to Fµ that

traverses Bµ. The function simulates Bµ using a binary extension and has a beautiful connection to

similar techniques used in early PCP work[BSS08]. We then show how to linearize the function by

modifying some of the building blocks that Plookup uses. This gives an efficient Plookup protocol

over the hypercube. Finally, in Section 3.5 we use this hypercube Plookup protocol to support lookup

gates in HyperPlonk. The resulting protocol is called HyperPlonk+.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 76

3.1.2 Additional related work

The origins of SNARKs date back to the work of Kilian [Kil92] and Micali [Mic94] based on the

PCP theorem. Many of the SNARK constructions cited in the previous sections rely on techniques

introduced in the proof of the PCP theorem.

Recursive SNARKs [Val08] are an important technique for building a SNARK for a long com-

putation. Early recursive SNARKs [CT10; Bit+12b; Ben+14b; COS20] built a prover for the entire

SNARK circuit and then repeatedly used this prover. More recent recursive SNARKs rely on ac-

cumulation schemes [BGH19; Bün+20; Bon+21; Bün+21a; KST21] where the bulk of the SNARK

verifier runs outside of the prover.

Many practical SNARKs rely on the random oracle model and often use a non-falsifiable as-

sumption. Indeed, a separation result due to Gentry and Wichs [GW11] suggests that a SNARK

requires either an idealized model or a non-falsifiable assumption. An interesting recent direction

is the construction of batch proofs [CJJ21a; CJJ21b; WW22] in the standard model from standard

assumptions. These give succinct proofs for computations in P, namely succinct proofs for com-

putations that do not rely on a hidden witness. SNARKs give succinct proofs for computations in

NP.

3.2 Preliminaries

Notation: We use λ to denote the security parameter. For n ∈ N let [n] be the set {1, 2, . . . , n};
for a, b ∈ N let [a, b) denote the set {a, a + 1, . . . b − 1}. A function f(λ) is poly(λ) if there exists a

c ∈ N such that f(λ) = O(λc). If for all c ∈ N, f(λ) is o(λ−c), then f(λ) is in negl(λ) and is said to

be negligible. A probability that is 1 − negl(λ) is overwhelming. We use F to denote a field of

prime order p such that log(p) = Ω(λ).

A multiset is an extension of the concept of a set where every element has a positive multiplicity.

Two finite multisets are equal if they contain the same elements with the same multiplicities.

Recall that a relation is a set of pairs (x,w). An indexed relation is a set of triples (i,x;w).

The index i is fixed at setup time.

In defining the syntax of the various protocols, we use the following convention concerning public

values (known to both the prover and the verifier) and secret ones (known only to the prover). In

any list of arguments or returned tuple (a, b, c; d, e), those variables listed before the semicolon are

public, and those listed after it are secret. When there is no secret information, the semicolon is

omitted.

Useful facts. We next list some facts that will be used throughout the paper.

Lemma 3.1 (Multilinear extensions). For every function f : {0, 1}µ → F, there is a unique mul-

tilinear polynomial f̃ ∈ F[X1, . . . , Xµ] such that f̃(b) = f(b) for all b ∈ {0, 1}µ. We call f̃ the

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 77

multilinear extension of f , and f̃ can be expressed as

f̃(X) =
∑

b∈{0,1}µ

f(b) · eq(b,X)

where eq(b,X) :=
∏µ

i=1

(
biXi + (1− bi)(1−Xi)

)
.

Lemma 3.2 (Schwartz-Zippel Lemma). Let f ∈ F[X1, . . . , Xµ] be a non-zero polynomial of total

degree d over field F. Let S be any finite subset of F, and let r1, . . . , rµ be µ field elements selected

independently and uniformly from set S. Then

Pr [f(r1, . . . , rµ) = 0] ≤ d

|S|
.

Linear codes. We review the definition of linear code.

Definition 3.1 (Linear Code). An (n, k, δ)-linear error-correcting code E : Fk → Fn is an injective

mapping from Fk to a linear subspace C in Fn, such that (i) the injective mapping can be computed

in linear time in k; (ii) any linear combination of codewords is still a codeword; and (iii) the relative

hamming distance ∆(u, v) between any two different codewords u, v ∈ Fk is at least δ. The rate of

the code E is defined as k/n.

3.2.1 Proofs and arguments of knowledge.

We define interactive proofs of knowledge, which consist of a non-interactive preprocessing phase

run by an indexer as well as an interactive online phase between a prover and a verifier.

Definition 3.2 (Interactive Proof and Argument of Knowledge). An interactive protocol Π =

(Setup, I,P,V) between a prover P and verifier V is an argument of knowledge for an indexed rela-

tion R with knowledge error δ : N → [0, 1] if the following properties hold, where given an index i,

common input x and prover witness w, the deterministic indexer outputs (vp, pp) ← I(i) and the

output of the verifier is denoted by the random variable ⟨P(pp,x,w),V(vp,x)⟩:

• Perfect Completeness: for all (i,x,w) ∈ R

Pr

[
⟨P(pp,x,w),V(vp,x)⟩ = 1

∣∣∣∣∣ gp← Setup(1λ)

(vp, pp)← I(gp, i)

]
= 1

• δ-Soundness (adaptive): Let L(R) be the language corresponding to the indexed relation R such

that (i,x) ∈ L(R) if and only if there exists w such that (i,x,w) ∈ R. Π is δ-sound if for

every pair of probabilistic polynomial time adversarial prover algorithm (A1,A2) the following

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 78

holds:

Pr

⟨A2(i,x, st),V(vp,x)⟩ = 1 ∧ (i,x) ̸∈ L(R)

∣∣∣∣∣∣∣∣
gp← Setup(1λ)

(i,x, st)← A1(gp)

(vp, pp)← I(gp, i)

 ≤ δ(|i|+ |x|) .

We say a protocol is computationally sound if δ is negligible. If A1,A2 are unbounded and δ is

negligible, then the protocol is statistically sound. If A = (A1,A2) is unbounded, the soundness

definition becomes for all (i,x) ̸∈ L(R)

Pr

[
⟨A2(i,x, gp),V(vp,x)⟩ = 1

∣∣∣∣∣ gp← Setup(1λ)

(vp, pp)← I(gp, i)

]
≤ δ(|i|+ |x|)

• δ-Knowledge Soundness: There exists a polynomial poly(·) and a probabilistic polynomial-time

oracle machine E called the extractor such that given oracle access to any pair of probabilistic

polynomial time adversarial prover algorithm (A1,A2) the following holds:

Pr


⟨A2(i,x, st),V(vp,x)⟩ = 1

∧
(i,x,w) ̸∈ R

∣∣∣∣∣∣∣∣∣∣
gp← Setup(1λ)

(i,x, st)← A1(gp)

(vp, pp)← I(gp, i)
w← ExtA1,A2(gp, i,x)

 ≤ δ(|i|+ |x|)

An interactive protocol is “knowledge sound”, or simply an “argument of knowledge”, if the

knowledge error δ is negligible in λ. If the adversary is unbounded, then the argument is called

an interactive proof of knowledge.

• Public coin An interactive protocol is considered to be public coin if all of the verifier messages

(including the final output) can be computed as a deterministic function given a random public

input.

• Zero knowledge: An interactive protocol ⟨P,V⟩ is considered to be zero-knowledge if there is

a PPT simulator S such that for every PPT adversary A = (A1,A2), auxiliary input z ∈
{0, 1}poly(λ), it holds that

∣∣∣∣∣∣∣∣Pr
 ⟨P(pp,x,w),A2(st, i,x)⟩ = 1 ∧ (i,x,w) ∈ R

∣∣∣∣∣∣∣∣
gp← Setup(1λ)

(i,x,w, st)← A1(z, gp)

(vp, pp)← I(gp, i)

 −

Pr

 ⟨S(σ, z, pp,x),A2(st, i,x)⟩ = 1 ∧ (i,x,w) ∈ R

∣∣∣∣∣∣∣∣
(gp, σ)← S(1λ)

(i,x,w, st)← A1(z, gp)

(vp, pp)← I(gp, i)


∣∣∣∣∣∣∣∣ ≤ negl(λ) .

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 79

We say that ⟨P,V⟩ is statistically zero knowledge if A is unbounded; and say it perfectly zero

knowledge if negl(λ) is replaced with zero. ⟨P,V⟩ is honest-verifier zero knowledge (HVZK) if

the adversary A2 honestly follows the verifier algorithm.

We introduce both notions of soundness and knowledge soundness. Knowledge soundness implies

soundness, as the existence of an extractor implies that (i,x) ∈ L(R). Furthermore, we show in

Lemma 3.3 that soundness directly implies knowledge soundness for certain oracle relations and

oracle arguments.

PolyIOPs. SNARKs can be constructed from information-theoretic proof systems that give the

verifier oracle access to prover messages. The information-theoretic proof is then compiled using a

cryptographic tool, such as a polynomial commitment. We now define a specific type of information-

theoretic proof system called polynomial interactive oracle proofs.

Definition 3.3. A polynomial interactive oracle proof (PIOP) is a public-coin interactive proof for

a polynomial oracle relation R = {(i,x;w)}. The relation is an oracle relation in that i, and x can

contain oracles to µ-variate polynomials over some field F. The oracles specify µ and the degree in

each variable. These oracles can be queried at arbitrary points in Fµ to evaluate the polynomial at

these points. The actual polynomials corresponding to the oracles are contained in the pp and the

w, respectively. We denote an oracle to a polynomial f by [[f]]. In every protocol message, the P

sends multi-variate polynomial oracles. The verifier in every round sends a random challenge.

We measure the following parameters for the complexity of a PIOP:

• The prover time measures the runtime of the prover.

• The verifier time measures the runtime of the verifier.

• The query complexity is the number of queries the verifier performs to the oracles.

• The round complexity measures the number of rounds. In our protocols, it is always equivalent

to the number of oracles sent.

• The size of the proof oracles is the length of the transmitted polynomials.

• The size of the witness is the length of the witness polynomial.

Proof of Knowledge. As a proof system, the PIOP satisfies perfect completeness and unbounded

knowledge-soundness with knowledge-error δ. Note that the extractor can query the oracle at arbi-

trary points to efficiently recover the entire polynomial.

Non-interactive arguments. Interactive public-coin arguments can be made non-interactive us-

ing the Fiat-Shamir transform. The Fiat-Shamir transform replaces the verifier challenges with

hashes of the transcript up to that point. The works by [AFK21; Wik21] show that this is secure

for multi-round special-sound protocols and multi-round oracle proofs.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 80

Soundness and knowledge soundness.

Lemma 3.3 (Sound PIOPs are knowledge sound). Consider a δ-sound PIOP for oracle relations

R such that for all (i,x,w) ∈ R, w consists only of polynomials such that the instance contains

oracles to these polynomials. The PIOP has δ knowledge-soundness, and the extractor runs in time

O(|w|)

Proof. We will show that we can construct an extractor Ext that can producew∗ such that (i,x,w∗) ∈
R if and only if (i,x) ∈ L(R). This implies that the soundness error exactly matches the knowledge

soundness error. For each oracle of a µ-variate polynomial with degree d in each variable, the extrac-

tor queries the polynomial at (d+1)µ distinct points to extract the polynomial inside the oracle and

thus w∗. If (i,x,w∗) ∈ R then by definition (i,x) ∈ L(R). Additionally assume that (i,x) ∈ L(R)
but (i,x,w∗) ̸∈ R. Then there must exists w′ ̸= w

∗ such that (i,x,w′) ∈ R. Since the relation

only admits polynomials as witnesses and these polynomials are degree d and µ-variate, then there

cannot be two distinct witnesses that agree on (d + 1)µ oracle queries. Therefore w′ = w
∗ which

leads to a contradiction. The extractor, therefore, outputs the unique, valid witness for every (i,x)

in the language, and thus, the soundness and knowledge soundness error are the same.

3.2.2 Multilinear polynomial commitments.

Definition 3.4 (Commitment scheme). A commitment scheme Γ is a tuple Γ = (Setup,Commit,

Open) of PPT algorithms where:

• Setup(1λ)→ gp generates public parameters gp;

• Commit(gp;x) → (C; r) takes a secret message x and outputs a public commitment C and

(optionally) a secret opening hint r (which might or might not be the randomness used in the

computation).

• Open(gp, C, x, r)→ b ∈ {0, 1} verifies the opening of commitment C to the message x provided

with the opening hint r.

A commitment scheme Γ is binding if for all PPT adversaries A:

Pr

b0 = b1 ̸= 0 ∧ x0 ̸= x1 :

gp← Setup(1λ)

(C, x0, x1, r0, r1)← A(gp)
b0 ← Open(gp, C, x0, r0)

b1 ← Open(gp, C, x1, r1)

 ≤ negl(λ)

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 81

A commitment scheme Γ is hiding if for any polynomial-time adversary A:∣∣∣∣∣∣∣∣∣∣∣∣∣
Pr


b = b′ :

gp← Setup(1λ)

(x0, x1, st)← A(gp)
b←$ {0, 1}
(Cb; rb)← Commit(gp;xb)

b′ ← A(gp, st, Cb)


− 1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= negl(λ) .

If the adversary is unbounded, then we say the commitment is statistically hiding. We addition-

ally define polynomial commitment schemes for multi-variate polynomials.

Definition 3.5. (Polynomial commitment) A polynomial commitment scheme is a tuple of protocols

Γ = (Setup,Commit,Open,Eval) where (Setup, Commit,Open) is a binding commitment scheme for

a message space R[X] of polynomials over some ring R, and

• Eval((vp, pp), C, z, y, d, µ; f)→ b ∈ {0, 1} is an interactive public-coin protocol between a PPT

prover P and verifier V. Both P and V have as input a commitment C, points z ∈ Fµ and y ∈ F,
and a degree d. The prover has prover parameters pp, and the verifier has verifier parameters

vp. The prover additionally knows the opening of C to a secret polynomial f ∈ F (≤d)
µ . The

protocol convinces the verifier that f(z) = y.

A polynomial commitment scheme is correct if an honest committer can successfully convince

the verifier of any evaluation. Specifically, if the prover is honest, then for all polynomials f ∈ F (≤d)
µ

and all points z ∈ Fµ,

Pr

b = 1 :

gp← Setup(1λ)

(C; r)← Commit(gp, f)

y ← f(z)

b← Eval(gp, c, z, y, d, µ; f, r)

 = 1 .

We require that Eval is an interactive argument of knowledge and has knowledge soundness, which

ensures that we can extract the committed polynomial from any evaluation.

Multi-variate polynomial commitments can be instantiated from random oracles using the FRI

protocol [Zha+20], bilinear groups [PST13], groups of unknown order [BFS20] and discrete logarithm

groups. We give a table of polynomial commitments with their different properties in Table 3.2:

Virtual oracles and commitments. Given multiple polynomial oracles, we can construct vir-

tual oracles to the functions of these polynomials. An oracle to g([[f1]], . . . , [[fk]]) for some function

g is simply the list of oracles {[[f1]], . . . , [[fk]]} as well as a description of g. In order to evaluate

g([[f1]], . . . , [[fk]]) at some point x we compute yi = fi(x)∀i ∈ [k] and output g(y1, . . . yk). Equiva-

lently given commitments to polynomials, we can construct a virtual commitment to a function of

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 82

Scheme
Prover time:

Commit+ Eval Verifier time Proof size n = 225 Setup Add.
KZG-based [PST13] BL n G1 log(n) P log(n) G1 0.8KB Univ. Yes
Dory [Lee21] BL nG1+

√
nP log(n) GT 6 log(n) GT 30KB Trans. Yes

Bulletproofs [Bün+18] DL n G n G 2 log(n) G 1.6KB Trans. Yes

FRI-based (§3.9) RO n log(n)/ρF+ n/ρH log2(n) λ
− log ρ H log2(n) λ

− log ρ H 250KB Trans. No

Orion RO nH + n
k + k rec. λ log2 nH λ log2 n H 5.5MB Trans. No

Orion + (§3.7) BL
n/kG1 + nH+
(kλH + n

kF) rec.
log(n)P 4 log n G1 7KB Univ. No

Table 3.2: Multi-linear polynomial commitment schemes for µ-variate linear polynomials and n = 2µ.
The prover time measures the complexity of committing to a polynomial and evaluating it once.
The commitment size is constant for all protocols. Unless constants are mentioned, the metrics
are assumed to be asymptotic. In the 4th row, ρ denotes the rate of Reed-Solomon codes. In
the 5th and 6th rows, k denotes the number of rows of the matrix that represents the polynomial
coefficients. The 6th column measures the concrete proof size for n = 225, i.e. µ = 25 and 128-bit
security. Legend: BL=Bilinear Group, DL=Discrete Logarithm, RO=Random Oracle, H= Hashes,
P= pairings, G= group scalar multiplications, rec.= Recursive circuit size, univ.= universal setup,
trans.= transparent setup, Add.=Additive

these polynomials in the same manner. If g is an additive function and the polynomial commitment

is additively homomorphic, then we can use the homomorphism to do the evaluation. A common

example is that given additive commitments Cf , Cg to polynomials f(X), g(X), we want to con-

struct a commitment to (1 − Y)f + Y g. Then (Cf , Cg) serves as such a commitment and we can

evaluate it at (y,x) by evaluating (1− y)Cf + y · Cg at x.

3.2.3 PIOP compilation

PIOP compilation transforms the interactive oracle proof into an interactive argument of knowledge

(without oracles) Π. The compilation replaces the oracles with polynomial commitments. Every

query by the verifier is replaced with an invocation of the Eval protocol at the query point z. The

compiled verifier accepts if the PIOP verifier accepts and if the output of all Eval invocations is 1.

If Π is public-coin, then it can further be compiled to a non-interactive argument of knowledge (or

NARK) using the Fiat-Shamir transform.

Theorem 3.1 (PIOP Compilation [BFS20; Chi+20]). If the polynomial commitment scheme Γ

has witness-extended emulation, and if the t-round Polynomial IOP for R has negligible knowledge

error, then Π, the output of the PIOP compilation, is a secure (non-oracle) argument of knowledge

for R. The compilation also preserves zero knowledge. If Γ is hiding and Eval is honest-verifier

zero-knowledge, then Π is honest-verifier zero-knowledge. The efficiency of the resulting argument

of knowledge Π depends on the efficiency of both the PIOP and Γ:

• Prover time The prover time is equal to the sum of (i) prover time of the PIOP, (ii) the oracle

length times the commitment time, and (iii) the query complexity times the prover time of Γ.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 83

• Verifier time The verifier time is equal to the sum of (i) the verifier time of the PIOP and (ii)

the verifier time for Γ times the query complexity of the PIOP.

• Proof size The proof size is equal to sum of (i) the message complexity of the PIOP times the

commitment size and (ii) the query complexity times the proof size of Γ. If the proof size is

O(logc(|w|)), then we say the proof is succinct.

Batching. The prover time, verifier time, and proof size can be significantly reduced using batch

openings of the polynomial commitments. After batching, the proof size only depends on the number

of oracles plus a single polynomial commitment opening.

3.3 A toolbox for multivariate polynomials

We begin by reviewing several important PolyIOPs that will serve as building blocks for HyperPlonk.

Some are well-known, and some are new. Figure 3.1 serves as a guide for this section: we define

the PolyIOPs listed in the figure following the dependency order.

Notation. From here on, we let Bµ := {0, 1}µ ⊆ Fµ be the boolean hypercube. We use F (≤d)
µ to

denote the set of multivariate polynomials in F[X1, . . . , Xµ] where the degree in each variable is at

most d; moreover, we require that each polynomial in F (≤d)
µ can be expressed as a virtual oracle

to c = O(1) multilinear polynomials. that is, with the form f(X) := g(h1(X), . . . , hc(X)) where

hi ∈ F (≤1)
µ (1 ≤ i ≤ c) is multilinear and g is a c-variate polynomial of total degree at most d.

Looking ahead, we restrict ourselves to this kind of polynomials so that we can have sumchecks for

the polynomials with linear-time provers.

For polynomials f, g ∈ F (≤d)
µ , we denote merge(f, g) ∈ F (≤d)

µ+1 as

merge(f, g) := h(X0, . . . ,Xµ) := (1−X0) · f(X1, . . . ,Xµ) +X0 · g(X1, . . . ,Xµ) (3.7)

so that h(0,X) = f(X) and h(1,X) = g(X). In the following definitions, we omit the public pa-

rameters gp := (F, µ, d) when the context is clear. We use δd,µcheck to denote the soundness error of the

PolyIOP for relationRcheck with public parameter (F, d, µ), where check ∈ {sum, zero,prod,mset,perm, lkup}.

3.3.1 SumCheck PIOP for high degree polynomials

In this section, we describe a PIOP for the sumcheck relation using the classic sumcheck proto-

col [Lun+92]. However, we modify the protocol and adapt it to our setting of high-degree polyno-

mials.

Definition 3.6 (SumCheck relation). The relation RSUM is the set of all tuples (x;w) =
(
(v, [[f]]); f

)
where f ∈ F (≤d)

µ and
∑

b∈Bµ
f(b) = v.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 84

Scheme P time V time Num of queries Num of rounds Proof oracle size Witness size

SumCheck O(2µd log2 d) O(µ) µ+ 1 µ dµ O(2µ)

ZeroCheck O(2µd log2 d) O(µ) µ+ 1 µ dµ O(2µ)

ProdCheck O(2µd log2 d) O(µ) µ+ 2 µ+ 1 O(2µ) O(2µ)

MsetEqChk O(2µd log2 d) O(µ) µ+ 2 µ+ 1 O(2µ) O(k2µ)

PermCheck O(2µd log2 d) O(µ) µ+ 2 µ+ 1 O(2µ) O(2µ)

Plookup O(2µd log2 d) O(µ) µ+ 3 µ+ 2 O(2µ) O(2µ)
BatchEval O(2µk) O(kµ) 1 µ+ log k O(µ+ log k) O(k2µ)

Table 3.3: The complexity of PIOPs. d and µ denote the degree and the number of variables of
the multivariate polynomials; k in MsetCheck is the length of each element in the multisets; k in
BatchEval is the number of evaluations.

Construction. The classic SumCheck protocol [Lun+92] is a PolyIOP for the relation RSUM.

When applying the protocol to a polynomial f ∈ F (≤d)
µ , the protocol runs in µ rounds where in

every round, the prover sends a univariate polynomial of degree at most d to the verifier. The verifier

then sends a random challenge point for the univariate polynomial. At the end of the protocol, the

verifier checks the consistency between the univariate polynomials and the multi-variate polynomial

using a single query to f .

Given a tuple (x;w) = (v, [[f]]; f) for µ-variate degree d polynomial f such that
∑

b∈Bµ
f(b) = v:

• For i = µ, µ− 1, . . . , 1:

– The prover computes ri(X) :=
∑

b∈Bi−1
f(b, X, αi+1, . . . , αµ) and sends the oracle [[ri]]

to the verifier. ri is univariate and of degree at most d.

– The verifier checks that v = ri(0) + ri(1), samples αi ← F, sends αi to the prover, and

sets v ← ri(αi).

• Finally, the verifier accepts if f(α1, . . . , αµ) = v.

Theorem 3.2. The PIOP for RSUM is perfectly complete and has knowledge error δd,µsum := dµ/|F|.

We refer to [Tha20] for the proof of the theorem.

Sending r as an oracle. Unlike in the classic sumcheck protocol, we send an oracle to ri, in

each round, instead of the actual polynomial. This does not change the soundness analysis, as

the soundness is still proportional to the degree of the univariate polynomials sent in each round.

However, it reduces the communication and verifier complexity, especially if the degree of r is large,

as in our application of Hyperplonk with custom gates.

Moreover, the verifier has to evaluate ri at three points: 0, 1, and αi. As a useful optimization,

the prover can instead send an oracle for the degree d− 2 polynomial

r′i(X) :=
ri(X)− (1−X) · ri(0)−X · ri(1)

X · (1−X)
,

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 85

along with ri(0). The verifier then computes ri(1)← v − ri(0) and

ri(αi)← r′i(αi) · (1− αi) · αi + (1− αi) · ri(0) + αi · ri(1).

This requires only one query to the oracle of r′i at αi and one field element per round.

Computing sumcheck for high-degree polynomials. Consider a multi-variate polynomial

f(X) := h(g1(X), . . . , gc(X)) such that h is degree d and can be evaluated through an arithmetic

circuit with O(d) gates. In the sumcheck protocol, the prover has to compute a univariate polynomial

ri(X) in each round using the previous verifier messages α1, . . . , αi−1. We adapt the algorithm

by [Tha13; Xie+19] that showed how the sumcheck prover can be run in time linear in 2µ using

dynamic programming. The algorithm takes as input a description of f as well as the sumcheck

round challenges α1, . . . , αµ. It outputs the round polynomials r1, . . . , rµ. The sumcheck prover

runs the algorithm in parallel to the sumcheck protocol, taking each computed ri as that rounds

message:

Algorithm 1 Computing r1, . . . , rµ [Tha13; Xie+19]

1: procedure SumCheck prover(h, g1(X), . . . , gc(X))
2: For each gj build table Aj : {0, 1}µ → F of all evaluations over Bµ

3: for i← µ . . . 1 do
4: For each b ∈ Bi−1 and each j ∈ [c], define r(j,b)(X) := (1−X)Aj [b, 0] +XAj [b, 1].
5: Compute r(b)(X)← h(r(1,b)(X), . . . , r(c,b)(X)) for all b ∈ Bi−1 using Algorithm 2 .
6: ri(X)←

∑
b∈Bi−1

rb(X).

7: Send ri(X) to V.
8: Receive αi from V.
9: Set Aj [b]← r(j,b)(αi) for each b ∈ Bi−1.

10: end for
11: end procedure

In [Tha13; Xie+19], r(b)(X) := h(r(1,b)(X), . . . , r(c,b)(X)) is computed by evaluating h on d

distinct values for X, e.g. X ∈ {0, . . . , d} and interpolating the output. This works as h is a degree

d polynomial and each rj,b is linear. Evaluating rj,b on d points can be done in d steps. So the total

time to evaluate all rj,b for j ∈ [c] is c · d. Furthermore, the circuit has O(d) gates, and evaluating

it on d inputs, takes time O(d2). Assuming that c ≈ d the total time to compute r(b) with this

algorithm is O(d2) and the time to run Algorithm 1 is O(2µd2).

We show how this can be reduced to O(2µ · d log2 d) for certain low depth circuits, such as

h :=
∏

c rc(X). The core idea is that evaluating the circuit for h symbolically, instead of at d

individual points, is faster if fast polynomial multiplication algorithms are used.

We will present the algorithm for computing h(X) :=
∏d

j=1 rj(X), then we will discuss how to

extend this for more general h. Assume w.l.o.g. that d is a power of 2.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 86

Algorithm 2 Evaluating h :=
∏d

j=1 rj

Require: r1, . . . , rd are linear functions
1: procedure h(r1(X), . . . , rd(X))
2: t1,j ← rj for all j ∈ [d].
3: for i← 1 . . . log d do
4: for j ∈ [d/2i] do
5: ti+1,j(X)← ti,2j−1(X) · ti,2j(X) ▷ Using fast polynomial multiplication
6: end for
7: end for
8: return h = tlog2(d),1

9: end procedure

In round i there are d/2i polynomial multiplications for polynomials of degree 2i−1. In FFT-

friendly3 fields, polynomial multiplication can be performed in time O(d log(d)).4 The total running

time of the algorithm is therefore
∑log2(d)

i=1
d
2i 2

i−1 log(2i−1) =
∑log2(d)

i=1 O(d · i) = O(d log2(d)).

Algorithm 2 naturally extends to more complicated, low-depth circuits. Addition gates are

performed directly through polynomial addition, which takes O(d) time for degree d polynomi-

als. As long as the circuit is low-depth and has O(d) multiplication gates, the complexity remains

O(d log2(d)). Furthermore, we can compute rk(X) for k ≤ d using only a single FFT of length

deg(r) · k for an input polynomial r. The FFT evaluates r at deg(r) · k points. Then we raise each

point to the power of k. This takes time O(deg(r) · k(log(deg(r)) + log(k))) and saves a factor of

log(k) over a repeated squaring implementation.

Batching. Multiple sumcheck instances, e.g. (s, [[f]]) and (s′, [[g]]) can easily be batched together.

This is done using a random-linear combination, i.e. showing that (s+αs′, [[f]]+α[[g]]) ∈ L(RSUM)

for a random verifier-generated α [Wah+18; CFS17]. The batching step has soundness 1
F .

Complexity. Overall, Algorithm 1 calls Algorithm 2 for each point in the boolean hypercube

and then on each point in a cube of half the size. The total runtime of Algorithm 1 is, therefore,

O(2µd log2 d) if h is degree d and low-depth. We summarize the complexity of the PIOP for RSUM

with respect to f ∈ F (≤d)
µ , below:

• The prover time is tpfsum = O(2µ · d log2 d) F-ops (for low-depth f that can be evaluated in

time O(d)).

• The verifier time is tvfsum = O(µ).
• The query complexity is qfsum = µ+ 1, µ queries to univariate oracles, one to multi-variate f .

• The round complexity and the number of proof oracles is rcfsum = µ.

3These are fields where there exists an element that has a smooth order of at least d.
4Recent breakthrough results have shown that polynomial multiplication is O(d log(d)) over arbitrary finite

fields [HVDH22] and there have been efforts toward building practical, fast multiplication algorithms for arbitrary
fields [BS+22]. In practice, and especially for low-degree polynomials, using Karatsuba multiplication might be faster.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 87

• The number of field elements sent by P is µ.

• The size of the proof oracles is plfsum = d · µ; the size of the witness is c · 2µ.

3.3.2 ZeroCheck PIOP

In this section, we describe a PIOP showing that a multivariate polynomial evaluates to zero every-

where on the boolean hypercube. The PIOP builds upon the sumcheck PIOP in Section 3.3.1 and

is a key building block for product-check PIOP in Section 3.3.3. The zerocheck PIOP is also helpful

in HyperPlonk for proving the gate identity.

Definition 3.7 (ZeroCheck relation). The relation RZERO is the set of all tuples (x;w) =
(
([[f]]); f

)
where f ∈ F (≤d)

µ and f(x) = 0 for all x ∈ Bµ.

We use an idea from [Set20] to reduce a ZeroCheck to a SumCheck.

Construction. Given a tuple (x;w) =
(
([[f]]); f

)
, the protocol is the following:

• V sends P a random vector r←$ Fµ

• Let f̂(X) := f(X) · eq(X, r) where eq(x,y) :=
∏µ

i=1

(
xiyi + (1− xi)(1− yi)

)
.

• Run a sumcheck PolyIOP to convince the verifier that
(
(0, [[f̂]]); f̂

)
∈ RSUM.

Batching. It is possible to batch two instances
(
([[f]]); f

)
∈ RZERO and

(
([[g]]); g

)
∈ RZERO by

running a zerocheck on
(
([[f + αg]]); f + αg

)
for a random α ∈ F. The soundness error of the

batching protocol 1
F .

Theorem 3.3. The PIOP for RZERO is perfectly complete and has knowledge error δd,µzero := dµ/|F|+
δd+1,µ
sum = O(dµ/|F|).

Proof. Completeness. For every
(
([[f]]); f

)
∈ RZERO, f̂ is also zero everywhere on the boolean

hypercube, thus the sumcheck of f̂ is zero, and completeness follows from sumcheck’s completeness.

Knowledge soundness. By Lemma 3.3, it is sufficient to argue the soundness error of the protocol.

We note that [[f]] ∈ L(RZERO) (i.e.,
(
([[f]]); f

)
∈ RZERO) if and only if the following auxiliary

polynomial

g(Y) :=
∑
x∈Bµ

f(x) · eq(x,Y)

is identically zero. This is because eq(x, y) for a x,y ∈ Bµ is 1 if x = y and 0 otherwise. So

g(y) = f(y) for all y ∈ Bµ. Therefore, for any [[f]] /∈ L(RZERO), the corresponding g is a non-zero

polynomial and by Lemma 3.2,

g(r) =
∑
x∈Bµ

f(x) · eq(x, r) = 0

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 88

with probability dµ/|F| over the choice of r, thus the probability that the verifier accepts is at most

dµ/|F| plus the probability that the SumCheck PIOP verifier accepts when
(
(0, [[f̂]]); f̂

)
/∈ RSUM,

which is dµ/|F|+ δd+1,µ
sum as desired.

Complexity. We analyze the complexity of the PIOP for RZERO with respect to f ∈ F (≤d)
µ .

• The prover time is tpfzero = tpf̂sum = O(d log2 d · 2µ) F-ops.
• The verifier time is tvfzero = O(µ).
• The query complexity is qfzero = qf̂sum = µ+ 1.

• The round complexity and the number of proof oracles is rcfzero = rcf̂sum = µ.

• The number of field elements sent by P is nffzero = nf f̂sum = µ.

• The size of the proof oracles is plfzero = plf̂sum = dµ; the size of the witness is O(2µ).

3.3.3 ProductCheck PIOP

We describe a PIOP for the product check relation, that is, for a rational polynomial (where both

the nominator and the denominator are multivariate polynomials), the product of the evaluations on

the boolean hypercube is a claimed value s. The PIOP uses the idea from the Quark system [SL20,

§5], we adapt it to build upon the zerocheck PIOP in Section 3.3.2. Product check PIOP is a key

building block for the multiset equality check PIOP in Section 3.3.4.

Definition 3.8 (ProductCheck relation). The relation RPROD is the set of all tuples (x;w) =(
(s, [[f1]], [[f2]]); f1, f2

)
where f1 ∈ F (≤d)

µ , f2 ∈ F (≤d)
µ , f2(b) ̸= 0 ∀b ∈ Bµ and

∏
x∈Bµ

f ′(x) = s,

where f ′ is the rational polynomial f ′ := f1/f2. In the case that f2 = c is a constant polynomial, we

directly set f := f1/c and write (x;w) =
(
(s, [[f]]); f

)
.

Construction. The Quark system [SL20, §5] constructs a proof system for the RPROD relation.

The proof system uses an instance of the RZERO PolyIOP on µ + 1 variables. Given a tuple

(x;w) =
(
(s, [[f1]], [[f2]]); f1, f2

)
, we denote by f ′ := f1/f2. The protocol is the following:

• P sends an oracle ṽ ∈ F (≤1)
µ+1 such that for all x ∈ Bµ,

ṽ(0,x) = f ′(x) , ṽ(1,x) = ṽ(x, 0) · ṽ(x, 1) , ṽ(1) = 0.

• Define ĥ := merge(f̂ , ĝ) ∈ F (≤max(2,d+1))
µ+1 where

f̂(X) := ṽ(1,X)− ṽ(X, 0) · ṽ(X, 1) , ĝ(X) := f2(X) · ṽ(0,X)− f1(X) .

Run a ZeroCheck PolyIOP for
(
[[ĥ]]; ĥ

)
∈ RZERO, i.e., the polynomial ṽ is computed correctly.

• V queries [[ṽ]] at point (1, . . . , 1, 0) ∈ Fµ+1, and checks that the evaluation is s.

Theorem 3.4. Let d′ := max(2, d + 1). The PIOP for RPROD is perfectly complete and has

knowledge error δd,µprod := δd
′,µ+1

zero = O(d′µ/|F|).

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 89

Proof. Completeness. First, if the prover honestly generates ṽ, it holds that
(
([[ĥ]]); ĥ

)
∈ RZERO,

and the verifier accepts in the sub-PIOP, given that ZeroCheck is complete. Second, if
(
(s, [[f1]], [[f2]]); f1, f2

)
∈

RPROD, the evaluation ṽ(1, . . . , 1, 0) is exactly the product of f ’s evaluations on the boolean hyper-

cube Bµ (c.f. [SL20, §5]), which is s as desired.

Knowledge soundness. By Lemma 3.3, it is sufficient to argue the soundness error of the protocol.

For any (s, [[f1]], [[f2]]) /∈ L(RPROD) and any ṽ sent by a malicious prover, it holds that either ṽ is

not computed correctly (i.e.,
(
([[ĥ]]); ĥ

)
/∈ RZERO), or the evaluation ṽ(1, . . . , 1, 0) ̸= s and V rejects.

Hence the probability that V accepts is at most max
(
δd

′,µ+1
zero , 0

)
= δd

′,µ+1
zero as claimed.

Complexity. Let ĥ be the polynomials described in the construction, we analyze the complexity

of the PIOP for RPROD with respect to f ′ := f1/f2 where f1, f2 ∈ F (≤d)
µ .

• The prover time is tpf
′

prod = tpĥzero + 2µ = O(d log2 d · 2µ) F-ops. The term 2µ is for computing

the product polynomial ṽ.

• The verifier time is tvf
′

prod = tvĥzero = O(µ).
• The query complexity is qf

′

prod = qĥzero + 1 = µ+ 2, the additional query is for ṽ(1, . . . , 1, 0).

• The round complexity and the number of proof oracles is rcf
′

prod = rcĥzero + 1 = µ+ 1.

• The number of field elements sent by P is nff
′

prod = nfĥzero = µ.

• The size of the proof oracles is plfprod = 2µ + plĥzero = O(2µ); the size of the witness is O(2µ).

3.3.4 Multiset Check PIOP

We describe a multivariate PIOP checking that two multisets are equal. The PIOP builds upon

the product-check PIOP in Section 3.3.3. The multiset check PIOP is a key building block for the

permutation PIOP in Section 3.3.5 and the lookup PIOP in Section 3.3.7. A similar idea has been

proposed in the univariate polynomial setting by Gabizon in a blogpost [Gab].

Definition 3.9 (Multiset Check relation). For any k ≥ 1, the relation Rk
MSET is the set of all tuples

(x;w) =
(
([[f1]], . . . , [[fk]], [[g1]], . . . , [[gk]]); (f1, . . . , fk, g1, . . . , gk)

)
where fi, gi ∈ F (≤d)

µ (1 ≤ i ≤ k) and the following two multisets of tuples are equal:{
fx :=

[
f1(x), . . . , fk(x)

]}
x∈Bµ

=
{
gx :=

[
g1(x), . . . , gk(x)

]}
x∈Bµ

Basic construction. We start by describing a PolyIOP for R1
MSET. The protocol can be obtained

from a protocol for RPROD. Given a tuple
(
([[f]], [[g]]); (f, g)

)
, the protocol is the following:

• V samples and sends P a challenge r ←$ F.

• Set f ′ := r + f and g′ := r + g

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 90

• If g′ ̸= 0∀b ∈ Bµ run a ProductCheck PolyIOP for
(
(1, [[f ′]], [[g′]]); f ′, g′

)
∈ RPROD.

• Else the prover sends b such that g′(b) = 0 and the verifier accepts if g(b) = −r (this case

happens with negligible probability).

Theorem 3.5. The PIOP for R1
MSET has perfect completeness and has knowledge error δd,µmset,1 :=

2µ+1/|F|+ δd,µprod = O
(
(2µ + dµ)/|F|

)
.

Proof. Completeness. For any
(
([[f]], [[g]]); (f, g)

)
∈ R1

MSET, it holds that∏
x∈Bµ

(
r + f(x)

)
=
∏

x∈Bµ

(
r + g(x)

)
,

. If g(b) = −r then the prover will just open g at that point and the verifier accepts. Otherwise

r+g(b) ̸= 0,∀b ∈ Bµ, thus
∏

x∈Bµ

(
r+f(x)

)
/
(
r+g(x)

)
= 1, i.e.,

(
(1, [[r+f]], [[r+g]]); r+f, r+g

)
∈

RPROD. Therefore completeness holds given that the PolyIOP for RPROD is complete.

Knowledge soundness. By Lemma 3.3, it is sufficient to argue the soundness error of the protocol.

For any ([[f]], [[g]]) /∈ L(R1
MSET) (i.e.,

(
([[f]], [[g]]); (f, g)

)
/∈ R1

MSET), it holds that

F (Y) :=
∏

x∈Bµ

(Y + f(x)) ̸= G(Y) :=
∏

x∈Bµ

(Y + g(x)) .

By Lemma 3.2, F (r) ̸= G(r) and G(r) = 0 with probability at least 1− 2 ∗ (2µ/|F|). Conditioned on

F (r) ̸= G(r) and G(r) ̸= 0, it holds that
(
(1, [[r + f]], [[r + g]]); r + f, r + g

)
/∈ RPROD. Hence the

probability that V accepts conditioned on F (r) ̸= G(r) and G(r) ̸= 0 is at most δd,µprod. In summary,

the probability that V accepts is at most 2µ+1/|F|+ δd,µprod as claimed.

The final construction. Next we describe the protocol for Rk
MSET for any k ≥ 1. Given a tuple

(
([[f1]], . . . , [[fk]], [[g1]], . . . , [[gk]]); (f1, . . . , fk, g1, . . . , gk)

)
,

the protocol is the following:

• V samples and sends P challenges r2, . . . , rk ←$ F.

• Run a Multiset Check PolyIOP for
(
([[f̂]], [[ĝ]]); (f̂ , ĝ)

)
∈ R1

MSET, where f̂ , ĝ ∈ F (≤d)
µ are

defined as f̂ := f1 + r2 · f2 + · · ·+ rk · fk and ĝ := g1 + r2 · g2 + · · ·+ rk · gk.

Theorem 3.6. The PIOP for Rk
MSET is perfectly complete and has knowledge error δd,µmset,k :=

2µ/|F|+ δd,µmset,1 = O
(
(2µ + dµ)/|F|

)
.

Proof. Completeness. Completeness holds since the PolyIOP for
(
([[f]], [[g]]); (f, g)

)
∈ R1

MSET is

complete.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 91

Knowledge soundness. By Lemma 3.3, it is sufficient to argue the soundness error of the protocol.

Given any (
[[f1]], . . . , [[fk]], [[g1]], . . . , [[gk]]

)
/∈ L

(
Rk

MSET

)
,

let

U :=
{
fx := [f1(x), . . . , fk(x)]

}
x∈Bµ

, V :=
{
gx := [g1(x), . . . , gk(x)]

}
x∈Bµ

denote the corresponding multisets. Let W be the maximal multiset such that W ⊆ U and W ⊆ V .

We set U ′ := U \W , V ′ := V \W .5 We observe that |U ′| = |V ′| > 0 as U ̸= V , and U ′ ∩ V ′ = ∅
by definition of W . Thus there exists an element x ∈ Fk where x ∈ U ′ but x /∈ V ′. It is well-known

that the map ϕr : (x1, . . . , xk) → x1 + r2x2 + · · · + rkxk is a universal hash family [CW77; WC81;

Sti94], that is, for any x,y ∈ Fk, x ̸= y, it holds that

Pr
r
[ϕr(x) = ϕr(y)] ≤

1

|F|
.

Thus by union bound, the probability (over the choice of r) that

ϕr(x) ∈
{
ϕr(y) : y ∈ V ′}

is at most |V ′|/|F| ≤ 2µ/|F|. Conditioned on that above does not happen, we have that
(
([[f̂]], [[ĝ]])

)
/∈

L(R1
MSET) and the probability that V accepts in the PolyIOP for R1

MSET is at most δd,µmset,1. In sum-

mary, the soundness error is at most 2µ/|F|+ δd,µmset,1 as claimed.

Complexity. We analyze the complexity of the PIOP for RMSET with respect to

F := (f1, . . . , fk, g1, . . . , gk) ∈
(
F (≤d)

µ

)2k
.

• The prover time is tpFk,mset = tpf̂ ,ĝ1,mset = tp
f ′/g′

prod = O
(
d log2 d · 2µ

)
F-ops (for k where f̂ :=

f1 + r2 · f2 + · · ·+ rk · fk and ĝ := g1 + r2 · g2 + · · ·+ rk · gk can be evaluated in time O(d)).

• The verifier time is tvFmset = tv
f ′/g′

prod = O(µ).
• The query complexity is qFmset = q

f ′/g′

prod = µ+ 2.

• The round complexity and the number of proof oracles is rcFmset = rc
f ′/g′

prod = µ+ 1.

• The number of field elements sent by P is nfFmset = nf
f ′/g′

prod = µ.

• The size of the proof oracles is plFmset = pl
f ′/g′

prod = O(2µ); the size of the witness is O(k · 2µ).

3.3.5 Permutation PIOP

We describe a multivariate PIOP showing that for two multivariate polynomials f, g ∈ F (≤d)
µ , the

evaluations of g on the boolean hypercube is a predefined permutation σ of f ’s evaluations on the

5E.g., if k = 1 and U =
{
1, 1, 1, 2

}
and V =

{
1, 1, 2, 2

}
, then W =

{
1, 1, 2

}
, U ′ =

{
1
}
and V ′ =

{
2
}
.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 92

boolean hypercube. The permutation PIOP is a key building block of HyperPlonk for proving the

wiring identity.

Definition 3.10 (Permutation relation). The indexed relation RPERM is the set of tuples

(i;x;w) =
(
σ; ([[f]], [[g]]); (f, g)

)
,

where σ : Bµ → Bµ is a permutation, f, g ∈ F (≤d)
µ , and g(x) = f(σ(x)) for all x ∈ Bµ.

Construction. Gabizon et. al. [GWC19] construct a permutation argument. We adapt their

scheme into a multivariate PolyIOP. The construction uses a PolyIOP instance for RMSET. Given a

tuple
(
σ; ([[f]], [[g]]); (f, g)

)
where σ is the predefined permutation, the indexer generates two oracles

[[sid]], [[sσ]] such that sid ∈ F (≤1)
µ maps each x ∈ Bµ to [x] :=

∑µ
i=1 xi · 2i−1 ∈ F, and sσ ∈ F (≤1)

µ

maps each x ∈ Bµ to [σ(x)].6 The PolyIOP is the following:

• Run a Multiset Check PolyIOP for

(
([[sid]], [[f]], [[sσ]], [[g]]); (sid, f, sσ, g)

)
∈ R2

MSET .

Theorem 3.7. The PIOP for RPERM is perfectly complete and has knowledge error δd,µperm :=

δd,µmset,2 = O
(
(2µ + dµ)/|F|

)
.

Proof. Completeness. For any
(
σ; ([[f]], [[g]]); (f, g)

)
∈ RPERM, it holds that the multiset {([x], f(x))}x∈Bµ

is identical to the multiset {([σ(x)], g(x))}x∈Bµ
. Thus

(
([[sid]], [[f]], [[sσ]], [[g]]); (sid, f, sσ, g)

)
∈ R2

MSET

and completeness follows from the completeness of the PolyIOP for R2
MSET.

Knowledge soundness. By Lemma 3.3, it is sufficient to argue the soundness error of the protocol.

The PolyIOP has soundness error δd,µmset,2 as the permutation relation holds if and only if the above

multiset check relation holds.

Complexity. The complexity of the PIOP for RPERM with respect to f, g ∈ F (≤d)
µ is identical to

the complexity of the PIOP for R2
MSET with respect to (sid, f, sσ, g).

3.3.6 Another permutation PIOP for small fields

We describe a different multivariate PIOP for RPERM. This PIOP directly reduces to RSUM and

has soundness O(µ2/|F|) instead of O(2µ/|F|). This enables using polynomial-sized fields such as

6Here we further require |F| ≥ 2µ so that [x] never overflow.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 93

in [Boo+22a]. The downside is that the PIOP has quasi-linear (rather than linear) prover time.

This comes from splitting up the permutation into µ multi-linear polynomials. We emphasize that

to obtain linear-time provers, the PIOPs used in Section 3.4 and Section 3.5 are the version in

Section 3.3.5, rather than in this section.

For simplicity, we only describe the construction for multi-linear polynomials f, g. It can be easily

extended to higher degree polynomials by adding an additional ZeroCheck and proving equivalence

between a multi-variate and a multi-linear polynomial on the boolean hypercube.

Construction. Our core idea is similar to the protocol in RBATCH. Given a permutation σ :

Bµ → Bµ, we reduce the equality check f(b′) = g(σ(b′)) for a given point b′ ∈ Bµ to a sum-check

via multilinear extension. We then use a zero-check over all b′ to prove the equality for all b′ ∈ Bµ,

which in turn can be reduced to another sumcheck. The resulting sumcheck is over a polynomial

with 2µ variables and individual degree µ+1, and naively running the protocol takes time quadratic

in 2µ. Fortunately, we can utilize that σ is a permutation on Bµ and reduce the prover computation

to O(2µµ log2(µ)).

We begin by defining a multi-linear version of the permutation σ. σ̃ = (σ1(X), . . . , σµ(X)) :

Fµ → Fµ, such that for all i ∈ [µ], σi is the multi-linear extension of the ith binary digit of σ. Note

that σi(x) ∈ {0, 1} for all x ∈ Bµ and i ∈ [µ]. We now rewrite the permutation relation as an RZERO

relation for a polynomial equality equation.

f(σ̃(x))− g(x) = 0∀x ∈ Bµ .

We can now expand f(σ̃(x))− g(x) to its multilinear extension form just as in the protocol for

RBATCH. This becomes

∑
y∈Bµ

(f(y)eq(σ̃(x),y)− g(y)eq(x,y)) = 0∀x ∈ Bµ .

Next, we use the standard trick in Section 3.3.2 to reduce the zerocheck to another sumcheck.

Namely, for a random challenge t ∈ Fµ, we check that

∑
x∈Bµ

eq(t,x) ·
∑
y∈Bµ

(f(y)eq(σ̃(x),y)− g(y)eq(x,y)) = 0 . (3.8)

This is a 2µ-round sumcheck. Unfortunately, we cannot directly evaluate this sumcheck efficiently.

To see this, consider the second round of the sumcheck after the verifier has sent a challenge α1.

The prover needs to evaluate

eq(σ̃(α1, x2, . . . , xµ),y) = eq((σ1(α1, x2, . . . , xµ) . . . , σµ(α1, x2, . . .), xµ),y)

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 94

for all (x2, . . . , xµ) ∈ Bµ−1 and all y ∈ Bµ. This takes time O(22µ), i.e. quadratic in the size of the

permutation.

To remedy this we take advantage of the fact that σ is a permutation and has an inverse permu-

tation σ−1 such that σ(σ−1(x)) = x∀x ∈ Bµ. We similarly define σ̃−1 : Fµ → Fµ as the multi-linear

version of the inverse permutation σ−1. More precisely, σ̃−1 = (σ−1
1 (X), . . . , σ−1

µ (X)) : Fµ → Fµ,

such that for all i ∈ [µ], σ−1
i is the multi-linear extension of the ith binary digit of σ−1. We can

then rewrite the sumcheck from Equation 3.8 as

∑
x∈Bµ

eq(t,x) ·
∑
y∈Bµ

(f(y)eq(x, σ̃−1(y))− g(y)eq(x,y)) = 0 (3.9)

For any x and y ∈ Bµ the inner sum is f(y) if x = σ−1(y) or equivalently f(σ(x)) and −g(x) if
x = y and 0 otherwise. Since we sum over the entire boolean hypercube for both x and y and σ is

a permutation on Bµ, (3.9) is equivalent to
∑

x∈Bµ
eq(t,x)(f(σ(x))− g(x))

The prover can run the sumcheck from (3.9) efficiently by treating σ̃−1 as a permutation in the

first µ rounds of the sumcheck, where we only consider x values within the hypercube. In the latter

µ rounds x has been replaced with verifier challenges α1, . . . , αµ and we can now treat σ̃−1 as a

collection of µ multi-linear functions. We present the PIOP and the corresponding prover algorithm

in Algorithm 3. The verifier is identical to the RSUM verifier for the sumcheck equation (3.9).

Algorithm 3 Permutation PIOP with better soundness.

1: procedure Perm2 prover(f ∈ F (≤1)
µ , g ∈ F (≤1)

µ , σ : Bµ → Bµ)
2: V sends P a random vector t←$ Fµ.
3: Run the sumcheck for µ rounds on the outer sum as described in Algorithm 1. Note that

in the ith round, for any given value of x ∈ Bµ−i, eq((α1, . . . , αi,x), σ̃
−1(y)) is non-zero for at

most 2i values of y ∈ Bµ. This is because σ̃−1 is a permutation on the boolean hypercube,
thus the eq value is non-zero only if the last µ− i values of σ̃−1(y) are identical to x. Similarly
eq((α1, . . . , αi,x),y) ̸= 0 for at most 2i values of y for any given x. The prover can, therefore,
evaluate all inner sumchecks in each round in time O(2µ). The prover runs in time O(µ2µ).

4: Run the inner sumcheck with x = α as described in Algorithm 1 and treating σ̃−1
1 , . . . , σ̃−1

µ

as multi-linear polynomials. The prover runs in time O(2µµ log2(µ)) as the sumcheck has µ
rounds and degree µ.

5: end procedure

Theorem 3.8. The PERM2 PIOP described by the sumcheck for Equation (3.9) and the cor-

responding prover from Algorithm 3 for RPERM is perfectly complete and has knowledge error

δ1,µperm2 := δµ+1,2µ
sum = O(µ2/|F|).

Proof. Completeness. For any
(
σ; ([[f]], [[g]]); (f, g)

)
∈ RPERM, it holds that f(σ(x)) − g(x) = 0

for all x ∈ Bµ. Moreover, for all x,y ∈ Bµ, it holds that eq(x, σ̃−1(y)) = 1 if σ(x) = y and

eq(x, σ̃−1(y)) = 0 otherwise; and eq(x,y) = 1 if x = y and eq(x,y) = 0 otherwise. Thus for

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 95

h(x) =
∑

y∈Bµ
f(y) · eq(x, σ̃−1(y))− g(y)eq(x,y)

(
[[h]];h

)
∈ RZERO

and completeness follows from the completeness of the PolyIOP for RZERO.

Knowledge soundness. By Lemma 3.3, it is sufficient to argue the soundness error of the protocol.

The permutation relation holds if and only if the above zerocheck relation holds, which reduces to

a sumcheck for Equation (3.9). The sumcheck PolyIOP is over a virtual polynomial that has 2µ

variables and individual degree µ+ 1. Thus the soundness error is δµ+1,2µ
RSUM

= O(µ2/|F|).

Complexity. The prover complexity of the PERM2 PIOP with respect to f, g ∈ F (≤1)
µ isO(2µµ log2(µ))

as the prover uses O(µ2µ) in step 3 and O(2µµ log2(µ)) in step 4 of the algorithm. The verifier is

simply the sumcheck verifier for a 2µ round sumcheck and runs in time O(µ). The verifier queries 2µ

univariate polynomials and 2 + µ multi-linear polynomials (f, g, σ̃−1) each at one point. The PIOP

proof size consists of 2µ univariate oracles (one per round of the sumcheck).

3.3.7 Lookup PIOP

This section describes a multivariate PIOP checking the table lookup relation. The PIOP builds

upon the multiset check PIOP (Section 3.3.4) and is a key building block for HyperPlonk+ (Sec-

tion 3.5). Our construction is inspired by a univariate PIOP for the table lookup relation called

Plookup [GW20a]. However, it is non-trivial to adapt Plookup to the multivariate setting because

their scheme requires the existence of a subdomain of the polynomial that is a cyclic subgroup G
with a generator ω ∈ G. Translating to the multilinear case, we need to build an efficient function g

that generates the entire boolean hypercube; moreover, g has to be linear so that the degree of the

polynomial does not blow up. However, such a linear function does not exist. Fortunately, we can

construct a quadratic function from Fµ to Fµ that traverses Bµ. We then show how to linearize it

by modifying some of the building blocks that Plookup uses. This gives an efficient Plookup protocol

over the hypercube.

Definition 3.11 (Lookup relation). The indexed relation RLOOKUP is the set of tuples

(i;x;w) =
(
t; [[f]]; (f, addr)

)
where t ∈ F2µ−1, f ∈ F (≤d)

µ , and addr : Bµ → [1, 2µ) is a map such that f(x) = taddr(x) for all

x ∈ Bµ.

Before presenting the PIOP for RLOOKUP, we first show how to build a quadratic function that

generates the entire boolean hypercube.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 96

A quadratic generator in F2µ . For every µ ∈ N, we fix a primitive polynomial pµ ∈ F2[X] where

pµ := Xµ+
∑

s∈S Xs+1 for some set S ⊆ [µ− 1], so that F2[X]/(pµ) ∼= Fµ
2 [X] ∼= F2µ . By definition

of primitive polynomials, X ∈ Fµ
2 [X] is a generator of Fµ

2 [X]\{0}. This naturally defines a generator

function gµ : Bµ → Bµ as

gµ(b1, . . . , bµ) = (bµ, b
′
1, . . . , b

′
µ−1) ,

where b′i = bi ⊕ bµ (i ≤ 1 < µ) if i ∈ S, and b′i = bi otherwise. Essentially, for a polynomial

f ∈ Fµ
2 [X] with coefficients b, gµ(b) is the coefficient vector of X · f(X). Hence the following lemma

is straightforward.

Lemma 3.4. Let gµ : Bµ → Bµ be the generator function defined above. For every x ∈ Bµ \ {0µ},
it holds that {g(i)µ (x)}i∈[2µ−1] = Bµ \ {0µ}, where g

(i)
µ (·) denotes i repeated application of gµ.

Directly composing a polynomial f with the generator g will blow up the degree of the resulting

polynomial; moreover, the prover needs to send the composed oracle f(g(·)). Both of which affect

the efficiency of the PIOP. We address the issue by describing a trick that manipulates f in a way

that simulates the behavior of f(g(·)) on the boolean hypercube, but without blowing up the degree.

Linearizing the generator. For a multivariate polynomial f ∈ F (≤d)
µ , we define f∆µ

∈ F (≤d)
µ as

f∆µ
(X1, . . . ,Xµ) := Xµ · f(1,X′

1, . . . ,X
′
µ−1) + (1−Xµ) · f(0,X1, . . . ,Xµ−1)

where X′
i := 1−Xi (i ≤ 1 < µ) if i ∈ S, and X′

i := Xi otherwise.

Lemma 3.5. For every µ ∈ N, let gµ : Bµ → Bµ be the generator function defined in Lemma 3.4.

For every d ∈ N and polynomial f ∈ F (≤d)
µ , it holds that f∆µ

(x) = f(gµ(x)) for every x ∈ Bµ.

Moreover, f∆µ
has individual degree d and one can evaluate f∆µ

from 2 evaluations of f .

Proof. By definition, f∆µ
has individual degree d and an evaluation of f∆µ

can be derived from 2

evaluations of f . Next, we argue that f∆µ(x) = f(gµ(x)) for every x ∈ Bµ.

First, f∆µ
(0µ) = f(gµ(0

µ)) because f∆µ
(0µ) = f(0µ) and gµ(0

µ) = 0µ by definition of f∆µ
, gµ.

Second, for every x ∈ Bµ \ {0µ}, by definition of gµ,

f(gµ(x1, . . . ,xµ)) = f(xµ,x
′
1, . . . ,x

′
µ−1),

where x′
i = xi ⊕ xµ (i ≤ 1 < µ) for every i in the fixed set S, and x′

i = xi otherwise. We observe

that xi ⊕ xµ = 1− xi when xµ = 1 and xi ⊕ xµ = xi when xµ = 0, thus we can rewrite

f(xµ,x
′
1, . . . ,x

′
µ−1) = xµ · f(1,x∗

1, . . . ,x
∗
µ−1) + (1− xµ) · f(0,x1, . . . ,xµ−1)

= f∆µ
(x1, . . . ,xµ)

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 97

where x∗
i = 1−xi (i ≤ 1 < µ) for every i in the fixed set S, and x∗

i = xi otherwise. The last equality

holds by definition of f∆µ . In summary, f(gµ(x1, . . . ,xµ)) = f∆µ(x1, . . . ,xµ) for every Bµ and the

lemma holds.

Construction. Now we are ready to present the PIOP for RLOOKUP, which is an adaptation of

Plookup [GW20a] in the multivariate setting. The PIOP invokes a protocol forR2
MSET. We introduce

a notation that embeds a vector to the hypercube while still preserving the vector order with respect

to the generator function. For a vector t ∈ F2µ−1, we denote by t← emb(t) ∈ F (≤1)
µ the multilinear

polynomial such that t(0µ) = 0 and t
(
g
(i)
µ (1, 0µ−1)

)
= ti for every i ∈ [2µ − 1]. By Lemma 3.4, t is

well-defined and embeds the entire vector t onto Bµ \ {0µ}.
For an index t ∈ F2µ−1, the indexer generates an oracle [[t]] where t ← emb(t). For a tuple(

t; [[f]]; (f, addr)
)
where f(Bµ) ⊆ t(Bµ) \ {0}, let (a1, . . . ,a2µ−1) be the vector where ai ∈ N is the

number of appearance of ti in f(Bµ). Note that
∑2µ−1

i=1 ai = 2µ. Denote by h ∈ F2µ+1−1 the vector

h :=
(
t1, . . . , t1︸ ︷︷ ︸

1+a1

, t2, . . . , ti−1, ti, . . . , ti︸ ︷︷ ︸
1+ai

, ti+1, . . . , t2µ−2, t2µ−1, . . . t2µ−1︸ ︷︷ ︸
1+a2µ−1

)
.

We present the protocol below:

• P sends V oracles [[h]], where h← emb(h) ∈ F (≤1)
µ+1 .

• Define g1 := merge(f, t) ∈ F (≤d)
µ+1 and g2 := merge(f, t∆µ) ∈ F

(≤d)
µ+1 , where merge is defined in

equation (3.7). Run a multiset check PIOP (Section 3.3.4) for

(
([[g1]], [[g2]], [[h]], [[h∆µ+1]]) ; (f, t, h)

)
∈ R2

MSET .

• V queries h(0µ+1) and checks that the answer equals 0.

Theorem 3.9. The PIOP for RLOOKUP is perfectly complete and has knowledge error δd,µlkup :=

δd,µ+1
mset,2 = O

(
(2µ + dµ)/|F|

)
.

Proof. Completeness. Denote by n := 2µ. For any
(
t; [[f]]; (f, addr)

)
∈ RLOOKUP, let h ∈ F2n−1

be the vector defined in the construction. Gabizon and Williamson [GW20a] observed that

{
fi, fi

}
i∈[n]

∪
{
ti, t(i mod (n−1))+1

}
i∈[n−1]

=
{
hi,h(i mod (2n−1))+1

}
i∈[2n−1]

,

equivalently, by definition of t, h and by Lemma 3.5, the following two multisets of tuples are equal

{
f(x), f(x)

}
x∈Bµ

∪
{
t(x), t∆µ

(x)
}
x∈Bµ\{0µ}

=
{
h(x),h∆µ+1(x)

}
x∈Bµ+1\{0µ+1} .

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 98

By adding element 0,0 = t(0µ), t∆µ(0
µ) = h(0µ+1),h∆µ+1(0

µ+1) on both sides, we have

{
f(x), f(x)

}
x∈Bµ

∪
{
t(x), t∆µ

(x)
}
x∈Bµ

=
{
h(x),h∆µ+1(x)

}
x∈Bµ+1

.

Hence the verifier accepts in the multiset check by completeness of the PIOP for R2
MSET.

Knowledge soundness. By Lemma 3.3, to argue knowledge soundness, it is sufficient to argue the

soundness error of the protocol. Fix n := 2µ, for any
(
t; [[f]]

)
/∈ L(RLOOKUP), denote by f ∈ Fn the

evaluations of f on Bµ. Gabizon et. al. [GW20a] showed that for any h ∈ F2n−1, it holds that

{
fi, fi

}
i∈[n]

∪
{
ti, t(i mod (n−1))+1

}
i∈[n−1]

̸=
{
hi,h(i mod (2n−1))+1

}
i∈[2n−1]

,

since t(0µ) = 0 and V checks that h(0µ+1) = 0, with a similar argument as in the completeness

proof, we have

{
f(x), f(x)

}
x∈Bµ

∪
{
t(x), t∆µ

(x)
}
x∈Bµ

̸=
{
h(x),h∆µ+1(x)

}
x∈Bµ+1

and the multiset check relation does not hold. Therefore, the probability that V accepts is at most

δd,µ+1
mset,2 as claimed.

Complexity. Let f , F := (g1, g2, h, h∆µ+1
) ∈

(
F (≤d)

µ+1

)2 × (F (≤1)
µ+1

)2
be the polynomials defined in

the construction. We analyze the complexity of the PIOP for RLOOKUP with respect to f ∈ F (≤d)
µ .

• The prover time is tpflkup = tpFmset = O
(
d log2 d · 2µ

)
F-ops.

• The verifier time is tvflkup = tvFmset = O(µ).
• The query complexity is qflkup = 1 + qFmset = µ+ 3.

• The round complexity and the number of proof oracles is rcflkup = 1 + rcFmset = µ+ 2.

• The number of field elements sent by P is nfflkup = nfFmset = µ.

• The size of the proof oracles is plflkup = 2µ+1 + plFmset = O(2µ) where 2µ+1 is the oracle size of

h. The size of the witness is O(2µ).

3.3.8 Batch openings

This section describes a batching protocol proving the correctness of multiple multivariate polynomial

evaluations. Essentially, the protocol reduces multiple oracle queries to different polynomials into

a single query to a multivariate oracle. The batching protocol is helpful for HyperPlonk to enable

efficient batch evaluation openings. In particular, the SNARK prover only needs to compute a single

multilinear PCS evaluation proof, even if there are multiple PCS evaluations.

We note that Thaler [Tha20, §4.5.2] shows how to batch two evaluations of a single multilinear

polynomial. The algorithm can be generalized for multiple evaluations of different multilinear poly-

nomials. However, the prover time complexity is O(k2µ · 2µ) where k is the number of evaluations,

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 99

and µ is the number of variables. In comparison, our algorithm achieves complexity O(k · 2µ) which
is kµ-factor faster. Note that O(k · 2µ) is already optimal as the prover needs to take O(k · 2µ) time

to evaluate {fi(zi)}i∈[k] before batching.

Definition 3.12 (BatchEval relation). The relation Rk
BATCH is the set of all tuples (x;w) =(

(zi)i∈[k], (yi)i∈[k],
(
[[fi]]

)
i∈[k]

; (fi)i∈[k]

)
where zi ∈ Fµ, yi ∈ F, fi ∈ F (≤d)

µ and fi(zi) = yi for

all i ∈ [k].

Remark 3.3.1. The polynomials {fi}i∈[k] are not necessarily distinct. E.g., to evaluate a single

polynomial f at k distinct points, we can set f1 = f2 = · · · = fk = f .

Remark 3.3.2. The polynomials {fi}i∈[k] are all µ-variate. This is without loss of generality.

E.g., suppose one of the evaluated polynomial f ′
j has only µ− 1 variables, we can define fj(Y,X) =

Y ·f ′
j(X)+(1−Y) ·f ′

j(X) which is essentially f ′
j but with µ variables. The same trick easily extends

to f ′
j with arbitrary µ′ < µ variables.

Construction. For ease of exposition, we consider the case where f1, . . . , fk are multilinear. We

emphasize that the same techniques can be extended for multi-variate polynomials.

Assume w.l.o.g that k = 2ℓ is a power of 2. We observe that Rk
BATCH is essentially a ZeroCheck

relation over the set Z := {zi}i∈[k] ⊆ Fµ, that is, for every i ∈ [k], fi(zi)− yi = 0. Nonetheless, Z is

outside the boolean hypercube, and we cannot directly reuse the ZeroCheck PIOP.

The key idea is to interpret each zero constraint as a sumcheck via multilinear extension, so that

we can work on the boolean hypercube later. In particular, for every i ∈ [k], we want to constrain

fi(zi) − yi = 0. Since fi is multilinear, by definition of multilinear extension, this is equivalent to

constraining that

ci :=

∑
b∈Bµ

fi(b) · eq(b, zi)

− yi = 0 . (3.10)

Note that equation (3.10) holds for every i ∈ [k] if and only if the polynomial

∑
i∈[k]

eq(Z, ⟨i⟩) · ci

is identically zero, where ⟨i⟩ is ℓ-bit representation of i− 1. By Lemma 3.2, it is sufficient to check

that for a random vector t←$ Fℓ, it holds that

∑
i∈[k]

eq(t, ⟨i⟩) · ci =
∑
i∈[k]

eq(t, ⟨i⟩) ·

∑
b∈Bµ

fi(b) · eq(b, zi)

− yi

 = 0 . (3.11)

Next, we arithmetize equation (3.11) and make it an algebraic formula. For every (i, b) ∈
[k] × Bµ, we set value gi,b := eq(t, ⟨i⟩) · fi(b), and define an MLE g̃ for (gi,b)i∈[k], b∈Bµ

such that

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 100

g̃(⟨i⟩, b) = gi,b∀(i, b) ∈ [k] × Bµ; similarly, we define an MLE ẽq for (eq(b, zi))i∈[k], b∈Bµ
where

ẽq(⟨i⟩, b) = eq(b, zi)∀(i, b) ∈ [k] × Bµ. Let s :=
∑

i∈[k] eq(t, ⟨i⟩) · yi, then equation (3.11) can be

rewritten as

∑
i∈[k],b∈Bµ

g̃(⟨i⟩, b) · ẽq(⟨i⟩, b) = s .

This is equivalent to prove a sumcheck claim for the degree-2 polynomial g∗ := g̃(Y,X) · ẽq(Y,X)

over set Bℓ+µ. Hence we obtain the following PIOP protocol in Algorithm 4. Note that g∗ = g̃ · ẽq
is only with degree 2. Thus we can run a classic sumcheck without sending any univariate oracles.

Algorithm 4 Batch evaluation of multi-linear polynomials

1: procedure BatchEval([fi ∈ F (≤1)
µ , zi ∈ Fµ, yi ∈ F]ki=1)

2: V sends P a random vector t←$ Fℓ.
3: Define sum s :=

∑
i∈[k] eq(t, ⟨i⟩) · yi.

4: Let g̃ be the MLE for (gi,b)i∈[k], b∈Bµ
where

gi,b := eq(t, ⟨i⟩) · fi(b) .

5: Let ẽq be the MLE for (eq(b, zi))i∈[k], b∈Bµ
such that ẽq(⟨i⟩, b) = eq(b, zi).

6: P and V run a SumCheck PIOP for
(
s, [[g∗]]; g∗

)
∈ RSUM, where g∗ := g̃ · ẽq.

7: Let (a1,a2) ∈ Fℓ+µ be the sumcheck challenge vector. P answers the oracle query g̃(a1,a2).
8: V evaluates ẽq(a1,a2) herself, and checks that

g̃(a1,a2) · ẽq(a1,a2)

is consistent with the last message of the sumcheck.
9: end procedure

Remark 3.3.3. If the SNARK is using a homomorphic commitment scheme, to answer query

g̃(a1,a2) the prover only needs to provide a single PCS opening proof for a µ-variate polynomial

g′(X) := g̃(a1,X) =
∑
i∈[k]

eq(⟨i⟩,a1) · eq(t, ⟨i⟩) · fi(X)

on point a2. The verifier can evaluate {eq(⟨i⟩,a1)·eq(t, ⟨i⟩)}i∈[k] in time O(k), and homomorphically

compute g′’s commitment from the commitments to {fi}i∈[k], and checks the opening proof against

g′’s commitment. Finally, the verifier checks that g′(a2) matches the claimed evaluation g̃(a1,a2).

Analysis. The PIOP for RBATCH is complete and knowledge-sound given the completeness and

knowledge-soundness of the sumcheck PIOP.

Next, we analyze the complexity of the protocol: The prover time is O(k · 2µ) as it runs a

sumcheck PIOP for a polynomial g∗ := g̃ · ẽq of degree 2 and µ + log k variables, where g̃ and

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 101

ẽq can both be constructed in time O(k · 2µ). Note that this is already optimal as the prover

anyway needs to take O(k · 2µ) time to evaluate {fi(zi)}i∈[k] before batching. The verifier takes

time O(µ + log k) in the sumcheck; the sum s can be computed in time O(k); the evaluation

ẽq(a1,a2) =
∑

i∈[k] eq(a1, ⟨i⟩) · ẽq(⟨i⟩,a2) can be derived from a1 and the k evaluations {ẽq(⟨i⟩,a2) =

eq(a2, zi)}i∈[k] where each evaluation eq(a2, zi) takes time O(µ). In summary, the verifier time is

O(kµ).

A more efficient batching scheme in a special setting

Sometimes one only needs to open a single multilinear polynomial at multiple points, where each

point is in the boolean hypercube. In this setting, we provide a more efficient algorithm with com-

plexity O(2µ) which is k times faster than Algorithm 4. We also note that the technique can be

used to construct an efficient Commit-and-Prove SNARK scheme from multilinear commitments.

Recall the sumcheck equation (3.11) in the general batch opening scheme, when there is only one

polynomial f and assume for simplicity that yi = 0∀i ∈ [k]7, we can rewrite it as

∑
i∈[k]

eq(t, ⟨i⟩) ·

∑
b∈Bµ

f(b) · eq(b, zi)

 =
∑
b∈Bµ

f(b)

∑
i∈[k]

eq(t, ⟨i⟩) · eq(b, zi)

 .

Denote by di = eq(t, ⟨i⟩). The above is essentially a sumcheck for polynomial f · ˜eq∗ on set Bµ,

where

˜eq∗(X) :=
∑
i∈[k]

di · eq(X, zi) .

Thus we can reduce the batching argument to a PCS opening on polynomial f .

In the sumcheck protocol, in each round µ− i+ 1 ∈ [µ], the prover needs to evaluate a degree-2

polynomial ri(X) on point xi ∈ {0, 1, 2}, where

ri(X) :=
∑

b∈Bi−1

f(b, X,α) · ˜eq∗(b, X,α) (3.12)

and α = (αi+1, . . . , αµ) are the round challenges. Note that the evaluation f(b, xi,α) is easy

to obtain by maintaining a table f(Bi−1, {0, 1, 2},α) as in Algorithm 1. Next we argue that the

evaluation ri(xi) can be computed in time O(k) given the evaluations f(Bi−1, {0, 1, 2},α). Since

there are µ rounds and the complexity for maintaining the table is O(2µ), the total complexity is

O(2µ + kµ).

7The algorithm can be easily extended when yi are non-zero.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 102

We observe that in equation (3.12), since {zi}i∈[k] are in the boolean hypercube, and

˜eq∗(b, X,α) =
∑
j∈[k]

di · eq((b, X,α), zj)

=
∑
j∈[k]

dj · eq(b, zj [1..i− 1]) · eq(X, zj [i]) · eq(α, zj [i+ 1..]) ,

by definition of eq, there are at most k choices of b where ˜eq∗(b, X,α) is non-zero. In particular, the

ℓ-th (1 ≤ ℓ ≤ k) such vector is cℓ := zℓ[1..i− 1] such that

˜eq∗(cℓ, X,α) =
∑
j∈[k]

dj · eq(zℓ[1..i− 1], zj [1..i− 1]) · eq(X, zj [i]) · eq(α, zj [i+ 1..]) .

we note that for each j ∈ [k], the value eq(α, zj [i + 1..]) can be maintained dynamically; the

value eq(X, zj [i]) can be computed in time O(1). Moreover, eq(zℓ[1..i − 1], zj [1..i − 1]) equals 1 if

zℓ[1..i−1] = zj [1..i−1] and equals 0 otherwise. In summary, all non-zero values { ˜eq∗(cℓ, X,α)}ℓ∈[k]

can be computed in a batch in time O(k). Therefore for each xi ∈ {0, 1, 2}, one can evaluate

ri(xi) from evaluations {f(cℓ, xi,α)}ℓ∈[k] in time O(k), by evaluating { ˜eq∗(cℓ, xi,α)}ℓ∈[k] first and

computing the inner product between (˜eq∗(cℓ, xi,α))ℓ∈[k] and (f(cℓ, xi,α))ℓ∈[k].

Applications to Commit-and-Prove SNARKs. Our batching scheme is helpful for building

Commit-and-Prove SNARKs (CP-SNARKs) from multilinear commitments. In the setting of CP-

SNARKs, given two commitments Cf , Cg that commit to vectors f ∈ Fn, g ∈ Fm (m ≤ n), and

given two sets If ⊆ [n], Ig ⊆ [m], one needs to prove that the values of f(If) is consistent with g(Ig).

This problem can be solved using a variant of our special batching scheme with complexity O(n).

For simplicity suppose that n = m,8 and we assume w.l.o.g that n = 2µ. The idea is to

view f ,g as the evaluations of polynomials f, g ∈ F (≤1)
µ on the boolean hypercube Bµ. Then

the commitments Cf , Cg can be instantiated with multilinear commitments to polynomials f, g

respectively. The relation that f(If) = g(Ig) is a slightly more general version of the batching

relation: let k = |If | = |Ig|, it is equivalent to prove that f(zi) = g(ui) for all i ∈ [k], where

zi,ui ∈ Bµ map to the i-th index of set If , Ig respectively.

Similar to equation (3.11), we can define a sumcheck relation

∑
i∈[k]

eq(t, ⟨i⟩) ·

∑
b∈Bµ

f(b) · eq(b, zi)

−
∑

b∈Bµ

g(b) · eq(b,ui)


=
∑
b∈Bµ

f(b)

∑
i∈[k]

eq(t, ⟨i⟩) · eq(b, zi)

− ∑
b∈Bµ

g(b)

∑
i∈[k]

eq(t, ⟨i⟩) · eq(b,ui)

 = 0 ,

8the same technique applies for n ̸= m

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 103

which is essentially a sumcheck for the degree-2 polynomial h := f · ˜eqf − g · ˜eqg on set Bµ, where

˜eqf (X) :=
∑
i∈[k]

eq(t, ⟨i⟩) · eq(X, zi) , ˜eqg(X) :=
∑
i∈[k]

eq(t, ⟨i⟩) · eq(X,ui) .

We can use the same sumcheck algorithm underlying the special batching scheme. The complexity

is O(2µ). The CP-SNARK proving is then reduced to two PCS openings, one for commitment Cf

and one for Cg.

3.4 HyperPlonk: Scalable SNARKs for scaling Blockchains

Equipped with the building blocks in Section 3.3, we now describe the Polynomial IOP for Hyper-

Plonk. In Section 3.4.1, we introduce RPLONK — an indexed relation on the boolean hypercube that

generalizes the vanilla Plonk constraint system [GWC19]. We present a Polynomial IOP protocol

for RPLONK and analyze its security and efficiency in Section 3.4.2.

3.4.1 Constraint systems

Notation. For any m ∈ Z and i ∈ [0, 2m), we use ⟨i⟩m = v ∈ Bm to denote the m-bit binary

representation of i, that is, i =
∑m

j=1 vj · 2j−1.

Definition 3.13 (HyperPlonk indexed relation). Fix public parameters gp :=
(
F, ℓ, n, ℓw, ℓq, f

)
where F is the field, ℓ = 2ν is the public input length, n = 2µ is the number of constraints, ℓw =

2νw , ℓq = 2νq are the number of witnesses and selectors per constraint9, and f : Fℓq+ℓw → F is an

algebraic map with degree d. The indexed relation RPLONK is the set of all tuples

(i;x;w) = ((q, σ); (p, [[w]]);w) ,

where σ : Bµ+νw
→ Bµ+νw

is a permutation, q ∈ F (≤1)
µ+νq

, p ∈ F (≤1)
µ+ν , w ∈ F

(≤1)
µ+νw

, such that

• the wiring identity is satisfied, that is,
(
σ; ([[w]], [[w]]);w

)
∈ RPERM (Definition 3.10);

• the gate identity is satisfied, that, is,
(
([[f̃]]); f̃

)
∈ RZERO (Definition 3.7), where the virtual

polynomial f̃ ∈ F (≤d)
µ is defined as f̃(X) := f(q(⟨0⟩νq

,X), . . . , q(⟨ℓq − 1⟩νq
,X), w(⟨0⟩νw

,X), . . . , w(⟨ℓw − 1⟩νw
,X)); (3.13)

• the public input is consistent with the witness, that is, the public input polynomial p ∈ F (≤1)
ν

is identical to w(0µ+νw−ν ,X) ∈ F (≤1)
ν .

RPLONK is general enough to capture many computational models. In the introduction, we

reviewed how RPLONK captures simple arithmetic circuits. RPLONK can be used to capture higher

degree circuits with higher arity and more complex gates, including state machine computations.

9We can pad zeroes if the actual number is not a power of two.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 104

State machines. RPLONK can model state machine computations, as shown by Gabizon and

Williamson [GW20b]. A state machine execution with n − 1 steps starts with an initial state

state0 ∈ Fk where k is the width of the state vector. In each step i ∈ [0, n − 1), given input the

previous state statei and an online input inpi ∈ F, the state machine executes a transition function

f and outputs statei+1 ∈ Fw. Let T := (state0, . . . , staten−1) be the execution trace and define

inpn−1 := ⊥, we say that T is valid for input (inp0, . . . , inpn−1) if and only if (i) staten−1[0] = 0k,

and (ii) statei+1 = f(statei, inpi) for all i ∈ [0, n− 1).

We build a HyperPlonk indexed relation that captures the state machine computation. W.l.o.g

we assume that n = 2µ for some µ ∈ N.10 Let νw be the minimal integer such that 2νw > 2k. We

also assume that there is a low-depth algebraic predicate f∗ that captures the transition function f,

that is, f∗(state
′, state, inp) = 0 if and only if state′ = f(state, inp). For each i ∈ [0, n):

• the online input at the i-th step is inpi := w(⟨0⟩νw
, ⟨i⟩µ);

• the input state of step i is statein,i :=
[
w (⟨1⟩νw

, ⟨i⟩µ) , . . . , w (⟨k⟩νw
, ⟨i⟩µ)

]
;

• the output state of step i is stateout,i :=
[
w (⟨k + 1⟩νw

, ⟨i⟩µ) , . . . , w (⟨2k⟩νw
, ⟨i⟩µ)

]
;

• the selector for step i is qi := q
(
⟨i⟩µ

)
;

• the transition and output correctness are jointly captured by a high-degree algebraic map f ′,

f ′(inpi, statein,i, stateout,i;qi) := (1− qi) · f∗(stateout,i, statein,i, inpi) + qi · statein,i[0] .

For all i ∈ [0, n− 1), we set qi = 0 so that statei+1 = fi(statei, inpi) if and only if

f ′(inpi, statein,i, stateout,i;qi) = f∗(stateout,i, statein,i, inpi) = 0 ;

we set qn−1 = 1 so that statein,n−1[0] = 0 if and only if

f ′(inpn−1, statein,n−1, stateout,n−1;qn−1) = statein,n−1[0] = 0 .

Note that we also need to enforce equality between the i-th input state and the (i − 1)-th output

state for all i ∈ [n− 1]. We achieve it by fixing a permutation σ and constraining that the witness

assignment is invariant after applying the permutation.

Remark 3.4.1. We can halve the size of the witness and remove the permutation check by using

the polynomial shifting technique in Section 3.3.7. Specifically, we can remove output state columns

stateout,i and replace it with statein,i+1 for every i ∈ [0, n).

10We can pad with dummy states if the number of steps is not a power of two.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 105

3.4.2 The PolyIOP protocol

In this Section, we present a multivariate PIOP for RPLONK that removes expensive FFTs.

Construction. Intuitively, the PIOP for RPLONK builds on a zero-check PIOP (Section 3.3.2)

for custom algebraic gates and a permutation-check PIOP (Section 3.3.5) for copy constraints;

consistency between the public input and the online witness is achieved via a random evaluation

check between the public input polynomial and the witness polynomial.

Let gp :=
(
F, ℓ, n, ℓw, ℓq, f

)
be the public parameters and let d := deg(f). For a tuple (i;x;w) =(

(q, σ); (p, [[w]]);w
)
, we describe the protocol in Figure 3.2.

Indexer. I(q, σ) calls the permutation PIOP indexer ([[sid]], [[sσ]]) ← Iperm(σ). The oracle

output is ([[q]], [[sid]], [[sσ]]), where q ∈ F (≤1)
µ+νq

, sid, sσ ∈ F (≤1)
µ+νw

.

The protocol. P(gp, i, p, w) and V(gp, p, [[q]], [[sid]], [[sσ]]) run the following protocol.

1. P sends V the witness oracle [[w]] where w ∈ F (≤1)
µ+νw

.

2. P and V run a PIOP for the gate identity, which is a zero-check PIOP (Section 3.3.2) for(
[[f̃]]; f̃

)
∈ RZERO where f̃ ∈ F (≤d)

µ is as defined in Equation 3.13.

3. P and V run a PIOP for the wiring identity, which is a permutation PIOP (Section 3.3.5) for(
σ; ([[w]], [[w]]); (w,w)

)
∈ RPERM.

4. V checks the consistency between witness and public input. It samples r←$ Fν , queries [[w]]

on input (⟨0⟩µ+νw−ν , r), and checks p(r)
?
= w(⟨0⟩µ+νw−ν , r).

Figure 3.2: PIOP for RPLONK.

Theorem 3.10. Let gp :=
(
F, ℓ, n, ℓw, ℓq, f

)
be the public parameters where ℓw, ℓq = O(1) are some

constants. Let d := deg(f). The construction in Figure 3.2 is a multivariate PolyIOP for relation

RPLONK (Definition 3.13) with soundness error O
(
2µ+dµ

|F|
)
and the following complexity:

• the prover time is tpgpplonk = O
(
nd log2 d

)
;

• the verifier time is tvgpplonk = O(µ+ ℓ);

• the query complexity is qgpplonk = 2µ+ 4+ log ℓw, that is, 2µ+ log ℓw univariate oracle queries,

3 multilinear oracle queries, and 1 query to the virtual polynomial f̃ .

• the round complexity and the number of proof oracles is rcgpplonk = 2µ+ 1 + νw;

• the number of field elements sent by the prover is nfgpplonk = 2µ;

• the size of the proof oracles is plgpplonk = O
(
n
)
; the size of the witness is nℓw.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 106

Remark 3.4.2. Two separate sumcheck PIOPs are underlying the HyperPlonk PIOP. We can batch

the two sumchecks into one by random linear combination. The optimized protocol has round com-

plexity µ+1+log ℓw, and the number of field elements sent by the prover is µ. The query complexity

µ+3+log ℓw, that is, µ+log ℓw univariate queries, 2 multilinear queries, and 1 queries to the virtual

polynomial f̃ .

Remark 3.4.3. The prover’s memory consumption is linear to the number of constraints. For space-

bounded provers, we can split the proving work to multiple parallel parties or apply the techniques

from [Boo+22b] to obtain a space-efficient prover with quasilinear proving time. We leave concrete

specifications of space-efficient HyperPlonk provers as future work.

Lemma 3.6. The PIOP in Figure 3.2 is perfectly complete.

Proof. For any
(
(q, σ); (p, [[w]]);w

)
∈ RPLONK, by Definition 3.13, it holds that

•
(
[[f̃]]; f̃

)
∈ RZERO, thus V passes the check in Step 2 as the ZeroCheck PIOP is complete;

•
(
σ; ([[w]], [[w]]);w

)
∈ RPERM, thus V passes the check in Step 3 as the permutation PIOP is

complete;

• the public input polynomial p ∈ F (≤1)
ν is identical to w(0µ+νw−ν ,X) ∈ F (≤1)

ν , thus their

evaluations are always the same, and V passes the check in Step 4.

In summary, the lemma holds as desired.

Lemma 3.7. Let gp :=
(
F, ℓ = 2ν , n = 2µ, ℓw = 2νw , ℓq, f

)
be the public parameters and let

d := deg(f) The PIOP in Figure 3.2 has soundness error

δgpplonk := max

{
δd,µzero, δ

1,µ+νw
perm ,

ν

|F|

}
.

Proof. For any
(
(q, σ); (p, [[w]])

)
/∈ L(RPLONK), that is,

(
(q, σ); (p, [[w]]);w

)
/∈ RPLONK, at least one

of the following conditions holds:

•
(
[[f̃]]; f̃

)
/∈ RZERO;

•
(
σ; ([[w]], [[w]]);w

)
/∈ RPERM;

• p(X) ̸= w(0µ+νw−ν ,X);

In the first condition, the probability that V passes the ZeroCheck in Step 2 is at most δd,µzero; in the

second condition, the probability that V passes the permutation check in Step 3 is at most δ1,µ+νw
perm ;

in the last condition, by Lemma 3.2, V passes the evaluation check in Step 4 with probability at

most ν/|F|. In summary, for any
(
(q, σ); (p, [[w]]);w

)
/∈ RPLONK, the probability that V accepts is

at most max{δd,µzero, δ
1,µ+νw
perm , ν/|F|} as claimed.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 107

Zero knowledge. We refer to Section 3.8 for the zero-knowledge version of the HyperPlonk PIOP.

3.5 HyperPlonk+: HyperPlonk with Lookup Gates

This section illustrates how to integrate lookup gates into the HyperPlonk constraint system. Then

we present and analyze a Polynomial IOP protocol for the extended relation.

3.5.1 Constraint systems

The HyperPlonk+ indexed relation RPLONK+ is built on RPLONK (Definition 3.13). The difference

is that RPLONK+ further enables a set of non-algebraic constraints enforcing that some function over

the witness values belongs to a preprocessed table. We illustrate via a simple example. Suppose

we capture a fan-in-2 circuit with n addition/multiplication gates using relation RPLONK. We need

to further constrain that for a subset of gates, the sum of two input wires should be in the range

[0, . . . , B). What we can do is to set up a preprocessed table table = {0, 1, . . . , B} and a selector

qlk ∈ Fn so that for every i ∈ [n], qlk(i) = 1 if the i-th gate has a range-check, and qlk(i) = 0

otherwise. Then we prove a lookup relation that for all i ∈ [n], the value qlk(i) ·
(
w1(i) + w2(i)

)
is

in table, where w1(i), w2(i) are the first and the second input wire of gate i.

We generalize the idea above and enable enforcing arbitrary algebraic functions (over the selectors

and witnesses) to be in the table. Namely, the index further setups an algebraic functions flk. Each

constraint is of the form

flk (qlk(⟨0⟩, ⟨i⟩), . . . , qlk(⟨ℓlk − 1⟩, ⟨i⟩), w(⟨0⟩, ⟨i⟩), . . . , w(⟨ℓw − 1⟩, ⟨i⟩)) ∈ table

where ℓlk is the number of selectors, ℓw is the number of witness wires and ⟨i⟩ is the binary

representation of i. Note that the constraint in the previous paragraph is a special case where

flk = qlk(i) ·
(
w1(i) + w2(i)

)
. We formally define the relation below.

Definition 3.14 (HyperPlonk+ indexed relation). Let gp1 :=
(
F, ℓ, n, ℓw, ℓq, f

)
be the public param-

eters for relation RPLONK (Definition 3.13). Let gp2 := (ℓlk, flk) be the additional public parameters

where ℓlk = 2νlk is the number of lookup selectors and flk : Fℓlk+ℓw → F is an algebraic map. The

indexed relation RPLONK+ is the set of all triples

(i;x;w) = ((i1, i2); (p, [[w]]);w)

where i2 :=
(
table ∈ Fn−1, qlk ∈ F (≤1)

µ+νlk

)
such that

• (i1;x;w) ∈ RPLONK;

• there exists addr : Bµ → [1, 2µ) such that
(
table; [[g]]; (g, addr)

)
∈ RLOOKUP (Definition 3.11),

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 108

where g ∈ F (≤deg(flk))
µ is defined as

g(X) := flk (qlk(⟨0⟩νlk
,X), . . . , qlk(⟨ℓlk − 1⟩νlk

,X), w(⟨0⟩νw ,X), . . . , w(⟨ℓw − 1⟩νw ,X)) .

(3.14)

Remark 3.5.1 (Supporting vector lookups). We can generalize RPLONK+ to support vector lookups

where each “element” in the table is a vector rather than a single field element. Let k ∈ N be the

length of the vector. The lookup table is table ∈ Fk×(n−1); the lookup function flk : F2νlk+2νw → Fk

is an algebraic map that outputs k field elements.

Remark 3.5.2 (Supporting multiple tables). We can generalize RPLONK+ to support multiple

lookup tables. In particular, the index i2 can specify k > 1 lookup tables table1, . . . , tablek and k

lookup functions f
(1)
lk , . . . , f

(k)
lk ; and we require that all of the k lookup relations hold.

3.5.2 The PolyIOP protocol

Construction. The PIOP for RPLONK+ is a combination of the PIOP for RPLONK and the

PIOP for a lookup relation (Section 3.3.7). Let gp := (gp1, gp2) be the public parameters where

gp1 :=
(
F, ℓ, n, ℓw, ℓq, f

)
and gp2 := (ℓlk, flk). We denote dlk := deg(flk). For a tuple (i;x;w) =

((i1, i2); (p, [[w]]);w) where i2 :=
(
table ∈ Fn−1, qlk ∈ F (≤1)

µ+νlk

)
we describe the protocol in Figure 3.3.

Indexer. I(i1, i2 = (table, qlk)) calls the HyperPlonk PIOP indexer vpplonk ← Iplonk(i1), and
calls the Lookup PIOP indexer vpt ← Ilkup(table). The oracle output is vp := ([[qlk]], vpt, vpplonk).

The protocol. P(gp, i, p, w) and V(gp, p, vp) run the following protocol.

1. P sends V the witness oracle [[w]] where w ∈ F (≤1)
µ+νw

.

2. Run a HyperPlonk PIOP (Section 3.4.2) for (i1;x;w) ∈ RPLONK.

3. Run a lookup PIOP (Section 3.3.7) for
(
table; [[g]]

)
∈ L(RLOOKUP) where g ∈ F (≤dlk)

µ is as
defined in Equation 3.14.

Figure 3.3: PIOP for RPLONK+.

Theorem 3.11. Let gp := (gp1, gp2) be the public parameters, where gp1 :=
(
F, ℓ, n, ℓw, ℓq, f

)
and ℓw, ℓq = O(1) are some constants; gp2 := (ℓlk, flk) and ℓlk = O(1) is some constant. Let

d′ := max
(
deg(f),deg(flk)

)
and let g be the polynomial defined in Equation 3.14. The construction

in Figure 3.3 is a multivariate PolyIOP for relation RPLONK+ with soundness error O
(
2µ+d′µ

|F|
)
and

the following complexity:

• The prover time is tpgpplonk+ = tp
gp1
plonk + tpglkup = O

(
nd′ log2 d′

)
F-ops.

• The verifier time is tvgpplonk+ := tv
gp1
plonk + tvglkup = O(µ+ ℓ) F-ops.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 109

• The query complexity is qgpplonk+ = q
gp1
plonk+qglkup = 3µ+7+log ℓw, that is, 3µ+log ℓw univariate

oracle queries, 5 multilinear oracle queries, 1 query to the virtual polynomial f̃ , and 1 query

to the virtual polynomial g defined in Equation 3.14.

• The round complexity and the number of proof oracles is rcgpplonk+ = rc
gp1
plonk + rcglkup = 3µ+3+

log ℓw.

• The number of field elements sent by P is 3µ.

• The size of the proof oracles is O
(
n
)
; the size of the witness is nℓw.

Remark 3.5.3. Similar to Remark 3.4.2, there are 3 separate sumcheck PIOPs underlying the

HyperPlonk+ PIOP. By random linear combination, we can batch the 3 sumchecks into a single

one. The optimized protocol has query complexity µ + 7 + log ℓw, round complexity µ + 3 + log ℓw,

and the number of field elements sent by the prover is µ.

Remark 3.5.4. We emphasize that the PolyIOP for RPLONK+ naturally works for the more general

versions of RPLONK+ that involve vector lookups (Remark 3.5.1) or multiple tables (Remark 3.5.2).

Because we can transform the problem of building PIOPs for the more general relations to the problem

of building PIOPs for RPLONK+ by applying the randomization and domain separation techniques

in Section 4 of [GW20a].

Lemma 3.8. The PIOP in Figure 3.3 is perfectly complete.

Proof. For any
(
(i1, table, qlk); (p, [[w]]);w

)
∈ RPLONK+, by Definition 3.14, it holds that

• (i1;x;w) ∈ RPLONK, thus V passes the check in Step 2 as the HyperPlonk PIOP is complete;

•
(
table; [[g]]

)
∈ L(RLOOKUP), thus V passes the check in Step 3 as the lookup PIOP is complete.

In summary, the lemma holds as desired.

Lemma 3.9. Let gp := (gp1, gp2) be the public parameters. Let n = 2µ ∈ gp1 denote the number of

constraints. Let flk ∈ gp2 be the lookup gate map and set dlk := deg(flk). The PIOP in Figure 3.3

has soundness error

δgpplonk+ := max
{
δ
gp1
plonk, δ

dlk,µ
lkup

}
.

Proof. For any
(
(i1, table, qlk); (p, [[w]])

)
/∈ L(RPLONK+), that is,

(
(i1, table, qlk); (p, [[w]]);w

)
/∈

RPLONK, at least one of the following conditions holds:

•
(
i1;x;w

)
/∈ RPLONK;

•
(
table; [[g]]

)
/∈ L(RLOOKUP), where g ∈ F (≤dlk)

µ is as defined in Equation 3.14.

For the first case, the probability that V accepts in the HyperPlonk PIOP is at most δ
gp1
plonk; for the

second case, the probability that V passes the lookup check is at most δdlk,µ
lkup . Thus for every instance

not in L(RPLONK+), the probability that V accepts is at most max
(
δ
gp1
plonk, δ

dlk,µ
lkup

)
.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 110

Zero knowledge. We refer to Section 3.8 for the zero-knowledge version of the HyperPlonk+

PIOP.

3.6 Instantiation and evaluation

3.6.1 Implementation

We implement HyperPlonk as a library using about 5600 lines of RUST. Figure 3.4 highlights the

building blocks contributing to our HyperPlonk code base. Our backend is built on top of the

Arkworks [con22]. Specifically, we adopted the finite field, elliptic curve, and polynomial libraries

from this project. We then build our PIOP libraries, including our core zero and permutation checks,

and use merlin transcript [Val22] to turn it into a non-interactive protocol. We also implement a

multilinear KZG commitment scheme variant that is compatible with our batch-evaluation PIOP.

Our implementation is highly modular: one may switch between different elliptic curves, other

multilinear polynomial commitment schemes and various circuit frontends within our framework.

The current version of our code base has a few limitations, which do not affect the benchmarks

reported in this section. Firstly, it is built for benchmarking purposes with mock circuits, but we

aim to support Halo2 and Jellyfish arithmetization as frontends. Secondly, we are not yet supporting

lookup tables and thus HyperPlonk+.

ark-ec

ark-bls12-381

ark-ff ark-poly

mle

SumCheck/PermCheck

merlin

transcript

NI-multilinear-IOP

Halo2 Jellyfish

multilinear-KZG Arithmetization

Hyperplonk

Figure 3.4: Stack of libraries comprising HyperPlonk. The components in grey we implemented
ourselves. The arithmetization frontends have not yet been linked to the implementation.

3.6.2 Evaluation

We benchmark HyperPlonk on an AWS EC2 instance running Ubuntu 20.04. The server has 64 cores

(AMD EPYC 7R13 at 2.65GHz) and 128 GB of RAM. The hyperplonk benchmarks were run using

a rust implementation available online11. We utilize a multi-linear KZG commitment built using

11https://github.com/EspressoSystems/hyperplonk

https://github.com/EspressoSystems/hyperplonk

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 111

curve BLS12-381. If not otherwise indicated, we use the same custom gate as the Jellyfish library.

The gate has 5 inputs, 13 selectors, and degree 5.

Proof size and verification time. Our implementation is modeled after the unrolled and op-

timized Hyperplonk scheme described in Section 3.10. The proof size is 176 µ+ 1168 bytes. One

caveat is that we do not yet commit to the univariate polynomials in each round of the sum check.

This slightly increases the proof size. The verification time for µ = 20 is less than 20ms on a

consumer-grade laptop.

Cost breakdown. We present a cost breakdown of HyperPlonk’s prover cost. The breakdown is

measured on a consumer-grade laptop12. As we see in Figure 3.5a, the majority of the computation is

spent on committing and (batch) opening the commitment; the actual time spent on the information-

theoretic PIOPs (Perm Check and Circuit Check) is about 30%. The batch opening does not yet

take advantage of the fact that many evaluation points and polynomials are identical. This could

reduce the complexity of the resulting zero-check.

Figure 3.5b gives another breakdown. It shows that the majority of the time (61%) is spent on

multi-linear evaluations. This includes the operations performed within the sumcheck protocol. The

rest of the time is spent on elliptic curve multi-exponentiations. Batching zero-checks and improving

the batch-opening implementation could further reduce the number of MLE operations. We note

that both multi-exponentiations and sumchecks are highly parallelizable and hardware-friendly, thus

we expect further performance improvement on special-purpose hardware (e.g. GPUs).

It is also worth noting that HyperPlonk never requires the explicit multiplication of polynomials.

This enables high-degree custom gates for HyperPlonk.

40.6% Batch Open

14.2% Perm Check

17.3% Circuit Check

25.9% Commit witness

02.0% Rest

(a) In terms of building blocks

37.4% Multi-exp

61.0% MLE Operations

01.6% Rest

(b) In terms of computations

Figure 3.5: Cost breakdown for vanilla RPLONK with 220 constraints.

122021 Apple MacBook Pro with M1 chip

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 112

 10000

 100000

 1x10
6

 1x10
7

 1x10
8

 1x10
9

 10 12 14 16 18 20

t
i
m
e

(
u
s
)

log # gates

Multi-threading
 performance

1 thread
2 threads
4 threads
8 threads

16 threads
32 threads
64 threads

(a) Prover time vs. number of constraints for
different number of threads

 3x10
6

 3.5x10
6

 4x10
6

 4.5x10
6

 5x10
6

 5.5x10
6

 6x10
6

 0 5 10 15 20 25 30

t
i
m
e

(
m
s
)

degree d

qLw1 + qRw2 + qMw1
d-1

w2 + qC = 0

(b) Prover time vs. custom gate degree.

Figure 3.6

3.6.3 MultiThreading performance

A key advantage of HyperPlonk is that it does not rely on FFT algorithms that are less parallelizable.

Indeed, in Figure 3.6a we observe an almost linear improvement when num of threads is small. We

also observe that with low parallelization, the prover’s run time is linear in the number of gates.

For example, increase from a single thread to two threads, the prover time is reduced by 45% on

average. In contrast, from 32 to 64 threads, there is almost no additional speedup. We assume that

this is implementation dependent.

3.6.4 High degree gates

It has been shown in VeriZexe [Xio+22] that custom gates, even at degree 5, allow for significant

improvement of circuit size and prover time. For example, one may perform an elliptic curve group

addition with just two gates; while a naive version may require 10+ gates. The better expressibility

of high-degree gates enables VeriZexe to improve 9x of prover time over the previous state-of-the-art

[Bow+20].

However, in a univariate Plonk system, such as [GW20a; Pea+22], high-degree custom gates

increase the size of the required FFTs as well as the number of group operations. This limits their

utility as they get larger. In comparison, in HyperPlonk, high-degree only affects the number of

field operations. Our benchmark result in Figure 3.6b validates this observation and shows that the

prover time from a degree 2 gate to a degree 32 gate only increases by 30%. These more expressive

gates can significantly reduce the number of gates in the circuit which more than offsets the added

cost.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 113

3.6.5 Comparisons

We compare our scheme with both Jellyfish Plonk13, and Spartan [Set20]14. Jellyfish is a highly

optimized implementation of Plonk with lookup arguments. It is the state-of-the-art Plonk prove-

system that uses Arkworks as the backend. Spartan is a sumcheck based ZKP system. Spartan’s

statements are written in Rank-1-Constraint-Systems (RR1CS), which is simpler but less expressive.

Hyperplonk, Plonk, and Spartan are polynomial IOPs that can be combined with various poly-

nomial commitments. The commitment has a large impact on the performance of the proof system.

For sake of comparison, we ensure that all 3 systems use the same elliptic curve and the same im-

plementation. Concretely we use the Arkworks BLS12-381 implementation. Hyperplonk uses the

multi-linear KZG commitment, Jellyfish the univariate KZG commitment, and Spartan uses an in-

ner product argument [Boo+16; Bün+18; Wah+18]-based polynomial commitment. We refer to the

Spartan fork as Ark-Spartan to highlight the use of the Arkworks BLS12-381 backend.

Comparison by application. We have presented data points for a few typical applications in

Table 3.4. The proof systems are evaluated using mock circuits. The circuit sizes for both the

RPLONK+ (using the Jellyfish custom gate) and for the RR1CS arithmetization are taken from

references and demonstrate the advantages of (Hyper)Plonk. For example, a proof of knowledge

of exponent for a 256-bits elliptic curve group element requires 3315 RR1CS constraints [MSZ21],

while it reduces to 783 for RPLONK+[Xio+22]. Note that our HyperPlonk implementation does not

yet support lookups, but we estimate that the slowdown will only be minor and offset by further

optimizations.

Application RR1CS Ark-Spartan RPLONK+ Jellyfish HyperPlonk

3-to-1 Rescue Hash 288 [Aly+20] 422 ms 144 [Sys22] 40 ms 88 ms
PoK of Exponent 3315 [MSZ21] 902 ms 783 [MSZ21] 64 ms 105 ms
ZCash circuit 217 [Hop+22] 8.3 s 215 [Esp22] 0.8 s 0.6 s

Zexe’s recursive circuit 222 [Xio+22] 6 min 217 [Xio+22] 13.1 s 5.1 s
Rollup of 50 private tx 225 39 minb 220 [Sys22] 110 s 38.2 s

zkEVM circuita N/A N/A 227 1 hourb,c 25 minb,c

Table 3.4: Prover runtime of Hyperplonk vs. Spartan[Set20] and the Jellyfish Plonk implementation
for popular applications. Column 2 shows the number of RR1CS constraints for each application and
column 4 shows the corresponding number of constraints in HyperPlonk+/Ultraplonk. We emphasize
that the Zexe and the Rollup applications are using the BW6-761 curve because they need to use
two-chain curves. The rest of the applications are using the BLS12-381 curve.
a So far, there have been no approaches to express zkEVM as an R1CS circuit. Common approaches rely heavily on
lookup tables which require plonk+. b Estimations. c This assumes a linear scaling factor that is in favor of Jellyfish.
Note that we observe a super-linear growth for log degree from 20 to 23 in Jellyfish, while a sub-linear growth in
HyperPlonk.

13https://github.com/EspressoSystems/jellyfish/tree/hyperplonk-bench
14https://github.com/zhenfeizhang/ark-spartan

https://github.com/EspressoSystems/jellyfish/tree/hyperplonk-bench
https://github.com/zhenfeizhang/ark-spartan

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 114

Comparison by circuit size. We also compare HyperPlonk with Jellyfish and Ark-Spartan. We

run both the vanilla-gate version of HyperPlonk that supports just additions and multiplication gates

as well as the degree 5 Jellyfish gate. Note that n Jellyfish gates are significantly more expressive

than n vanilla or R1CS gates. We measure both the single-threaded performance in Table 3.5 and

the multi-threaded performance in Table 3.6. Our benchmark shows that multi-threaded HyperPlonk

outperforms Jellyfish starting from 214 constraints; the advantage grows when circuit size increases.

This is mainly because FFTs scale worse than multi-exponentiations.

HyperPlonk also has slightly better performance than Spartan. The difference is more pronounced

in the multi-threaded benchmark which is likely because the Ark-Spartan implementation does not

take full advantage of parallelism. We stress again that plonk+ is more expressive than RR1CS , and

thus a fair comparison should be over the same application rather than the same size of constraints.

Table 3.4 shows that HyperPlonk is 5 ∼ 60x faster than Spartan in those applications.

210 211 212 213 214 215 216 217 218 219 220

HP (Vanilla Gate) 0.22 0.4 0.7 1.2 2.2 4.1 7.8 14.6 28 53 103
HP (Jellyfish Gate) 0.33 0.6 1.1 1.9 3.6 6.8 13 24.5 49.5 95 185

Jellyfish Plonk 0.49 0.9 1.5 2.8 5.5 10.5 19.4 37.9 74 143 284
Ark-Spartan 0.95 1.6 2.5 4.4 6.4 12.1 20.8 38.7 69.2 135 223

Table 3.5: Single-thread prover’s performance (in seconds) for varying number of constraints under
different schemes.

210 211 212 213 214 215 216 217 218 219 220

HP (Vanilla Gate) 0.07 0.1 0.14 0.2 0.3 0.5 0.8 1.4 2.5 5.1 9.6
HP (Jellyfish Gate) 0.1 0.13 0.18 0.27 0.4 0.67 1.2 2 3.7 7.3 13.5

Jellyfish Plonk 0.07 0.1 0.15 0.25 0.46 0.78 1.4 2.7 5.5 10.8 22
Ark-Spartan 0.51 0.72 0.9 1.4 1.9 3.1 4.7 8.3 13.7 27 44

Table 3.6: 64-thread prover’s performance (in seconds) for varying number of constraints under
different schemes.

3.7 Orion+: a linear-time multilinear PCS with constant proof

size

Recently, Xie et al. [XZS22a] introduced a highly efficient multilinear polynomial commitment

scheme called Orion. The prover time is strictly linear, that is, O(2µ) field operations and hashes

where µ is the number of variables. For µ = 27, it takes only 115 seconds to commit to a polynomial

and compute an evaluation proof using a single thread on a consumer-grade desktop. The verifier

time and proof size is Oλ(µ
2), which also improves the state-of-the-art [BCG20; Gol+21]. However,

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 115

the concrete proof size is still unsatisfactory, e.g., for µ = 27, the proof size is 6 MBs. In this section,

we describe a variant of Orion PCS that enjoys similar proving complexity but has O(µ) proof size

and verifier time, with good constants. In particular, for security parameter λ = 128 and µ = 27,

the proof size is less than 10KBs, which is 600× smaller than Orion for µ = 27.

This section is organized as follows. We start by reviewing the linear-time PCS from tensor

product arguments [BCG20; Gol+21], which Orion builds upon, then we describe our techniques for

shrinking the proof size. Finally, we analyze the security and complexity of the construction.

Linear-time PCS from tensor-product argument [BCG20; Gol+21]. Bootle, Chiesa, and

Groth [BCG20] propose an elegant scheme for building PCS with strictly linear-time provers.

Golovnev et al. [Gol+21] later further simplify the scheme. Let f ∈ F (≤1)
µ be a multilinear poly-

nomial where fb ∈ F is the coefficient of Xb := Xb1
1 · · ·X

bµ
µ for every b ∈ Bµ. Denote by n = 2µ,

k = 2ν < 2µ and m = n/k, one can view the evaluation of f as a tensor product, that is,

f(X) = ⟨w, t0 ⊗ t1⟩ (3.15)

where w = (f⟨0⟩, . . . , f⟨n−1⟩), t0 =
(
X⟨0⟩,X⟨1⟩, . . . ,X⟨k−1⟩

)
and t1 =

(
X⟨0⟩,X⟨k⟩, . . . ,X⟨(m−1)·k⟩

)
.

Here ⟨i⟩ denotes the µ-bit binary representation of i. Let E : Fm → FM be a linear encoding scheme,

that is, a linear function whose image is a linear code (Definition 3.1). Golovnev et al. [Gol+21,

§4.2] construct a PCS scheme as follows:

• Commitment: To commit a multilinear polynomial f with coefficients w ∈ Fn, the prover

P interprets w as a k ×m matrix, namely w ∈ Fk×m, encodes w’s rows, and obtains matrix

W ∈ Fk×M such that W [i, :] = E(w[i, :]) for every i ∈ [k]. Then P computes a Merkle tree

commitment for each column of W and builds another Merkle tree T on top of the column

commitments. The polynomial commitment Cf is the Merkle root of T .

• Evaluation proof: To prove that f(z) = y for some point z ∈ Fµ and value y ∈ F, the prover
P translates z to vectors t0 ∈ Fk and t1 ∈ Fm as above and proves that ⟨w, t0 ⊗ t1⟩ = y (where

w ∈ Fk×m is the message encoded and committed in Cf). To do so, P does two things:

– Proximity check: The prover shows that the matrix W ∈ Fk×M committed by Cf is

close to k codewords. Specifically, the verifier sends a random vector r ∈ Fk, the prover

replies with a vector yr := r · w ∈ Fm which is the linear combination of w’s rows

according to r. The verifier checks that the encoding of yr, namely E(yr) ∈ FM , is close

to r ·W , the linear combination of W ’s rows. This implies that the k rows of W are all

close to codewords [Gol+21, §4.2].

– Consistency check: The prover shows that ⟨w, t0 ⊗ t1⟩ = y where w ∈ Fk×m is the

k error-decoded messages from W ∈ F committed in Cf . The scheme is similar to the

proximity check except that we replace the random vector r with t0. After receiving the

linearly combined vector y0 ∈ Fm, the verifier further checks that ⟨y0, t1⟩ = y.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 116

We describe the concrete PCS evaluation protocol below.

Protocol 1 (PCS evaluation [Gol+21]): The goal is to check that ⟨w, t0 ⊗ t1⟩ = y (where w ∈ Fk×m

is the message encoded and committed in Cf).

1. V sends a random vector r ∈ Fk.

2. P sends vector yr,y0 ∈ Fm where

yr =

k∑
i=1

ri ·w[i, :], and y0 =

k∑
i=1

t0,i ·w[i, :] ,

where w ∈ Fk×m is the message matrix being encoded and committed.

3. V sends P a random subset I ⊆ [M] with size |I| = Θ(λ).

4. P opens the entire columns {W [:, j]}j∈I using Merkle proofs, where W ∈ Fk×M is the row-wise

encoded matrix. That is, P outputs the column commitment hj for every column j ∈ I, and

provide the Merkle proof for hj w.r.t. to Merkle root Cf .

5. V checks that (i) the Merkle openings are correct w.r.t. Cf , and (ii) for all j ∈ I, it holds that

E(yr)j = ⟨r,W [:, j]⟩ and E(y0)j = ⟨t0,W [:, j]⟩ .

6. V checks that ⟨y0, t1⟩ = y.

Note that by sampling a subset I with size Θ(λ) and checking that r ·W , t0 ·W are consistent with

the encodings E(yr), E(y0) on set I, the verifier is confident that r ·W , t0 ·W are indeed close to the

encodings E(yr), E(y0) with high probability. By setting k =
√
n, the prover takes O(n) F-ops and

hashes; the verifier time and proof size are both Oλ(
√
n). Orion describes an elegant code-switching

scheme that reduces the proof size and verifier time down to Oλ(log
2(n)). However, the concrete

proof size is still large. Next, we describe a scheme that has much smaller proof.

Linear-time PCS with small proofs. Similar to Orion (and more generally, the proof composi-

tion technique [Boo+17; BCG20; Gol+21]), instead of letting the verifier check the correctness of yr,

y0 and the openings of the columns W [:, j]∀j ∈ I, the prover can compute another (succinct) outer

proof validating the correctness of yr,y0,W [:, j]. However, we need to minimize the outer proof’s

circuit complexity, which is non-trivial. Orion builds an efficient SNARK circuit that removes all of

the hashing gadgets, with the tradeoff of larger proof size. We describe a variant of their scheme

that minimizes the proof size without significantly increasing the circuit complexity.

Specifically, after receiving challenge vector r ∈ Fk, P instead sends V commitments Cr, C0 to

the messages yr,y0; after receiving V’s random subset I ⊂ [M], P computes a SNARK proof for the

following statement:

Statement 1 (PCS Eval verification):

• Witness: yr,y0 ∈ Fm, {W [:, j]}j∈I .

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 117

• Circuit statements:

– Cr, C0 are the commitments to yr, y0 respectively.

– For all j ∈ I, it holds that

∗ hj = H(W [:, j]) where H is a fast hashing scheme;

∗ E(yr)j = ⟨r,W [:, j]⟩ and E(y0)j = ⟨t0,W [:, j]⟩.

– ⟨y0, t1⟩ = y.

• Public output: {hj}j∈I , and Cr, C0.

Besides the SNARK proof, the prover also provides the openings of {hj}j∈I with respect to the

commitments Cf . Intuitively, the new protocol is “equivalent” to Protocol 1, because the SNARK

witness {W [:, j]}j∈I and yr,y0 are identical to those committed in Cf , Cr, C0 by the binding property

of the commitments; and the SNARK does all of the verifier checks. Unfortunately, the scheme has

the following drawbacks:

• Instantiating the commitments with Merkle trees leads to a large overhead on the proof size.

In particular, the proof contains |I| Merkle proofs, each with length O(log n). For 128-bit

security, we need to set |I| = 1568, and the proof size is at least 1 MBs for µ = 20.

• The random subset I varies for different evaluation instances. It is non-trivial to efficiently

lookup the witness {E(yr)j , E(y0)j}j∈I in the circuit if the set I is dynamic (i.e. we need an

efficient random access gadget).

• The circuit complexity is huge. In particular, the circuit is dominated by the commitments

to yr,y0 and the hash commitments to {W [:, j]}j∈I . This leads to 2m + k|I| hash gad-

gets in the circuit. Note that we can’t use algebraic hash functions like Rescue [Aly+20]

or Poseidon [Gra+21], which are circuit-friendly, but have slow running times. For µ = 26,

k = m =
√
n and 128-bit security (where |I| = 1568), this leads to 13 million hash gadgets

where each hash takes hundreds to thousands of constraints, which is unaffordable.

We resolve the above issues via the following observations.

First, a large portion of the multilinear PCS evaluation proof is Merkle opening paths. We can

shrink the proof size by replacing Merkle trees with multilinear PCS that enable efficient batch

openings (Section 3.3.8). Specifically, in the committing phase, after computing the hashes of W ’s

columns, instead of building another Merkle tree T of size M = O(n/k) and set the Merkle root as

the commitment, the prover can commit to the column hashes using a multilinear PCS (e.g. KZG).

Though the KZG committing is more expensive, the problem size has been reduced to O(n/k), thus for

sufficiently large k, the committing complexity is still approximately O(n) F-ops. A great advantage

is that the batch opening proof for {hj}j∈I consists of only O(log n) group/field elements, with good

constant. Even better, when instantiating the outer proof with HyperPlonk(+), the openings can

be batched with those in the outer SNARK and thus incur almost no extra cost in proof size.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 118

Second, with Plookup, we can efficiently simulate random access in arrays in the SNARK circuit.

For example, to extract witness {Yr,j = E(yr)j}j∈I , we can build an (online) table T where each

element of the table is a pair (i, E(yr)i) (1 ≤ i ≤M). Then for every j ∈ I, we build a lookup gate

checking that (j,Yr,j) is in the table T , thus guarantee that Yr,j is identical to E(yr)j . The circuit

description is now independent of the random set I and we only need to preprocess the circuit once

in the setup phase.

Third, with the help of Commit-and-Prove-SNARKs (CP-SNARK) [Cam+21; CFQ19; Ara+21],

there is no need to check the consistency between commitments Cr, C0 and yr,y0 in the circuit.

Instead, we can commit (yr,y0) to a multilinear commitment C, and build a CP-SNARK proof

showing that the vector underlying C is identical to the witness vector (yr,y0) in the circuit. We

further observe that C can be a part of the witness polynomials, which further removes the need of

an additional CP-SNARK proof.

After applying previous optimizations, the proof size is dominated by the |I| field elements

{hj}j∈I . We can altogether remove them by applying the CP-SNARK trick again. In particular,

since {hj}j∈I are both committed in the polynomial commitment Cf and the SNARK witness

commitment, it is sufficient to construct a CP-SNARK proving that they are consistent in the two

commitments with respect to set I. We refer to Section 3.3.8 for constructing CP-SNARK proofs

from multilinear commitments.

Since the bulk of verification work is delegated to the prover, there is no need to set k =
√
n.

Instead, we can set an appropriate k = Θ(λ/ log n) to minimize the outer circuit size. In particular,

the circuit is dominated by 2 linear encodings (of length n/k) and |I| hashes (of length k). If we

use vanilla HyperPlonk+ as the outer SNARK scheme and use Reinforced Concrete [Bar+21] as the

hashing scheme that has a similar running time to SHA-256, for µ = 30, k = 64 and 128-bit security

(where |I| = 1568), the circuit complexity is only ≈ 226 constraints. And we can expect the running

time of the outer proof to be Oλ(n).

The resulting multilinear polynomial commitment scheme is shown in Figure 3.7.

Remark 3.7.1 (CP-SNARKs instantiation.). We can use the algorithm in Section 3.3.8 to in-

stantiate the CP-SNARK in Figure 3.7 from any multilinear PIOP-based SNARKs with minimal

overhead. First, we can split the witness polynomial into two parts: one includes the vector (yr,y0)

while the other includes the rest. The witness polynomial commitment to (yr,y0) is essentially the

commitment Cpy in Figure 3.7, so that we don’t need to additionally commit to (yr,y0) and provide

a proof. We emphasize that Cpy is sent before the prover receives the challenge set I, which is

essential for knowledge soundness.

Second, the CP-proof generation between the multilinear commitment Cf and the SNARK witness

polynomial commitment (w.r.t. set I) consists of a sumcheck with O(logm) rounds and 2 PCS

openings (one for Cf and one for the witness polynomial). If we instantiate the SNARK with

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 119

HyperPlonk+, we can batch the proving of the CP-proof and the SNARK proof so that the CP-proof

adds no extra cost to the proof size beyond the original SNARK proof.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 120

Building blocks: A CP-SNARK scheme OSNARK; an (extractable) polynomial commitment

scheme PC; a hash commitment scheme HCom; and a linear encoding scheme E with minimum

distance δ.

Setup(1λ, µ∗)→ gp: Given security parameter λ, upper bound µ∗ on the number of variables, set

m∗ so that the running time of OSNARK (and PC) is Oλ(2
µ∗
) for circuit size (and degree) m∗. Run

gpo ← OSNARK.Setup(1λ,m∗), gppc ← PC.Setup(1λ,m∗), run the indexing phase of OSNARK for

the circuit statement in Figure 3.8 and obtain (vpo, ppo). Output gp := (gpo, gppc, vpo, ppo).

Commit(gp; f) → Cf : Given polynomial f ∈ F (≤1)
µ with coefficients w = (f⟨0⟩, . . . , f⟨n−1⟩), set

m = n/k so that the running time of OSNARK (and PC) is Oλ(2
µ) for circuit size (and degree) m.

Interpret w as a k ×m matrix (i.e. w ∈ Fk×m):

• Compute matrix W ∈ Fk×M such that W [i, :] = E(w[i, :])∀i ∈ [k]. Here E : Fm → FM is the

linear encoding.

• For each column j ∈ [M], compute hash commitment hj ← HCom(W [:, j]), where W [:, j] ∈
Fk is the j-th column of W .

• Let ph be the polynomial that interpolates vector (hj)j∈[M]. Output commitment Cf ←
PC.Commit(gppc, ph).

Open(gp, Cf , f): Given polynomial f ∈ F (≤1)
µ with coefficients w ∈ Fk×m, run the committing

algorithm and check if the output is consistent with Cf .

Eval(gp;Cf , z, y; f): Given public parameter gp, point z ∈ Fµ and commitment Cf to polynomial

f ∈ F (≤1)
µ with coefficients w ∈ Fk×m, transform z to vectors t0 ∈ Fk and t1 ∈ Fm as in

Equation (3.15) such that f(z) = ⟨w, t0 ⊗ t1⟩. The prover P and the verifier V run the following

protocol:

1. V sends P a random vector r ∈ Fk.

2. Define vectors

yr =

k∑
i=1

ri ·w[i, :], y0 =

k∑
i=1

t0,i ·w[i, :] .

Let pr be the polynomial that interpolates (yr,y0). P sends V commitment Cpy ←
PC.Commit(gppc, py).

3. V sends a random subset I ⊆ [M] with size t := −λ
log(1−δ) .

4. P sends V, a CP-SNARK proof πo showing that

• the statement in Figure 3.8 holds true;

• the SNARK witness (yr,y0) is identical to the vector committed in Cpy ;

• the SNARK witness (hj)j∈I is consistent with that in the polynomial commitment Cf

w.r.t. set I.

5. V checks πo with public input (α, r, y, z), and commitments Cpy , Cf .

Figure 3.7: The multilinear polynomial commitment scheme.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 121

Witness:

• messages yr,y0 ∈ Fm, encodings Yr,Y0 ∈ FM , and evaluation vectors t0 ∈ Fk, t1 ∈ Fm;

• the columns of W in subset I, that is, W ′ = (W [:, j])j∈I ∈ Fk×|I|;

• the values of Yr,Y0 in subset I, that is Y′
r = (Yr,j)j∈I ∈ F|I|, and Y′

0 = (Y0,j)j∈I ∈ F|I|;

• column hashes h = (h1, . . . , h|I|) ∈ F|I|.

Public input:

• challenge vector r ∈ Fk;

• random subset I ⊆ [M];

• evaluation point z ∈ Fµ and claimed evaluation y ∈ F.
Circuit statements:

• t0, t1 is the correct transformation from z as in Equation (3.15).

• Yr = E(yr) and Y0 = E(y0).

• For i = 1 . . . |I|, let ji ∈ I be the i-th element in I, it holds that

– Y′
r,i = Yr,ji , that is, (ji,Y

′
r,i) is in the table {(k,Yr,k)}k∈[M], and

– Y′
0,i = Y0,ji , that is, (ji,Y

′
0,i) is in the table {(k,Y0,k)}k∈[M].

• For i = 1 . . . |I|, it holds that

– hi = HCom(W ′[:, i]) where HCom : Fk → F is the hash commitment scheme;

– Y′
r,i = ⟨r,W ′[:, i]⟩ and Y′

0,i = ⟨t0,W ′[:, i]⟩.

• ⟨y0, t1⟩ = y.

Figure 3.8: The outer SNARK circuit statement. The circuit configuration is independent of the
random set I.

Theorem 3.12. The multilinear polynomial commitment scheme in Figure 3.7 is correct and bind-

ing. The PCS evaluation protocol is knowledge-sound.

Proof. Correctness and binding. Correctness holds obviously by inspection of the protocol. We

prove the binding property by contradiction. Suppose an adversary finds a commitment Cf and two

polynomials f1, f2 with different coefficients w1,w2 ∈ Fk×m such that Cf can open to both w1 and

w2. There are two cases:

1. Cf can open to two different vectors of column hash commitments h1,h2 ∈ FM , which con-

tradicts the binding property of the PCS PC.

2. Cf binds to a single vector h ∈ FM , but encodingw1,w2 lead to two different encoded matrices

W1,W2 ∈ Fk×M . This contradicts the collision resistance of the hash function.

In summary, the binding property holds.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 122

Knowledge soundness. We use a similar technique as in [Gol+21] that enables extracting poly-

nomials even if the linear code E is not efficiently decodable. For any adversary A that can pass the

PCS evaluation check with probability more than ϵ, the extractor ExtA works as follows:

1. Run A and obtain commitment Cf , point z ∈ Fµ, and evaluation y ∈ F. Run the extractors

of the PCS and the hash function to recover the matrix W ′ ∈ Fk×M underlying Cf . Abort if

the extraction fails.

2. Set S ← ∅, repeat the following procedures until |S| ≥ k or the number of r being sampled is

more than 8k/ϵ:

• Sample and send A a random vector r←$ Fk.

• Obtain the PCS commitments Cpy . Use the PCS extractor to extract the vector (yr,y0) ∈
F2m. Abort and rerun with another r if the extraction fails.

• Sample and send A a random subset I ⊆ [M].

• Obtain the CP-SNARK proof πo. Add the pair (r,yr) into set S if the proof correctly

verifies.

3. If |S| ≥ k and the random vectors {r} in S are linearly independent, run the Gaussian elimi-

nation algorithm to extract the witness w from S = {(r,yr)}, otherwise abort.

The extractor runs in polynomial time as Step 2 runs in polynomial time, and the extractor executes

Step 2 for at most 8k/ϵ times. Next, we argue that the extractor’s success probability is non-

negligible. Since A succeeds with probability at least ϵ, with probability at least ϵ/2 over the choice

of (Cf , z, y), the adversary passes the PCS evaluation protocol Eval(gp;Cf , z, y) with probability at

least ϵ/2. We denote by B the event that the above happens.

Conditioned on event B, we first argue that with high probability, Ext can add k pairs to S,

and the r’s in S are linearly-independent. Note that for each run of PCS evaluation (with a freshly

sampled vector r), the probability that the extractor adds a pair to S is at least ϵ/2−negl(λ) ≥ ϵ/4.

This is because A passes the checks with probability at least ϵ/2, and thus with probability at

least ϵ/2− negl(λ), A passes all the checks, and the PCS extractor suceeds. Therefore, by Chernoff

bound, the probability that Ext adds k pairs to S within 8k/ϵ runs of Step 2 is at least 1−exp(−k/8).
Moreover, as noted by Lemma 2 of [Gol+21], the random vectors {r} in set S are linearly independent

with overwhelming probability.

Next, still conditioned on event B, we argue that with probability 1 − negl(λ), there exists a

coefficient matrix w ∈ Fk×m that is consistent with the commitment Cf , such that ⟨w, t0 ⊗ t1⟩ = y

(i.e. the evaluation is correct) and yr =
∑k

i=1 ri ·wi for every pair (r,yr) in set S. Let W ′ ∈ Fk×M

be the matrix extracted by Ext at Step 1, note that W ′ commits to Cf . Consider each run of PCS

evaluation where the extractor adds a pair (r,yr) to S. Since Cf , Cpy are binding, and the SNARK

proofs verify, it holds that w.h.p over the choice of I, E(yr) is close to
∑k

i=1 ri ·W ′
i . By Lemma 1

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 123

in [Gol+21], w.h.p. over the choice of r, it also holds that W ′
i is close to a codeword for all i ∈ [k].

Therefore, there exists a matrix w ∈ Fk×m such that (i) W ′
i is close to E(wi) for all i ∈ [k], and

(ii) yr =
∑k

i=1 ri ·wi. Moreover, by the uniqueness of encoding, w is identical for every challenge

vector r in set S. Similarly, we can argue that y0 =
∑k

i=1 t0,i ·wi and thus ⟨w, t0 ⊗ t1⟩ = y.

Given the above, we conclude that with high probability, it holds that (i) Ext adds k pairs to

S where the r’s in S are linearly independent; and (ii) there exists w ∈ Fk×m that is consistent

with Cf and ⟨w, t0 ⊗ t1⟩ = y and yr =
∑k

i=1 ri · wi for every pair (r,yr) in set S. In summary,

conditioned on event B, the extractor can extract the coefficient matrix w via Gaussian elimination

with high probability, which completes the proof.

Theorem 3.13. When instantiating the outer SNARK with HyperPlonk+, the multilinear PCS

in Figure 3.7 has committing and evaluation opening complexity Oλ(n); the proof size and verifier

time is Oλ(log n).

Proof. Fix k = Θ(λ/ log n) and let m = n/k. The committing algorithm takes O(n) F-ops to encode

the coefficients w ∈ Fk×m to W ∈ Fk×M , O(n) hashes to compute the column commitments, and an

O(m)-sized MSM to commit to the vector of column commitments. The total complexity is Oλ(n).

The evaluation proving mainly consists of the following steps:

• compute a HyperPlonk+ SNARK proof for the statement in Figure 3.8;

• compute a CP-SNARK proof between the commitment Cf and the SNARK witness polynomial

commitment with respect to a set I.

By the linear algorithm specified in Section 3.3.8, the CP-SNARK proof generation is dominated

by a multi-group-exponentiations with size s, where s is the circuit size; similarly, the HyperPlonk+

SNARK proving is also dominated by a few multi-group-exponentiations with size s. Next, we

prove that the outer circuit complexity is s = O(m), Hence the evaluation opening complexity is

also Oλ(n).

Lemma 3.10. The number of constraints in the circuit in Figure 3.8 is O(m) + |H| ·O(kλ), where

|H| is the number of constraints for a hash instance.

Proof. The circuit for computing t0, t1 from z takes O(k) and O(m) constraints, respectively; the

circuit for encoding yr, y0 takesO(m) constraints; the extraction ofY′
r,Y

′
0 from {E(yr)j , E(y0)}j∈I ,

takes 2|I| lookup gates; the computation of Y′
r, Y

′
0 takes O(k|I|) constraints; the computation of

y takes O(m) constraints; the computation of hashes {hi} takes k|I| = O(kλ) hash gadgets as

|I| = Θ(λ), thus the number of constraints is O(m) + |H| ·O(kλ).

The evaluation verifier checks the the CP-SNARK proof πo which takes time Oλ(log n).

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 124

The evaluation proof consists of a single CP-SNARK proof πo. As noted by Remark 3.7.1, the

proof size is no more than that of a single HyperPlonk+ proof for circuit size s = O(m). In summary,

the proof size is Oλ(log n).

Remark 3.7.2. We stress that the CP-SNARK proving time (between Cf and the SNARK witness)

for set I is independent of the size of I, as the complexity of the special batching algorithm in Sec-

tion 3.3.8 is independent of the number of evaluations. This is highly important because |I| can be

as large as thousands in practice.

Remark 3.7.3. If we instantiate the linear code with the generalized Spielman code proposed

in [XZS22a], and instantiate the outer SNARK with vanilla HyperPlonk+, for 128-bit security and

µ = 30, the outer circuit size is approximately 226, thus the proof is less than 10 KBs.

Remark 3.7.4. In practice, to minimize the outer circuit complexity, we choose k such that 2 ·
ℓ(n/k) = k|I| · |H|, where ℓ(n/k) is the circuit size for encoding a message with length n/k. Note

that |I| = 1568 for 128-bit security and |I| = 980 for 80-bit security.

Remark 3.7.5. In contrast with Orion, Orion+ requires using a pairing-friendly field. We leave the

construction of linear-time PCS with succinct proofs/verifier that supports arbitrary fields as future

work.

3.8 Zero Knowledge PIOPs and zk-SNARKs

In this Section, we describe a compiler that transforms a class of sumcheck-based multivariate

PolyIOPs into ones that are zero knowledge. The general framework consists of two parts. The first

part is to mask the oracle polynomials so that their oracle query answers do not reveal the informa-

tion of the original polynomial; moreover, we require that the masking do not change evaluations

over the boolean hypercube, thus the correctness of PIOPs still holds. The second part is making

the underlying sumcheck PIOPs zero knowledge. For this we reuse the ZK sumchecks described

in [Xie+19].

We note that in contrast with univariate PIOPs, there is a subtlety in compiling multivariate

PIOPs: the zero-knowledge property is hard to achieve if the set of query points is highly structural.

E.g., suppose f is 2-variate and there are are 4 query points (r1, r2), (r1, r1), (r2, r1), (r2, r2). Though

all of the 4 points are distinct, each dimension has at least 2 points that share the same value. This

makes the adversary much easier to cancel out the masking randomness and obtain a correlation

between the evaluations of f on the 4 points. We resolve the issue by restricting the set of query

points to be less structured. In particular, we require that there is at least one dimension where each

point has a distinct value. We also slightly modify the underlying sumcheck protocols to satisfy the

restriction while the soundness is not affected.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 125

The Section is organized as follows. We define zero knowledge PIOPs in Section 3.8.1. In Sec-

tion 3.8.2, we describe a scheme masking the multivariate polynomials. Section 3.8.3 reviews the

ZK sumchecks in [Xie+19]. We describe the ZK compiler for PIOPs in Section 3.8.4 and explain

how to obtain a zk-SNARK from a zk-PIOP and a PCS in Section 3.8.5.

3.8.1 Definition

We follow [Chi+20] and define the (honest verifier) zero-knowledge property of PIOPs. Since the

provers in sumcheck PIOPs also send field elements, we slightly adapt the definition in [Chi+20].

Definition 3.15. A PIOP ⟨P,V⟩ has perfect zero-knowledge with query bound t and query checker

C if there is a PPT simulator S such that for every field F, index i, instance x, witness w, and

every (t, C)-admissable verifier V∗, the following transcripts are identically distributed:

View (P(F, i;x;w),V∗) ≈ SV
∗
(F, i;x) .

Here the view consists of V∗’s randomness, the non-oracle messages sent by P, and the list of answers

to V∗’s oracle queries. A verifier is (t, C)-admissible if it makes no more than t queries, and each

query is accepted by the checker C. We say that ⟨P,V⟩ is honest-verifier-zero-knowlege (HVZK) if

there is a simulator for V.

3.8.2 Polynomial masking

Definition 3.16. A randomized algorithm msk is a (t, C, µ)-masking if

1. for every d ∈ N and every polynomial f ∈ F (≤d)
µ , the masked polynomial f∗ ←$ msk(f, t, C)

does not change evaluations over the boolean hypercube Bµ;

2. for every d ∈ N and every polynomials f ∈ F (≤d)
µ , and every list of queries q := (q1, . . . , qt)

that is accepted by the checker C, let f∗ ←$ msk(f, t, C). It holds that
(
f∗(q1), . . . , f

∗(qt)
)
is

uniformly distributed over Ft.

Lemma 3.11. There is a (t, Cℓ, µ)-masking algorithm msk(f, t, ℓ) for every µ, t ∈ N and ℓ ∈ [µ],

where checker Cℓ accepts a list of queries (q1, . . . , qt) if and only if bi,ℓ /∈ {0, 1, b1,ℓ, . . . , bi−1,ℓ} for

every query qi := (bi,1, . . . , bi,µ) ∈ Fµ (1 ≤ i ≤ t). For any f ∈ F (≤d)
µ and ℓ ∈ [µ], the degree of the

masked polynomial f∗ ← msk(f, t, ℓ) is max(d, t+ 1).

Proof. Given a polynomial f ∈ F (≤d)
µ , query bound t, and checker Cℓ, the algorithm does follow:

• Sample a univariate polynomial R(X) := c0 + c1X + . . . ct−1X
t−1 where c0, . . . , ct−1 ←$ F.

• Output f∗ := f + Z(Xℓ) ·R(Xℓ), where Z(Xℓ) := Xℓ · (1−Xℓ).

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 126

It is clear that f∗ has degree max(d, t + 1); f∗ does not change f ’s evaluations over Bµ as Z

evaluates to zero over Bµ. Next, we argue that f∗ :=
(
f∗(q1), . . . , f

∗(qt)
)
∈ Ft is uniformly random.

Denote query qi := (bi,1, . . . , bi,µ) (1 ≤ i ≤ t), we define R to be

R :=
(
Z(b1,ℓ) ·R(b1,ℓ), . . . , Z(bt,ℓ) ·R(bt,ℓ)

)
.

Since the queries satisfy bi,ℓ /∈ {0, 1} for every i ∈ [t], it holds that zi := Z(bi,ℓ) are non-zero and thus

invertible. Moreover, since R is a random univariate polynomial with degree t−1 and {b1,ℓ, . . . , bt,ℓ}
are distinct, it holds that {R(b1,ℓ), . . . , R(bt,ℓ)} are uniformly random. Therefore R is uniformly

random, and thus f∗ = f + q is also uniformly random where f :=
(
f(q1), . . . , f(qt)

)
.

3.8.3 Zero knowledge SumCheck

Construction. Xie et al. [Xie+19] described an efficient ZK compiler for sumchecks. For reader’s

convenience, we adapt Construction 1 in [Xie+19] to a PIOP.

Zero knowledge SumCheck PIOP ⟨P,V⟩:

• Input: polynomial f ∈ F (≤d)
µ and claimed sum H ∈ F.

• P samples a polynomial g := c0+g1(x1)+ · · ·+gµ(xµ) where gi(xi) := ci,1xi+ · · ·+ ci,dx
d
i and

ci,1, . . . , ci,d are uniformly random. P sends oracle g and a claimed sum G :=
∑

x∈Bµ
g(x).

• V sends a challenge ρ←$ F∗.

• P and V run SumCheck PIOP (Section 3.3.1) over polynomial f+ρg and claimed sum H+ρG.

• V queries g and f at point r where r ∈ Fµ is the vector of sumcheck’s challenges. V then

checks that f(r) + ρg(r) is consistent with the last message of the sumcheck.

The completeness of the ZK PIOP holds obviously, it was shown in [CFS17] that the PIOP also

preserves soundness. The zero knowledge property is proved in [Xie+19] and we state it below.

Lemma 3.12 (Theorem 3 of [Xie+19]). For every field F, verifier V∗ and multivariate polynomial

f ∈ F (≤d)
µ , there is a simulator Ssum(F, µ, d,H) that perfectly simulates P’s oracle answers except

for f(r). Here H :=
∑

x∈Bµ
f(x).

3.8.4 Zero knowledge compilation for SumCheck-based PIOPs

A general description to the sumcheck-based PIOPs. The multivariate PIOPs considered

in this paper can all be adapted to the following format.

General sumcheck-based PIOPs:

1. Both P and V have oracle access to a public multilinear polynomial p0 ∈ F (≤1)
µ0 .

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 127

2. For every i ∈ [k1], P sends a multilinear polynomial pi ∈ F (≤1)
µi , and V sends some random

challenges. pi is a function of p0, . . . , pi−1 and verifier’s previous challenges.

3. P and V sequentially run k2 sumcheck PIOPs. The i-th (1 ≤ i ≤ k2) sumcheck is over a

polynomial fi := hi(g1, . . . , gci) ∈ F
(≤di)
νi , where hi is public information and each multilinear

polynomial gj ∈ F (≤1)
νi (1 ≤ j ≤ ci) is gj := v|XS=b for some boolean vector b and some

v ∈ {p1, . . . , pk1
}, that is, gj is a partial polynomial of v where the variables in S are set to b.

4. For every i ∈ [k2], V queries a random point ri ∈ Fνi to the oracle fi, where ri are the round

challenges in the i-th sumcheck. V then checks that fi(ri) is consistent with the last message

in the i-th sumcheck.

5. For every i ∈ [k3], the verifier queries a point ci ∈ Fµji to an oracle pji (0 ≤ ji ≤ k1) and

checks that the evaluation is yi. We emphasize that the evaluations {yi}i∈[k3] can be efficiently

and deterministically derived from {ci, ji}i∈[k3] and the public oracle p0.

We note that the above description captures all of the multivariate PIOPs in this paper because

• for the case where P sends an oracle f := h(g1, . . . , gc) ∈ F (≤d)
µ for d > 1, we can instead let

P send g1, . . . , gc ∈ F (≤1)
µ as h is public information;

• for the case where P sends multiple multilinear oracles in a round, we can merge the polynomials

into a single polynomial;

• the PIOPs we consider are all finally reduced to one or more sumcheck PIOPs.

Construction. We present a generic framework that transforms any (sumcheck-based) multi-

variate PIOPs into zero knowledge PIOPs. For a PIOP ⟨P,V⟩, let
(
{pi}i∈[0,k1], {fi}i∈[k2]

)
be the

polynomials denoted in the above protocol. For every i ∈ [k1], let ti ∈ N be the number of pi’s partial

polynomials that appear in the sumcheck polynomials f1, . . . , fk2 , and let t∗ := max{ti}i∈[k1]. For

every i ∈ [k1], we assume that there exists index ℓi ∈ [µi] such that for every pi’s partial polynomial

v|XS=b that appears in some sumcheck (where pi’s variables in set S are boolean), it holds that ℓi is

not in the set S. Let msk be the masking algorithm described in Lemma 3.11. The compiled zero

knowledge PIOP ⟨P̂, V̂⟩ works as follows.

The ZK-compiler for sumcheck-based PIOPs:

1. For every i ∈ [k1], P̂ sends an oracle [[p∗i]] where p∗i ←$ msk(pi, ti, ℓi). V̂ sends the same

challenges as V does.

2. P̂ and V̂ sequentially run k2 zero knowledge sumcheck PIOPs (Section 3.8.3). The i-th (1 ≤
i ≤ k2) sumcheck is over the polynomial f∗

i := hi(g
∗
1 , . . . , g

∗
ci) ∈ F

(≤dit
∗)

νi , where hi is the same

as in ⟨P,V⟩; each g∗j ∈ F
(≤t∗)
νi (1 ≤ j ≤ ci) is g

∗
j := v∗|XS=b for some boolean vector b and some

v∗ ∈ {p∗1, . . . , p∗k1
}.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 128

3. For every i ∈ [k2], V̂ queries a random point ri ∈ Fνi to the oracle fi, where ri are the

round challenges in the i-th ZK sumcheck. V̂ then checks that fi(ri) is consistent with the

last message of the i-th ZK sumcheck. We emphasize a slight modification over the original

PIOP ⟨P,V⟩: in the i-th sumcheck, V̂ samples each round challenge ri,j (1 ≤ j ≤ µi) in the

set F \ {0, 1, r1,j , . . . , ri−1,j} rather than in F.

4. V̂ simulates V, i.e., for all i ∈ [k3], queries points ci to oracle p∗ji and checks the evaluation.

Theorem 3.14. Given any PIOP ⟨P,V⟩ for some relation over the boolean hypercube, the compiled

PIOP ⟨P̂, V̂⟩ is HVZK. Moreover, ⟨P̂, V̂⟩ preserves perfect completeness and negligible soundness.

Proof. Completeness. Completeness holds because the sumcheck relations are over boolean hy-

percubes and the masked polynomials’ evaluations do not change over the boolean hypercubes by

the property of msk.

Soundness. Compared to the sumchecks in ⟨P,V⟩, the following changes of the sumchecks in ⟨P̂, V̂⟩
affect soundness error:

1. The degrees of the sumcheck polynomials are increased by a factor t∗.

2. The challenge space of j-th round in the i-th (1 ≤ i ≤ k2) sumcheck is F\{0, 1, r1,j , . . . , ri−1,j}
rather than F.

3. The sumcheck protocols are replaced with ZK sumchecks.

Since t∗ and k2 are constants and ZK sumchecks preserves soundness [CFS17], the compiled protocol

preserves negligible soundness.

HVZK. We describe the simulator as follows.

The simulator S V̂(F, i;x):

1. Honestly generate the public polynomial p0 ∈ F (≤1)
µ0 .

2. Pick arbitrary polynomial {p̃i}i∈[k1] conditioned on that the sumcheck relations over f1, . . . , fk2

hold. Send V̂ polynomials {p̃∗i }i∈[k1] where p̃∗i ←$ msk(p̃i, ti, ℓi), obtain from V̂ the challenges

in the first k1 rounds.

3. Run the next k2 ZK sumcheck PIOPs using p0 and the sampled polynomials {p̃∗i }i∈[k1].

4. For every i ∈ [k2], answer query f∗
i (ri) honestly using {p̃∗i }i∈[k1].

5. For every i ∈ [k3], answer query ci with value yi, where {yi}i∈[k3] are deterministically derived

from {ci, ji}i∈[k3] and the public polynomial p0.

Next we show that S V̂(F, i;x) ≈ View(P̂(F, i;x;w), V̂). We set H0 := S V̂(F, i;x) and consider

following hybrid games.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 129

• Game H1: identical to H0 except that step 3 is replaced with the ZK sumcheck simulator’s

output. We note that H1 ≈ H0 by the ZK property of the ZK sumchecks.

• Game H2: identical to H1 except that the queries in step 4 are answered with random values.

(Note that f∗
i (ri)’s answer is a random value consistent with the last message of the i-th

sumcheck.) We argue that H2 ≈ H1: for every i ∈ [k1], the number of queries to oracle

p̃∗i ← msk(p̃i, ti, ℓi) is no more than ti and the ℓi-th element in each of the query point are

distinct and non-boolean, by Lemma 3.11, the answers to the queries are uniformly random.

• Game H3: identical to H2 except that the polynomials {p̃i}i∈[k1] in step 2 are replaced with

{pi}i∈[k1]. Note that H3 ≈ H2 as the verifier’s view does not change at all.

• Game H4 := View(P̂(F, i;x;w), V̂): identical to H3 except that the queries in step 4 are an-

swered honestly and the ZK sumchecks are run honestly using p0 and the sampled polynomials

{p∗i }i∈[k1]. With similar arguments (for H1 and H2) we have H4 ≈ H3.

Given above, it holds that S V̂(F, i;x) ≈ View(P̂(F, i;x;w), V̂) and we complete the proof.

3.8.5 zk-SNARKs from PIOPs

In the ZK PIOP of Section 3.8.4, the masked polynomials sent by the prover are with the form

f∗ := f + Z(xℓ) ·R(xℓ) where f ∈ F (≤1)
µ is multilinear and Z(xℓ) := xℓ · (1− xℓ) is univariate and

with degree t+ 1. It is shown in Theorem 10 of [Bon+21] that every additive and m-spanning PCS

can be compiled into a hiding PCS with a zero-knowledge Eval protocol, where m-spanning means

that commitments to polynomials of degree at most m can already generate the commitment space

G. Thus we can construct a hiding PCS for f∗ with ZK evaluations from any additive and spanning

polynomial commitment schemes (e.g., KZG and FRI). In particular, one instantiation is to set the

commitment of f∗ to be (C1, C2) ∈ G where C1 is the multilinear commitment to f and C2 is the

univariate commitment to Z(X) ·R(X), then apply the ZK transformation in [Bon+21].

By combining Theorem 3.1 and Theorem 3.14 we obtain the following corollary.

Corollary 3.15. Given any (non-hiding) additive and spanning polynomial commitment schemes,

we can transform any (non-ZK) sumcheck-based PIOP (Section 3.8.4) for relation R to a zk-SNARK

for R.

3.9 The FRI-based multilinear polynomial commitment

In this Section, we construct a simple multilinear polynomial commitment scheme (PCS) from

FRI [Ben+18a]. Along the way, we also show how to generically transform a univariate PCS to a

multilinear PCS using the tensor-product univariate PIOP from [Boo+22b], which might be of

independent interest. We note that Virgo [Zha+20, §3] describes another scheme constructing

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 130

multilinear PCS from FRI. The main idea is to build the evaluation opening proof from a univariate

sumcheck [Ben+19b], which in turn uses FRI. However, the naive scheme incurs linear-time overhead

for the verifier. Virgo [Zha+20, §3] resolves the issue by delegating the verifier computation to the

prover. To this end, the prover needs to compute another GKR proof convincing that the linear-time

verifier will accept the proof. This complicates the scheme and adds additional concrete overhead

on prover time and proof size.

We refer to [Ben+18a; KPV19] and [Hab22a] for background of FRI low-degree testing and the

approach to build univariate PCS from FRI. We note that the FRI-based univariate PCS supports

batch opening. The evaluation opening protocol for multiple points on multiple polynomials invokes

only a single call to the FRI protocol. Below we present a generic approach to transforming any

univariate PCS into a multilinear PCS.

Generic transformation from univariate PCS to multilinear PCS. Bootle et al. built a

univariate PIOP for the tensor-product relation in Section 5 of [Boo+22b]. The tensor-product

relation (x,w) =
(
(F, n, z1, . . . , zµ, y), f

)
states that f ∈ Fn satisfies that ⟨f ,⊗j(1, zj)⟩ = y, where

⟨·, ·⟩ denotes an inner product, and ⊗ denotes a tensor product. The PIOP naturally implies an

algorithm that transforms univariate polynomial commitment schemes to multilinear polynomial

commitment schemes.

• The commitment to a multilinear polynomial f̃ with monomial coefficients, f is the commit-

ment to a univariate polynomial f with the same coefficients.

• To open f̃ at point (z1, . . . , zµ) that evaluates y, the prover and the verifier runs the univariate

PIOP for the relation (x,w) =
(
(F, n, z1, . . . , zµ, y), f

)
, which reduces to a batch evaluation on

a set of µ+ 1 univariate polynomials.

We provide the concrete construction below. Let PCu = (Setup,Commit,BatchOpen,BatchVfy) be a

univariate PCS, we construct a multilinear PCS PCm as follows.

• PCm.Setup(1λ, µ) → (ck, vk). On input security parameter λ and the number of variables µ,

output PCu.Setup(1
λ, n) where n = 2µ.

• PCm.Commit(ck, f̃)→ c. On input committer key ck, multilinear polynomial f̃ with coefficients

f ∈ Fn, output PCu.Commit(ck, f) where f has the same coefficients as f .

• PCm.Open(ck, f̃ , z, y)→ π. On input committer key ck, multilinear polynomial f̃ , point z ∈ Fµ

and evaluation y ∈ F, the prover computes the proof as follows. Let f0(X) := f(X) be the

committed univariate polynomial that has the same coefficients as f̃ , consider the following

PIOP for the tensor-product relation (x,w) =
(
(F, n, z, y), f

)
:

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 131

– The prover sends the verifier univariate polynomials f1, . . . , fµ such that for all i ∈ [µ],

fi(X) = gi−1(X) + zi · hi−1(X) ,

where gi−1, hi−1 satisfies that fi−1(X) = gi−1(X
2) +X · hi−1(X

2).

– The verifier samples a random challenge β ←$ F× (where F× is a multiplicative subgroup

of F), and queries the oracles to obtain evaluations {ai, bi, ci}i∈{0,...,µ} such that

ai := fi(β), bi := fi(−β), ci := fi+1(β
2) .

Note that we skip fµ+1(β
2) and set cµ := y.

– The verifier checks that for all i ∈ {0, . . . , µ},

ci =
ai + bi

2
+ zi ·

ai − bi
2β

.

The opening proof π comprises (i) the univariate commitments to f1, . . . , fµ, (ii) the evaluations

{ai, bi, ci}i∈{0,...,µ}, and (iii) the batch opening proof for polynomials (f0, f1, . . . , fµ) at points

(β,−β, β2), where the random challenge β is derived via the Fiat-Shamir transform.

• PCm.Vfy(vk, c, z, y, π) ∈ {0, 1}. On input verifier key vk, commitment c, point z, evaluation

y, and proof π, parse π to commitments (c1, . . . , cµ), evaluations evals, and the batch opening

proof π∗. Derive random challenge β via the Fiat-Shamir transform, perform the verification

check in the above PIOP, and run PCu.BatchVfy(vk, (c, c1, . . . , cµ), (β,−β, β2), evals, π∗).

Efficiency. We emphasize that when instantiated PCu with the FRI-based PCS, the multilinear

polynomial commitment scheme has approximately the same complexity as that in the univariate

setting. In particular, the committing phase takes only a Merkle root computation with tree depth

log(n); the opening phase takes (i) µ Merkle commitment computation where the i-th (1 ≤ i ≤ µ)

Merkle tree is with size 2µ−i, and (ii) a univariate PCS batch evaluation protocol that is simply a

single call to the FRI protocol.

3.10 Unrolled and optimized Hyperplonk

In Figure 3.9 and Figure 3.10, we present an optimized and batched version of HyperPlonk. The

protocol batches the zerochecks and additionally batches all evaluations using RBATCH. Moreover,

the sumcheck has complexity proportional to 2µ rather than 2µ+νw where νw is the logarithm of the

number of wires.

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 132

Proof size analysis of the compiled protocol. We analyze the concrete proof size of the opti-

mized PIOP. We analyze the proof size after compilation, i.e., where the prover sends commitments

and performs evaluation proofs. The prover sends

1. ℓw + 2 of µ-variate multilinear polynomial commitments (ℓw for the witness and 2 for the

product polynomial),

2. µ of degree max(d−2, ℓw−1) univariate polynomial commitments and 2µ claimed evaluations

(in the first batched sumcheck),

3. 8 + 2 · ℓw + ℓq claimed multilinear evaluations,

4. 1 univariate evaluation of a batched univariate polynomial,

5. 1 multilinear evaluation of a batched multilinear polynomial, and

6. 2 · (µ+ ⌈log2(8 + 2 · ℓw + ℓq)⌉) field elements for the sumcheck in the PIOP of RBATCH.

For KZG-based commitments, the proof size is 2 + ℓw + µ G1 elements and 4µ+ 10 + 2 · ℓw + ℓq +

2⌈log2(8 + 2 · ℓw + ℓq)⌉ field elements. For the case where ℓw = ℓq = 3, using BLS12-381, where G1

elements are 48 bytes and field elements are 32 bytes the proof size becomes 176 · µ + 1168 bytes.

For µ = 20, this is only 4688 bytes.

Indexer. The indexer I on an input circuit C calls the permutation indexer Iperm(σ): ([[sid]], [[sσ]]) ←
Iperm(σ) and computes the selector polynomial q ∈ F (≤1)

µ+νq
. Let ℓw = 2νw be the number of wires, denote

by
Sσ :=

(
[[sσ(⟨0⟩νw ,X)]], [[sσ(⟨1⟩νw ,X)]], . . . , [[sσ(⟨ℓw − 1⟩νw ,X)]]

)
the lists of partial polynomials of sσ ∈ F (≤1)

µ+νw
. The indexer outputs ([[q]],Sσ).

We note that for all i ∈ [0, 2µ+νw), sid ∈ F (≤1)
µ+νw

evaluates to i at point ⟨i⟩µ+νw ∈ Bµ+νw (where ⟨i⟩µ+νw

denotes µ + νw-bit binary encoding of i). Since multilinear extension is unique, it holds that sid(X) =∑
i∈[µ+νw] 2

i−1 ·Xi and thus one can evaluate sid at any points in time O(µ+νw). Hence, there is no need

for the indexer to output oracle [[sid]].

Figure 3.9: The indexer of the optimized PIOP for RPLONK.

3.10.1 Using only one sumcheck

The protocol described in Figure 3.10 has two sumchecks. The latter is the result of the batch-

opening protocol (Section 3.3.8). The precise evaluations that are being batched, are

• 1 + ℓw of W (ℓw from the batched sumcheck, one to check the outputs)

• 3 of ṽ(0,X) and 4 of ṽ(1,X) from the product check

• ℓq of q (one per selector)

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 133

• ℓw of Sσ from the product check.

Note that most of these polynomials are evaluated at the same point. The point is exactly the

sumcheck challenges. The only divergence is the evaluation of ṽ(0,X) and ṽ(1,X).

CHAPTER 3. HYPERPLONK: A PROOF SYSTEM FOR THE ZKEVM 134

P(gp, i, p, w) and V(gp, p, [[q]],Sσ) run the following protocol.

1. P sends V the witness oracles W :=
(
[[w0]], [[w1]], . . . , [[wℓw−1]]

)
where wi := w(⟨i⟩νw ,X) is the ith

(0 ≤ i < ℓw) partial polynomial of the witness polynomial w ∈ F (≤1)
µ+νw

.

2. V sends input challenge rIO ←$ Fν , R1
MSET challenge γ and R2

MSET challenges β.

3. P computes the product polynomial ṽ ∈ F (≤1)
µ+1 from W,Sσ, sid and the challenges β, γ (See Sec-

tion 3.3.3), where for all x ∈ Bµ,

ṽ(0,x) =
∏

i∈[0,ℓw)

Wi(x) + β · sid(⟨i⟩νw ,x) + γ

Wi(x) + βSσ,i(x) + γ
.

Here Wi,Sσ,i denotes the ith polynomial in W,Sσ respectively. P then sends oracles
[[ṽ(0,X)]], [[ṽ(1,X)]] to V.

4. Verifier sends challenges α1, α2 to batch three zerochecks, one resulting from the gate identity
(see Section 3.4.2) and two from the productcheck (see Section 3.3.3). The two zerocheck virtual

polynomials Q1(X) ∈ F (≤2)
µ , Q2(X) ∈ F (≤ℓw+1)

µ for the productcheck are Q1(X) := ṽ(1,X) −
ṽ(X, 0)ṽ(X, 1) and

Q2(X) :=
∏

i∈[0,ℓw)

(Wi(X) + β · sid(⟨i⟩νw ,X) + γ)− ṽ(0,X)
∏

i∈[0,ℓw)

(Wi(X) + βSσ,i(X) + γ) .

Note that ṽ(X, 0), ṽ(X, 1) can be simulated given the oracle accesses to [[ṽ(0,X)]], [[ṽ(1,X)]], be-
cause for all b ∈ {0, 1}, ṽ(X, b) = (1−X1) · ṽ(0,X2, . . . ,Xµ, b) +X1 · ṽ(1,X2, . . . ,Xµ, b).

5. V send zerocheck challenge rZ ←$ Fµ

6. P and V run sumcheck resulting from batched zerocheck. The sumcheck is of size µ and has degree
max(d+ 1, ℓw + 2). In each round, the prover sends an oracle to the univariate round polynomial
as well as the claimed evaluation. The verifier delays querying the oracles. Similarly, in the last
round, the verifier receives the claimed evaluations of all the multilinear polynomials. There are
8 + 2 · ℓw + ℓq total evaluations:

• 1 + ℓw of W (ℓw from the batched sumcheck, one to check the outputs)

• 3 of ṽ(0,X) and 4 of ṽ(1,X) from the product check

• ℓq of q (one per selector)

• ℓw of Sσ from the product check (there is no need to query sid as V can efficiently evaluate
it).

7. V uses the claimed evaluations to verify all previous protocols.

8. P and V run the univariate batch-opening algorithm from [Bon+21] to reduce all the round poly-
nomial queries to one.

9. P and V run RBATCH on all evaluations using a degree 2, µ+⌈log2(8+2 ·ℓw+ℓq)⌉ round sum-check.
In the protocol, the prover directly transmits the round polynomial using 2 field elements. The
verifier can compute the third from the claimed sum.

Figure 3.10: Optimized PIOP for RPLONK.

Chapter 4

Verifiable Delay Functions for

Ecological Consensus

4.1 Introduction

Consider the problem of running a verifiable lottery using a randomness beacon, a concept first

described by Rabin [Rab83] as an ideal service that regularly publishes random values which no

party can predict or manipulate. A classic approach is to apply an extractor function to a public

entropy source, such as stock prices [CH10]. Stock prices are believed to be difficult to predict for a

passive observer, but an active adversary could manipulate prices to bias the lottery. For example, a

high-frequency trader might slightly alter the closing price of a stock by executing (or not executing)

a few transactions immediately before the market closes.

Suppose the extractor takes only a single bit per asset (e.g. whether the stock finished up or

down for the day) and suppose the adversary is capable of changing this bit for k different assets

using last-second trades. The attacker could read the prices of the assets it cannot control, quickly

simulate 2k potential lottery outcomes based on different combinations of the k outcomes it can

control, and then manipulate the market to ensure its preferred lottery outcome occurs.

One solution is to add a delay function after extraction, making it slow to compute the beacon

outcome from an input of raw stock prices. With a delay function of say, one hour, by the time the

adversary simulates the outcome of any potential manipulation strategy, the market will be closed

and prices finalized, making it too late to launch an attack. This suggests the key security property

for a delay function: it should be infeasible for an adversary to distinguish the function’s output from

random in less than a specified amount of wall-clock time, even given a potentially large number of

parallel processors.

A trivial delay function can be built by iterating a cryptographic hash function. For example, it

135

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 136

is reasonable to assume it is infeasible to compute 240 iterations of SHA-256 in a matter of seconds,

even using specialized hardware. However, a lottery participant wishing to verify the output of

this delay function must repeat the computation in its entirety (which might take many hours on a

personal computer). Ideally, we would like to design a delay function which any observer can quickly

verify was computed correctly.

Defining delay functions. In this paper we formalize the requirements for a verifiable delay

function (VDF) and provide the first constructions which meet these requirements. A VDF consists

of a triple of algorithms: Setup, Eval, and Verify. Setup(λ, t) takes a security parameter λ and

delay parameter t and outputs public parameters pp (which fix the domain and range of the VDF

and may include other information necessary to compute or verify it). Eval(pp, x) takes an input

x from the domain and outputs a value y in the range and (optionally) a short proof π. Finally,

Verify(pp, x, y, π) efficiently verifies that y is the correct output on x. Crucially, for every input x

there should be a unique output y that will verify. Informally, a VDF scheme should satisfy the

following properties:

− sequential : honest parties can compute (y, π) ← Eval(pp, x) in t sequential steps, while no

parallel-machine adversary with a polynomial number of processors can distinguish the output

y from random in significantly fewer steps.

− efficiently verifiable: We prefer Verify to be as fast as possible for honest parties to compute;

we require it to take total time O(polylog(t)).

− uniq ue: for all inputs x, it is difficulty to find a y for which Verify(pp, x, y, π) = Yes, but

y ̸= Eval(pp, x).

A VDF should remain secure even in the face of an attacker able to perform polynomially bounded

pre-computation.

Some VDFs may also offer additional useful properties:

− decodable: A VDF is decodable if there exists a decoding algorithm Dec such that (Eval,Dec)

form a lossless encoding scheme. A lossless encoding scheme is a pair of algorithms (Enc,Dec)

where Enc : X → Y and Dec : Y → X such that Dec(Enc(x)) = x for all x ∈ X. We say

that a VDF is efficiently decodable if it is decodable and Dec is efficient. In this case, Eval

need not include a proof as Dec itself can be used to verify the output. There are many

different kinds of encoding schemes with different properties, including compression schemes,

error correcting codes, ciphers, etc. Of course any VDF can be turned in a trivial encoding

scheme by appending the input x to the output, however this would not have any interesting

properties as an encoding scheme. In Section 4.2, we will describe one interesting application

of an encoding scheme that is both an efficiently invertible ideal cipher and a VDF. The

application is to proofs-of-replication.

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 137

− incremental : a single set of public parameters pp supports multiple hardness parameters t.

The number of steps used to compute y is specified in the proof, instead of being fixed during

Setup. The main benefit of incremental VDFs over a simple chaining of VDFs to increase the

delay is a reduced aggregate proof size. This is particularly useful for applications of VDFs to

computational time-stamping or blockchain consensus.

Classic slow functions Time-lock puzzles [RSW96] are similar to VDFs in that they involve

computing an inherently sequential function. An elegant solution uses repeated squaring in an

RivShaAdl78 group as a time-lock puzzle. However, time-lock puzzles are not required to be univer-

sally verifiable and in all known constructions the verifier uses its secret state to prepare each puzzle

and verify the results. VDFs, by contrast, may require an initial trusted setup but then must be

usable on any randomly chosen input.

Another construction for a slow function dating to Dwork and Naor [DN93] is extracting modular

square roots. Given a challenge x ∈ Zp (with p ≡ 3 (mod 4)), computing y =
√
x = x

p+1
4 (mod p)

can be efficiently verified by checking that y2 = x (mod p). There is no known algorithm for

computing modular exponentiation which is sublinear in the bit-length of the exponent. However,

the difficulty of puzzles is limited to t = O(log p) as the exponent can be reduced modulo p − 1

before computation, requiring the use of a very large prime p to produce a difficult puzzle. While

it was not originally proposed for its sequential nature, it has subsequently been considered as such

several times [JM11; LW15]. In particular, Lenstra and Wesolowski [LW15] proposed chaining a

series of such puzzles together in a construction called Sloth, with lotteries as a specific motivation.

Sloth is best characterized as a time-asymmetric encoding, offering a trade-off in practice between

computation and inversion (verification), and thus can be viewed as a pseudo-VDF. However, it

does not meet our asymptotic definition of a VDF because it does not offer asymptotically efficient

verification: the t-bit modular exponentiation can be computed in parallel time t, whereas the output

(a t-bit number) requires Ω(t) time simply to read, and therefore verification cannot run in total

time polylog/(t). We give a more complete overview of related work in Section 4.8.

Our contributions: In addition to providing the first formal definitions of VDFs, we contribute

the following candidate constructions and techniques:

1. A theoretical VDF can be constructed using incrementally verifiable computation [Val08]

(IVC), in which a proof of correctness for a computation of length t can be computed in parallel

to the computation with only polylog(t) processors. We prove security of this theoretical VDF

using IVC as a black box. IVC can be constructed from succinct non-interactive arguments of

knowledge (SNARKs) under a suitable extractor complexity assumption [Bit+13a]. We also

present a simpler construction based only on verifiable computation (Section 4.5), which works

if the delay parameter T is a-priori known.

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 138

2. We propose a construction based on injective polynomials over algebraic sets that cannot be

inverted faster than computing polynomial GCDs. Computing polynomial GCD is sequential

in the degree d of the polynomials on machines with fewer than O(d2) processors. We propose

a candidate construction of time-asymmetric encodings from a particular family of permutation

polynomials over finite fields [GM97]. This construction is asymptotically a strict improvement

on Sloth, and to the best of our knowledge is the first encoding offering an exponential time

gap between evaluation and inversion. We call this a weak VDF because it requires the honest

Eval to use greater than polylog(t) parallelism to run in parallel time t (the delay parameter).

3. In Section 4.7 we describe a practical efficiency boost to construSNARKss from IVC using

time-asymmetric encodings as the underlying sequential computation, offering up to a 7,000

fold improvement (in the SNARK efficiency) over naive hash chains. In this construction the

SNARK proof is only used to boost the efficiency of verification as the output (y, π) of Eval

on an input x can also be verified directly without π by computing the inverse of y, which is

still faster than computing y from x.

4.2 Applications

Before giving precise definitions and describing our constructions, we first informally sketch several

important applications of VDFs.

Randomness beacons. VDFs are useful for constructing randomness beacons from sources such

as stock prices [CH10] or proof-of-work blockchains (e.g. Bitcoin, Ethereum) [BCG15; PW16;

BGZ16]. Proof-of-work blockchains include randomly sampled solutions to computational puzzles

that network participants (called miners) continually find and publish for monetary rewards. Un-

derpinning the security of proof-of-work blockchains is the strong belief that these solutions have

high computational min-entropy. However, similar to potential manipulation of asset prices by high-

frequency traders, powerful miners could potentially manipulate the beacon result by refusing to

post blocks which produce an unfavorable beacon output.

Again, this attack is only feasible if the beacon can be computed quickly, as each block is fixed to

a specific predecessor and will become “stale” if not published. If a VDF with a suitably long delay

is used to compute the beacon, miners will not be able to determine the beacon output from a given

block before it becomes stale. More specifically, given the desired delay parameter t, the public pa-

rameters pp = (ek, vk)←$ Setup(1λ, t) are posted on the blockchain, then given a block b the beacon

value is determined to be r where (r, π) = Eval(ek, b), and anyone can verify correctness by running

Verify(vk, b, r, π). The security of this construction, and in particular the length of delay parameter

which would be sufficient to prevent attacks, remains an informal conjecture due to the lack of a

complete game-theoretic model capturing miner incentives in Nakamoto-style consensus protocols.

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 139

We refer the reader to [BCG15; PW16; BGZ16] for proposed models for blockchain manipulation.

Note that most formal models for Nakamoto-style consensus such as that of Garay et al. [GKL15]

do not capture miners with external incentives such as profiting from lottery manipulation.

Another approach for constructing beacons derives randomness from a collection of participants,

such as all participants in a lottery [GS98; LW15]. The simplest paradigm is “commit-and-reveal”

paradigm where n parties submit commitments to random values r1, ..., rn in an initial phase and

subsequently reveal their commitments, at which point the beacon output is computed as r =
⊕

i ri.

The problem with this approach is that a malicious adversary (possibly controlling a number of

parties) might manipulate the outcome by refusing to open its commitment after seeing the other

revealed values, forcing a protocol restart. Lenstra and Wesolowski proposed a solution to this

problem (called “Unicorn”[LW15]) using a delay function: instead of using commitments, each

participant posts their ri directly and seed = H(r1, . . . , rn) is passed through a VDF. The output

of Eval is then posted and can be efficiently verified. The final beacon outcome is the hash of the

output of Eval. With a sufficiently long delay parameter (longer than the time period during which

values may be submitted), even the last party to publish their ri cannot predict what its impact

will be on the final beacon outcome. The beacon is unpredictable even to an adversary who controls

n−1 of the participating parties. It has linear communication complexity and uses only two rounds.

This stands in contrast to coin-tossing beacons which use verifiable secret sharing and are at best

resistant to an adversary who controls a minority of the nodes [Ran; Syt+17; CD17]. These beacons

also use super-linear communication and require multiple rounds of interaction. In the two party

setting there are tight bounds that an r-round coin-flipping protocol can be biased with O(1/r) bias

[MNS16]. The “Unicorn” construction circumvents these bounds by assuming semi-synchronous

communication, i.e. there exists a bound to how long an adversary can delay messages.

Resource-efficient blockchains. Amid growing concerns over the long-term sustainability of

proof-of-work blockchains like Bitcoin, which consume a large (and growing) amount of energy, there

has been concerted effort to develop resource-efficient blockchains in which miners invest an upfront

capital expenditure which can then be re-used for mining. Examples include proof-of-stake [KN;

Mic16; Kia+17; Dav+18; BPS16], proof-of-space [Par+18], and proof-of-storage [Mil+14; Fila].

However, resource-efficient mining suffers from costless simulation attacks. Intuitively, since mining

is not computationally expensive, miners can attempt to produce many separate forks easily.

One method to counter simulation attacks is to use a randomness beacon to select new leaders

at regular intervals, with the probability of becoming a leader biased by the quality of proofs (i.e.

amount of stake, space, etc) submitted by miners. A number of existing blockchains already construct

beacons from tools such as verifiable random functions, verifiable secret sharing, or deterministic

threshold signatures [Kia+17; Dav+18; CD17; Dfi]. However, the security of these beacons requires

a non-colluding honest majority; with a VDF-based lottery as described above this can potentially

be improved to participation of any honest party.

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 140

A second approach, proposed by Cohen [Coh17], is to combine proofs-of-resources with incre-

mental VDFs and use the product of resources proved and delay induced as a measure of blockchain

quality. This requires a proof-of-resource which is costly to initialize (such as certain types of proof-

of-space). This is important such that the resources are committed to the blockchain and cannot be

used for other purposes. A miner controllingN units of total resources can initialize a proof π demon-

strating control over these N units. Further assume that the proof is non-malleable and that in each

epoch there is a common random challenge c, e.g. a block found in the previous epoch, and let H be

a random oracle available to everyone. In each epoch, the miner finds τ = min1≤i≤N{H(c, π, i)} and
computes a VDF on input c with a delay proportional to τ . The first miner to successfully compute

the VDF can broadcast their block successfully. Note that this process mimics the random delay to

find a Bitcoin block (weighted by the amount of resources controlled by each miner), but without

each miner running a large parallel computation.

Proof of replication. Another promising application of VDFs is proofs of replication, a special

type of proof of data storage which requires the prover to dedicate unique storage even if the data

is available from another source. For instance, this could be used to prove that a number of replicas

of the same file are being stored. Classic proofs of retrievability [JK07] are typically defined in a

private-key client/server setting, where the server proves to the client that it can retrieve the client’s

(private) data, which the client verifies using a private key.

Instead, the goal of a proof of replication [Arm+16; Fila; Filb] is to verify that a given server

is storing a unique replica of some data which may be publicly available. An equivalent concept to

proof-of-replication was first introduced by Sergio Demian Lerner in 2014 under the name “proof of

unique blockchain storage” [Ler14]. Lerner proposed using time-asymmetric encodings to apply a

slow transformation to a file using a unique identifier as a key. During a challenge-response protocol,

a verifier periodically challenges the server for randomly sampled blocks of the uniquely encoded

file. The basic idea is that the server should fail to respond quickly enough if it has deleted the

encoding. Verifying that the received blocks of the encoding are correct is fast in comparison due

to the time-asymmetry of the encoding. Lerner proposed using a Pohlig-Hellman cipher, using the

permutation x3 on Z∗
p, which has asymmetry roughly equivalent to modular square roots. Armknecht

et al. [Arm+16] proposed a similar protocol in the private verifier model using RivShaAdl78 time-

lock puzzles. The verification of this protocol may be outsourced, but is still less transparent as it

fundamentally requires a designated private-key verifier per file.

Efficiently decodable VDFs can be used to improve Lerner’s publicly verifiable and transparent

construction by using the VDF as the time-asymmetric encoding. As VDFs achieve an exponential

gap between parallel-time computation and verification they would improve the challenge-response

protocol by reducing the frequency of polling. The frequency needs to be set such that the server

cannot delete and recompute the encoding between challenges. Technically, the security property we

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 141

need the VDF to satisfy is that a stateless adversary running in parallel time less than T cannot pre-

dict any component of the output on any given input, which is stronger than the plain sequentiality

requirement of a VDF. A formal way to capture this requirement is to model the VDF as an ideal

delay cipher [Fis18], namely as an oracle that implements an ideal cipher and takes T sequential

steps to respond to queries on any point.

We review briefly the construction, now based on VDFs. The replicator is given an input file,

a unique replicator identifier id, and public parameters pp ←$ Setup(1λ, t), and computes a slow

encoding of the file using the VDF cipher. This takes sequential time T to derive. In more detail,

the encoding is computed by breaking the file into b-bit blocks B1, . . . , Bn and storing y1, ..., yn where

(yi,⊥) = Eval(pp, Bi⊕H(id||i)) where H is a collision-resistant hash function H : {0, 1}∗ → {0, 1}b.
To verify that the replicator has stored this unique copy, a verifier can query an encoded block yi

(which must be returned in significantly less time than it is feasible to compute Eval). The verifier

can quickly decode this response and check it for correctness, proving that the replicator has stored

(or can quickly retrieve from somewhere) an encoding of this block which is unique to the identifier

id. If the unique block encoding yi has not been stored, the VDF ensures that it cannot be re-

computed quickly enough to fool the verifier, even given access to Bi . The verifier can query for

as many blocks as desired; each query has a 1− ρ chance of exposing a cheating prover that is only

storing a fraction ρ of the encoded blocks.

More generally, if the inputs B1, .., Bn are fixed and known to the verifier then this construction

is also a proof of space [Dzi+15]. A proof of space is an interactive protocol in which the prover

can provide a compact proof that it is persistently using Ω(N) space. This construction is in fact

a tight PoS, meaning that it requires an honest prover to use N space and for any ϵ > 0 it can be

tuned so that an adversary who uses (1− ϵ)N space will be caught with overwhelming probability.

A proof-of-replication is a special kind of proof of space that is quite delicate to formally define and

has been developed further in followup work [Fis18].

Computational timestamping. All known proof-of-stake systems are vulnerable to long-range

forks due to post-hoc stakeholder misbehavior [KN; Mic16; Kia+17; BPS16]. In proof-of-stake pro-

tocols, at any given time the current stakeholders in the system are given voting power proportionate

to their stake in the system. An honest majority (or supermajority) is assumed because the current

stakeholders are CCS:KumBen14d to keep the system running correctly. However, after stakeholders

have divested they no longer have this incentive. Once the majority (eq. supermajority) of stake-

holders from a point in time in the past are divested, they can collude (or sell their key material to

an attacker) in order to create a long alternate history of the system up until the present. Current

protocols typically assume this is prevented through an external timestamping mechanism which

can prove to users that the genuine history of the system is much older.

Incremental VDFs can provide computational evidence that a given version of the state’s system

is older (and therefore genuine) by proving that a long-running VDF computation has been performed

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 142

on the genuine history just after the point of divergence with the fraudulent history. This potentially

enables detecting long-range forks without relying on external timestamping mechanisms.

We note however that this application of VDFs is fragile as it requires precise bounds on the

attacker’s computation speed. For other applications (such as randomness beacons) it may be

acceptable if the adversary can speed up VDF evaluation by a factor of 10 using faster hardware; a

higher t can be chosen until even the adversary cannot manipulate the beacon even with a hardware

speedup. For computational timestamping, a 10-fold speedup would be a serious problem: once

the fraudulent history is more than one-tenth as old as the genuine history, an attacker can fool

participants into believing the fraudulent history is actually older than the genuine one.

4.3 Model and definitions

We now define VDFs more precisely. In what follows we say that an algorithm runs in parallel time

t with p processors if it can be implemented on a PRAM machine with p parallel processors running

in time t. We say total time (eq. sequential time) to refer to the time needed for computation on a

single processor.

Definition 4.1. A VDF V = (Setup,Eval,Verify) is a triple of algorithms as follows:

• Setup(λ, t) → pp = (ek, vk) is a randomized algorithm that takes a security parameter λ and

a desired puzzle difficulty t and produces public parameters pp that consists of an evaluation

key ek and a verification key vk. We require Setup to be polynomial-time in λ. By convention,

the public parameters specify an input space X and an output space Y. We assume that X is

efficiently sampleable. Setup might need secret randomness, leading to a scheme requiring a

trusted setup. For meaningful security, the puzzle difficulty t is restricted to be sub-exponentially

sized in λ.

• Eval(ek, x)→ (y, π) takes an input x ∈ X and produces an output y ∈ Y and a (possibly empty)

proof π. Eval may use random bits to generate the proof π but not to compute y. For all pp

generated by Setup(λ, t) and all x ∈ X , algorithm Eval(ek, x) must run in parallel time t with

poly(λ)/(log(t), λ) processors.

• Verify(vk, x, y, π) → {Yes,No} is a deterministic algorithm takes an input, output and proof

and outputs Yes or No. Algorithm Verify must run in total time polynomial in log t and λ.

Notice that Verify is much faster than Eval.

Additionally V must satisfy Correctness (Definition 4.2), Soundness (Definition 4.3), and Sequen-

tiality (Definition 4.4).

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 143

Correctness and Soundness Every output of Eval must be accepted by Verify. We guarantee

that the output y for an input x is unique because Eval evaluates a deterministic function on X .
Note that we do not require the proof π to be unique, but we do require that the proof is sound and

that a verifier cannot be convinced that some different output is the correct VDF outcome. More

formally,

Definition 4.2 (Correctness). A VDF V is correct if for all λ, t, parameters (ek, vk)←$ Setup(λ, t),

and all x ∈ X , if (y, π)←$ Eval(ek, x) then Verify(vk, x, y, π) = Yes.

We also require that for no input x can an adversary get a verifier to accept an incorrect VDF

output.

Definition 4.3 (Soundness). A VDF is sound if for all algorithms A that run in time O (poly(λ)/(t, λ))

Pr

[
Verify(vk, x, y, π) = Yes

y ̸= Eval(ek, x)

∣∣∣∣∣ pp = (ek, vk)←$ Setup(λ, t)

(x, y, π)←$A(λ, pp, t)

]
≤ negl(λ)(λ)

Size restriction on t Asymptotically t must be subexponential in λ. The reason for this is that

the adversary needs to be able to run in time at least t (Eval requires this), and if t is exponential

in λ then the adversary might be able to break the underlying computational security assumptions

that underpin both the soundness as well as the sequentiality of the VDF, which we will formalize

next.

Parallelism in Eval The practical implication of allowing more parallelism in Eval is that “honest”

evaluators may be required to have this much parallelism in order to complete the challenge in

time t. The sequentiality security argument will compare an adversary’s advantage to this optimal

implementation of Eval. Constructions of V DF s that do not require any parallelism to evaluate

Eval in the optimal number of sequential steps are obviously superior. However, it is unlikely that

such constructions exist (without trusted hardware). Even computing an iterated hash function

or modular exponentiation (used for time-lock puzzles) could be computed faster by parallelizing

the hash function or modular arithmetic. In fact, for an decodable V DF it is necessary that

|Y| > poly(λ)/(t), and thus the challenge inputs to Eval have size poly(λ)/ log(t). Therefore, in our

definition we allow algorithm Eval up to poly(λ)/ log(t) parallelism.

4.3.1 VDF Security

We call the security property needed for a VDF scheme σ-sequentiality. Essentially, we require that

no adversary is able to compute an output for Eval on a random challenge in parallel time σ(t) < t,

even with up to “many” parallel processors and after a potentially large amount of pre-computation.

It is critical to bound the adversary’s allowed parallelism, and we incorporate this into the definition.

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 144

Note that for an efficiently decodable VDF, an adversary with |Y| processors can always compute

outputs in o(t) parallel time by simultaneously trying all possible outputs in Y. This means that for

efficiently decodable VDFs it is necessary that |Y| > poly(λ)/(t), and cannot achieve σ-sequentiality

against an adversary with greater than |Y| processors.
We define the following sequentiality game applied to an adversary A := (A0,A1):

pp ←$ Setup(λ, t) // choose a random pp

L ←$A0(λ, pp, t) // adversary preprocesses pp

x ←$ X // choose a random input x

yA ←$A1(L, pp, x) // adversary computes an output yA

We say that (A0,A1) wins the game if yA = y where (y, π) := Eval(pp, x).

Definition 4.4 (Sequentiality). For functions σ(t) and p(t), the VDF is (p, σ)-sequential if no pair

of randomized algorithms A0, which runs in total time O(poly(λ)/(t, λ)), and A1, which runs in

parallel time σ(t) on at most p(t) processors, can win the sequentiality game with probability greater

than negl(λ).

The definition captures the fact that even after A0 computes on the parameters pp for a (poly-

nomially) long time, the adversary A1 cannot compute an output from the input x in time σ(t) on

p(t) parallel processors. If a VDF is (p, σ)-sequential for any polynomial p, then we simply say the

VDF is σ-sequential. In the sequentiality game, we do not require the online attack algorithm A1 to

output a proof π. The reason is that in many of our applications, for example, in a lottery, the ad-

versary can profit simply by learning the output early, even without being able to prove correctness

to a third party.

Values of σ(t) Clearly any candidate construction trivially satisfies σ(t)-sequentiality for some σ

(e.g. σ(t) = 0). Thus, security becomes more meaningful as σ(t) → t. No construction can obtain

σ(t) = t because by design Eval runs in parallel time t. Ideal security is achieved when σ(t) = t− 1.

This ideal security is in general unrealistic unless, for example, time steps are measured in rounds

of queries to an ideal oracle (e.g. random oracle). In practice, if the oracle is instantiated with

a concrete program (e.g. a hash function), then differences in hardware/implementation would in

general yield small differences in the response time for each query. An almost-perfect VDF would

achieve σ(t) = t − o(t) sequentiality. Even σ(t) = t − ϵt sequentiality for small ϵ is sufficient for

most applications. Security degrades as ϵ→ 1. The naive VDF construction combining a hash chain

with succinct verifiable computation (i.e. producing a SNARG proof of correctness following the

hash chain computation) cannot beat ϵ = 1/2, unless it uses at least ω(t) parallelism to generate

the proof in sublinear time (exceeding the allowable parallelism for VDFs, though see a relaxation

to “weak” VDFs below).

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 145

Unpredictability and min-entropy Definition 4.4 captures an unpredictability property for the

output of the VDF, similar to a one-way function. However, similar to random oracles, the output

of the VDF on a given input is never indistinguishable from random. It is possible that no depth

σ(t) circuit can distinguish the output on a randomly sampled challenge from random, but only if

the VDF proof is not given to the distinguisher. Efficiently decodable VDFs cannot achieve this

stronger property.

For the application to random beacons (e.g. for lotteries), it is only necessary that on a random

challenge the output is unpredictable and also has sufficient min-entropy1 conditioned on previous

outputs for different challenges. In fact, σ-sequentiality already implies that min-entropy is Ω(log λ).

Otherwise some fixed output y occurs with probability 1/poly(λ)/(λ) for randomly sampled input

x; the adversary A0 can computes O(poly(λ)/(λ)) samples of this distribution in the preprocessing

to find such a y′ with high probability, and then A1 could output y′ as its guess. Moreover, if

σ-sequentiality is achieved for t superpolynomial (sub-exponential) in λ, then the preprocessing ad-

versary is allowed 2o(λ) samples, implying some o(λ) min-entropy of the output must be preserved.

By itself, σ-sequentiality does not imply Ω(λ) min-entropy. Stronger min-entropy preservation can

be demonstrated in other ways given additional properties of the VDF, e.g. if it is a permutation or

collision-resistant. Under suitable complexity theoretic assumptions (namely the existence of subex-

ponential 2o(n) circuit lower bounds) a combination of Nisan-Wigderson type PRGs and extractors

can also be used to generate poly(λ)/(λ) pseudorandom bits from a string with min-entropy log λ.

Random “Delay” Oracle In the random oracle model, any unpredictable string (regardless of

its min-entropy) can be used to extract an unpredictable λ-bit uniform random string. For the

beacon application, a random oracle H would simply be applied to the output of the VDF to

generate the beacon value. We can even model this construction as an ideal object itself, a Random

Delay Oracle, which implements a random function H ′ and on any given input x it waits for σ(t)

steps before returning the output H ′(x). Demonstrating a construction from a σ-sequential VDF

and random oracle H that is provably indifferentiable [MRH04] from a Random Delay Oracle is an

interesting research question.2

Remark: Removing any single property makes VDF construction easy. We note the existence of

well-known outputs if any property is removed:

• If Verify is not required to be fast, then simply iterating a one-way function t times yields a

trivial solution. Verification is done by re-computing the output, or a set of ℓ intermediate

1A randomness extractor can then be applied to the output to map it to a uniform distribution.
2The difficulty in proving indifferentiability arises because the distinguisher can query the VDF/RO construction

and the RO itself separately, therefore the simulator must be able to simulate queries to the random oracle H given
only access to the Random Delay Oracle. Indifferentiability doesn’t require the simulator to respond in exactly the
same time, but it is still required to be efficient. This becomes an issue if the delay t is superpolynomial.

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 146

points can be supplied as a proof which can be verified in parallel time Θ(t/ℓ) using ℓ processors,

with total verification time remaining Θ(t).

• If we do not require uniqueness, then the construction of Mahmoody et al. [MMV13] using hash

functions and depth-robust graphs suffices. This construction was later improved by Cohen

and Pietrzak [CP18]. This construction fails to ensure uniqueness because once an output y

is computed it can be easily mangled into many other valid outputs y′ ̸= y, as discussed in

Section 4.8.1.

• If we do not require σ-sequentiality, many solutions are possible, such as finding the discrete

log of a challenge group element with respect to a fixed generator. Note that computing an

elliptic curve discrete log can be done in parallel time o(t) using a parallel version of the Pollard

rho algorithm [vW94].

Weaker VDFs For certain applications it is still interesting to consider a VDF that requires even

more than polylog/(t) parallelism in Eval to compute the output in parallel time t. For example, in

the randomness beacon application only one party is required to compute the VDF and all other

parties can simply verify the output. It would not be unreasonable to give this one party a significant

amount of parallel computing power and optimized hardware. This would yield a secure beacon as

long as no adversary could compute the outputs of Eval in faster that t steps given even more

parallelism than this party. Moreover, for small values of t it may be practical for anyone to use up

to O(t) parallelism (or more). With this in mind, we define a weaker variant of a VDF that allows

additional parallelism in Eval.

Definition 4.5. We call a system V = (Setup,Eval,Verify) a weak-VDF if it satisfies Definition 4.1

with the exception that Eval is allowed up to poly(t, λ) parallelism.

Note that (p, σ)-sequentiality can only be meaningful for a weak-VDF if Eval is allowed strictly

less that p(t) parallelism, otherwise the honest computation of Eval would require more parallelism

than even the adversary is allowed.

4.4 VDFs from Incrementally Verifiable Computation

VDFs are by definition sequential functions. We, therefore, require the existence of sequential

functions in order to construct any VDF. We begin by defining a sequential function.

Definition 4.6 ((t, ϵ)-Sequential function). f : X → Y is a (t, ϵ)-sequential function if for λ =

O(log(|X|)), if the following conditions hold.

1. There exists an algorithm that for all x ∈ X evaluates f in parallel time t using poly(λ)/(log(t), λ)

processors.

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 147

2. For all A that run in parallel time strictly less than (1− ϵ) · t with poly(λ)/(t, λ) processors:

Pr
[
yA = f(x)

∣∣∣ yA ←$A(λ, x), x←$ X
]
≤ negl(λ)(λ)

.

In addition we consider iterated sequential functions that are defined as the iteration of some

round function. The key property of an iterated sequential function is that iteration of the round

function is the fastest way to evaluate the function.

Definition 4.7 (Iterated Sequential Function). Let g : X → X be a (t, ϵ)-sequential function. A

function f : N × X → X defined as f(k, x) = g(k)(x) = g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸
k times

is said to be an iterated

sequential function (with round function g) if for all k = 2o(λ) the function h : X → X defined by

h(x) = f(k, x) is (k · t, ϵ)-sequential as in Definition 4.6.

It is widely believed that the function obtained from iterating a hash function like SHA-256

is an iterated sequential function with t = O(λ) and ϵ negligible in λ. The sequentiality of such

functions can be proved in the random oracle model [KMB17; MMV13]. We will use the functions

g explicitly and require it to have an explicit arithmetic circuit representation. Modeling g as an

oracle, therefore, does not suffice for our construction.

Another candidate for an iterated sequential function is exponentiation in a finite group of

unknown order, where the round function is squaring in the group. The fastest known way to

compute this is by repeated squaring which is an iterative sequential computation.

Based on these candidates, we can make the following assumption about the existence of iterated

sequential functions:

Assumption 4.1. For all λ ∈ N there exist (1) an ϵ, t with t = poly(λ)/(λ), and (2) a function

gλ : X → X, where log2 |X| = λ and X can be sampled in time poly(λ)/(λ). This gλ satisfies: (i)

gλ is a (t, ϵ)-sequential function, and (ii) the function f : N×X → X with round function gλ is an

iterated sequential function.

An iterated sequential function by itself gives us many of the properties needed for a secure

VDF. It is sequential by definition and the trivial algorithm (iteratively computing g) uses only

poly(λ)/(λ) parallelism. Such a function by itself, however, does not suffice to construct a VDF. The

fastest generic verification algorithm simply recomputes the function. While this ensures soundness

it does not satisfy the efficient verification requirement of a VDF. The verifier of a VDF needs to be

exponentially faster than the prover.

SNARGs and SNARKs A natural idea to improve the verification time is to use verifiable

computation. In verifiable computation the prover computes a succinct argument (SNARG) that a

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 148

computation was done correctly. The argument can be efficiently verified using resources that are

independent of the size of the computation. A SNARG is a weaker form of a succinct non-interactive

argument of knowledge (SNARK) [Gen+13] for membership in an NP language L with relation R

(Definition 4.8). The additional requirement of a SNARK is that for any algorithm that outputs

a valid proof of membership of an instance x ∈ L there is also an extractor that “watches” the

algorithm and outputs a witness w such that (x,w) ∈ R. In the special case of providing a succinct

proof that a (polynomial size) computation F was done correctly, i.e. y is the output of F on x, the

NP witness is empty and the NP relation simply consists of pairs ((x, y),⊥) such that F (x) = y.

Definition 4.8 (Verifiable Computation / SNARK). Let L denote an NP language with relation

RL, where x ∈ L iff ∃w RL(x,w) = 1. A SNARK system for RL is a triple of polynomial time

algorithms (Setup,SNKProve,SNKVerify) that satisfy the following properties:

Completeness:

∀(x,w) ∈ RL : Pr

[
SNKVerify(vk, x, π) = 1

∣∣∣∣∣ (vk, ek)←$ Setup(1λ)

π ←$ SNKProve(ek, x, w)

]
= 1

Succinctness: The length of a proof and complexity of SNKVerify is bounded by poly
(
λ, log(|y|+

|w|)
)
.

Knowledge extraction:[sub-exponential adversary knowledge extractor] For all adver-

saries A running in time 2o(λ) there exists an extractor Ext/A running in time 2o(λ) such

that for all auxiliary inputs z of size poly(λ):

Pr

[
SNKVerify(vk, x, π) = 1

RL(x,w) ̸= 1

∣∣∣∣∣
(vk, ek)←$ Setup(1λ)

(x, π)←$A(z, ek)
w ←$ Ext/A(z, ek)

]
≤ negl(λ)(λ)

Impractical VDF from SNARGs. Consider the following construction for a VDF from a (t, ϵ)-

sequential function f . Let pp = (ek, vk) ←$ Setup(λ) be the public parameter of a SNARG scheme

for proving membership in the language of pairs (x, y) such that f(x) = y. On input x ∈ X the

Eval computes y = f(x) and a succinct argument π ←$ SNKProve(ek, (x, y),⊥). The prover outputs

((x, y), π). On input ((x, y), π) the verifier checks y = f(x) by checking SNKVerify(vk, (x, y), π) = 1.

This construction clearly satisfies fast verification. All known SNARK constructions are quasi-

linear in the length of the underlying computation f [Ben+14b]. Assuming the cost for computing

a SNARG for a computation of length t is k · t log(t) then the SNARG VDF construction achieves

σ(t) = (1−ϵ)·t
(k+1)·log(t) sequentiality. This does not even achieve the notion of (1 − ϵ′)t sequentiality for

any adversary. This means that the adversary can compute the output of the VDF in a small fraction

of the time that it takes the honest prover to convince an honest verifier. If, however, SNKProve is

sufficiently parallelizable then it is possible to partially close the gap between the sequentiality of

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 149

f and the sequentiality of the VDF. The Eval simply executes SNKProve on a parallel machine to

reduce the relative total running time compared to the computation of f . SNARK constructions

can run in parallel time polylog/(t) on O(t · polylog/(t)) processors. This shows that a V DF can

theoretically be built from verifiable computation.

The construction has, however, two significant downsides: First, in practice computing a SNARG

is more than 100,000 times more expensive than evaluating the underlying computation [Wah+15].

This means that to achieve meaningful sequentiality, the SNARG computation would require massive

parallelism using hundreds thousands of cores. The required parallelism additionally depends on

the time t. Second, the construction does not achieve (1 − ϵ)t sequentiality, which is the optimal

sequentiality that can be achieved by a construction which involves the evaluation of f .

We therefore, now give a V DF construction3 with required parallelism independent of t and

σ-sequentiality asymptotically close to (1− ϵ)t where ϵ will be defined by the underlying sequential

computation.

Incremental Verifiable Computation (IVC). IVC provides a direction for circumventing the

problem mentioned above. IVC was first studied by Valiant [Val08] in the context of computationally

sound proofs [Mic94]. Bitansky et al. [Bit+13a] generalized IVC to distributed computations and

to other proof systems such as SNARKs. IVC requires that the underlying computation can be

expressed as an iterative sequence of evaluations of the same Turing machine. An iterated sequential

function satisfies this requirement.

The basic idea of IVC is that at every incremental step of the computation, a prover can produce

a proof that a certain state is indeed the current state of the computation. This proof is updated

after every step of the computation to produce a new proof. Importantly, the complexity of each

proof in proof size and verification cost is bounded by poly(λ)/(λ) for any sub-exponential length

computation. Additionally the complexity of updating the proof is independent of the total length

of the computation.

Towards VDFs from IVC. Consider a VDF construction that runs a sequential computation

and after each step uses IVC to update a proof that both this step and the previous proof were

correct. Unfortunately, for IVC that requires knowledge extraction we cannot prove soundness of

this construction for t > O(λ). The problem is that a recursive extraction yields an extractor that

is exponential in the recursion depth [Bit+13a].

The trick around this is to construct a binary tree of proofs of limited depth [Val08; Bit+13a].

The leaf proofs verify computation steps whereas the internal node proofs prove that their children

are valid proofs. The verifier only needs to check the root proof against the statement that all

computation steps and internal proofs are correct.

3The construction is largely subsumed by the subsequently added simpler construction in Section 4.5. This simpler
construction is built directly from verifiable computation.

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 150

We focus on the special case that the function f is an iterated sequential function. The regularity

of the iterated function ensures that the statement that the verifier checks is succinct. We impose a

strict requirement on our IV C scheme to output both the output of f and a final proof with only

an additive constant number of additional steps over evaluating f alone.

We define tight IVC for an iterated sequential functions, which captures the required primitive

needed for our theoretical VDF. We require that incremental proving is almost overhead free in

that the prover can output the proof almost immediately after the computation has finished. The

definition is a special case of Valiant’s definition [Val08].

Definition 4.9 (Tight IVC for iterated sequential functions). Let fλ : N × X → X be an iterated

sequential function with (t, ϵ)-sequential round function gλ iterated k = 2o(λ) times. An IVC sys-

tem for fλ is a triple of polynomial time algorithms (IVCGen, IVCProve, IVCVerify) that satisfy the

following properties:

Completeness:

∀x ∈ X : Pr

[
IVCVerify(vk, x, y, k, π) = Yes

∣∣∣∣∣ (vk, ek)←$ IVCGen(λ, f)

(y, π)←$ IVCProve(ek, k, x)

]
= 1

Succinctness: The length of a proof and the complexity of SNKVerify is bounded by

poly(λ)/
(
λ, log(k · t)

)
.

Soundness:[sub-exponential soundness] For all algorithms A running in time 2o(λ):

Pr

[
IVCVerify(vk, x, y, k, π) = Yes

f(k, x) ̸= y

∣∣∣∣∣ (vk, ek)←$ IVCGen(λ, f)

(x, y, k, π)←$A(λ, vk, ek)

]
≤ negl(λ)(λ)

Tight Incremental Proving: There exists a k′ such that for all k ≥ k′ and k = 2o(λ),

IVCProve(ek, k, x) runs in parallel time k · t+O(1) using poly(λ)/(λ, t)-processors.

Existence of tight IVC. Bitansky et al. [Bit+13a] showed that any SNARK system such as

[Par+13] can be used to construct IVC. Under strong knowledge of exponent assumptions there

exists an IVC scheme using a SNARK tree of depth less than λ (Theorem 1 of [Bit+13a]). In every

computation step the prover updates the proof by computing λ new SNARKs each of complexity

poly(λ)/(λ), each verifying another SNARK and one of complexity t which verifies one evaluation

of gλ, the round function of fλ. Ben Sasson et al. [Ben+13] discuss the parallel complexity of

the Pinocchio SNARK [Par+13] and show that for a circuit of size m there exists a parallel prover

using O(m · log(m)) processors that computes a SNARK in time O(log(m)). Therefore, using

these SNARKs we can construct an IVC proof system (IVCGen, IVCProve, IVCVerify) where, for

sufficiently large t, IVCProve uses Õ(λ + t) parallelism to produce each incremental IVC output in

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 151

time λ · log(t + λ) ≤ t. If t is not sufficiently large, i.e. t > λ · log(t + λ) then we can construct

an IVC proof system that creates proofs for k′ evaluations of gλ. The IVC proof system chooses k′

such that t ≤ λ · log(k′ · t+ λ). Given this the total parallel runtime of IVCProve on k iterations of

an (t, ϵ)-sequential function would thus be k · t + λ · log(k′ · t + λ) = k · t + O(1). This shows that

we can construct tight IVC from existing SNARK constructions.

V DFIVC construction. We now construct a VDF from a tight IVC. By Assumption 4.1 we are

given a family {fλ}, where each fλ : N × Xλ → Xλ is defined by fλ(k, x) = g
(k)
λ (x). Here gλ is a

(s, ϵ)-sequential function on an efficiently sampleable domain of size O(2λ).

Given a tight IVC proof system (IVCGen, IVCProve, IVCVerify) for f we can construct a VDF that

satisfies σ(t)-sequentiality for σ(t) = (1− ϵ) · t−O(1):

• Setup(λ, t) : Let gλ be a (t, ϵ)-sequential function and fλ the corresponding iterated sequential

function as described in Assumption 4.1. Run (ek, vk) ←$ IVCGen(λ, fλ). Set k to be the

largest integer such that IVCProve(ek, k, x) takes time less than t. Output pp =
(
(ek, k), (vk)

)
.

• Eval((ek, k), x): Run (y, π)←$ IVCProve(ek, k, x), output (y, π).

• Verify(vk, x, (y, π)): Run and output IVCVerify(vk, x, y, k, π).

Note that t is fixed in the public parameters. It is, however, also possible to give t directly to Eval.

V DFIVC is, therefore, incremental.

Lemma 4.1. V DFIVC satisfies soundness (Definition 4.3)

Proof. Assume that an poly(λ)/(t, λ) algorithm A outputs (with non-negligible probability in λ) a

tuple (x, y, π) on input λ, t, and pp←$ Setup(λ, t) such that Verify(pp, x, y, π) = Yes but fλ(k, x) ̸= y.

We can then construct an adversary A′ that violates IVC soundness. Given (vk, ek)←$ IVCGen(λ, fλ)

the adversary A′ runs A on λ, t, and (vk, ek). Since (vk, ek) is sampled from the same distribution

as pp ←$ Setup(λ, t) it follows that, with non-negligible probability in λ, A′ outputs (x, y, π) such

that Verify(pp, x, y, π) = IVCVerify(vk, x, y, k, π) = Yes and fλ(k, x) ̸= y, which directly violates the

soundness of IVC.

Theorem 4.1 (V DFIVC). V DFIVC is a VDF scheme with σ(t) = (1− ϵ)t−O(1) sequentiality.

Proof. First note that the V DFIVC algorithms satisfy the definition of the VDF algorithms. IVCProve

runs in time (ts − 1) · s+ s = t using poly(λ)/(λ, s) = poly(λ)/(λ) processors. IVCVerify runs in total

time poly(λ)/(λ, log(t)). Correctness follows from the correctness of the IVC scheme. Soundness was

proved in Lemma 4.1. The scheme is σ(t)-sequential because IVCProve runs in time k · s+O(1) < t.

If any algorithm that uses poly(λ)/(t, λ) processors can produce the VDF output in time less than

(1− ϵ)t−O(1) he can directly break the t, ϵ-sequentiality of fλ. Since s is independent of t we can

conclude that V DFIVC has σ(t) = (1− ϵ)t−O(1) sequentiality.

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 152

4.5 VDFs from Verifiable Computation

We next present a VDF construction from verifiable computation. This construction is simpler than

the one in the previous section in that it does not require tight incremental verifiable computation.

Verifiable computation is sufficient.

The core idea is that we can run a sequential computation and, in parallel, compute multiple

SNARGs that prove the correctness of different parts of the computation. The protocol we propose

computes logN SNARGs in parallel for segments of geometrically decreasing size.

Let f be an iterated sequential function obtained from iterating a round function k times. As a

warmup, assume that constructing a SNARG for an evaluation of f takes exactly the same time as

computing the function f . The VDF prover first iterates the round function k/2 times, to complete

half the computation of f on a given input. It then iterates the round function k/2 more times, and

in parallel, computes a SNARG for the first k/2 iterations. This way the SNARG computation and

the function evaluation will complete at the same time. The prover then continues by constructing

a SNARG for the next k/4 iterations of the round function, then the next k/8 iterations, and so on.

All these SNARGs are constructed in parallel to computing the function. The final iteration requires

no SNARG as the verifier can check it directly. All these SNARG computations are done in parallel.

Using log2(k) processors, the evaluation of f and all the SNARG computations will complete at

exactly the same time. Hence, constructing the SNARGs adds no time to the evaluation of f , but

requires log2 k parallelism at the evaluator.

We will now describe a more general construction that allows for arbitrary gaps between the

SNARG prover time and the function evaluation time. The construction uses an iterated sequential

function and a SNARG proof system. However, an analogous construction can be built from any

underlying VDF scheme. The construction can amplify the VDF scheme to a “tight” VDF scheme in

which the prover outputs the proof concurrently with the output. The amplification has a logarithmic

overhead in proof size, verifier time, and prover parallelism. This is described in more detail in

concurrent work by Döttling, Garg, Malavolta and Vasudevan[Döt+20].

V DFVC construction As in the V DFIVC we use a family of sequential iterated functions {fλ}
such that each fλ : Z × Xλ → Xλ is defined as fλ(k, x) = g

(k)
λ (x) for an (s, ϵ) sequential function

gλ. We are also given a SNARK systems (Setup,SNKProve,SNKVerify) for the family of relations

Rfλ,k := {
(
(x, y),⊥

)
: fλ(k, x) = y}. The SNARK only needs to satisfy the soundness definition

and not the knowledge extraction so a SNARG suffices. We slightly modify the system compared to

Definition 4.8 by letting Setupfλ,k be the setup for a SNARG corresponding to Rfλ,k. We also let

α ∈ R+ denote how much slower the SNARG prover runs compared to the evaluation of fλ. That is,

if fλ(k, x) can be evaluated in time t then SNKProve runs in time at most α · t on the same machine.

Note that we implicitly require that SNKProve is a linear algorithm but the construction can easily

modified for quasilinear algorithms. V DFVC works by running the computation of fλ until t · (1
α+1)

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 153

time has passed. That is, compute k
α+1 iterations of gλ on the input. Then the prover continues

the computation and in parallel computes a SNARG for that first 1
α+1 fraction of the computation.

The same process is repeated using geometrically decreasing parts of the computation. Namely, the

prover produce a SNARG for the next 1
α+1 fraction of the remaining computation and in parallel

continue the computation of fλ as well as all other executing SNARG computations. After ℓ steps a(
α

α+1

)ℓ
fraction of the computation remains and ℓ SNARGs are being computed in parallel. Thus

after n = log α
α+1

(k) steps only 1 invocation of g remains. The verifier can check this invocation

directly. For simplicity we assume that k is a power of α
α+1 . Note that all SNARG computations

will finish at the same time, precisely when the computation of fλ is completed.

• Setup(λ, t) : Let gλ be a (s, ϵ) sequential function. Let k = t
s . For i = 1 to n = log α

α+1
(k) the

setup generates (vki, eki)← Setupfλ,ki
(λ), where ki is defined as

ki =

(
(

α

α+ 1
)i−1 − (

α

α+ 1
)i
)
· t
s
.

Output pp =
{(

(eki, ki), vki
)}

i=1,...,n
.

• Eval(pp, x) : Let x0 = x. For i = 1 to n compute xi = g(ki)(xi−1) and in parallel start the com-

putation of πi = SNKProve(eki, (xi−1, xi),⊥). Finally let y = g(xn). Output {y, (x1, π1 . . . , xn, πn)}

• Verify({vk1, . . . , vkn}, x, (y, (x1, π1 . . . , xn, πn))): Verify the proofs by running SNKVerify(vki, (xi−1, xi), πi).

If any verification fails, reject. Else output ’yes’ if g(xn) = y and reject otherwise.

Lemma 4.2 (soundness). Given a sound SNARG system as defined by Definition 4.8, V DFVC

satisfies soundness (Definition 4.3)

Proof. Assume that an poly(λ)/(t, λ) algorithm A outputs (with non-negligible probability in λ) a

tuple (x, y, π) on input λ, t, and pp such that Verify(pp, x, y, π) = Yes but fλ(k, x) ̸= y. We can then

construct an adversary A′ that violates the SNARG soundness. Note that the proof contains the

intermediate computation steps x0, . . . , xn with x0 = x. The verification guarantees that g(xn) = y.

However, if f(x) ̸= y then there must be an i ∈ [0, n−1] such that g(ki)(xi) ̸= xi+1 for ki =
αi−1

(α+1)i ·
t
s .

Note that this directly contradicts the soundness of the underlying SNARG. A′ therefore simply runs

A using honestly generated (vki, eki) for all n SNARG proof systems. A′ is able to break at the

soundness of at least one of the proof systems simply using the output of A, i.e. πi and xi, xi+1.

Since by assumption A′ can only succeed with negligible probability A′ also only succeeds with

negligible probability. This shows that V DFVC is sound.

Theorem 4.2 (V DFVC is a VDF). Given a (s, ϵ) sequential function fλ and a SNARG proof system

with perfect completeness, V DFVC is a VDF scheme with σ(t) = (1− ϵ)t sequentiality.

Proof. The algorithms of V DFVC satisfy the definition of the VDF algorithms. Treating α and s as

constants, the verifier checks only a logarithmic (in t) number of succinct proofs and one evaluation

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 154

of gλ. The prover requires log(t) parallelism for the computation of the proofs. Correctness is

immediate from the construction and the completeness of the SNARG. Soundness was proved in

Lemma 4.2. It remains to prove sequentiality. The Eval algorithm runs exactly in the time that it

takes to compute fλ(
t
s , x) as all the proof computation runs in parallel and by assumption completes

the same moment the computation of fλ completes. Any adversary that can output the VDF value

in time less than (1− ϵ)t will therefore directly break the (t, ϵ) sequentiality of fλ.

4.5.1 Discussion

We note that both the proof size, the verifier time, and the required parallelism of V DFVC are

highly dependent on α. If α > 1 the number of iterations, i.e. the number of proofs and required

parallelism is close to log(t/s) ·α, i.e. linear in α. If α ≈ 100, 000, as is the case for modern SNARGs

on arbitrary computations, then this may become prohibitively large. In Section 4.6 and Section 4.7

we show how we can boost the construction to significantly reduce the prover overhead. In particular

we construct specific instantiations of g and f that a) are more efficient to verify than to evaluate,

allowing a SNARG proof to assert a simpler statement and b) that are specifically optimized for

modern SNARG systems. With these optimizations and certain parameter selection it is feasible to

bring α closer to 1 or possibly even below 1.

We also note that the same technique of computing several proofs in parallel can be used to boost

subsequent VDF constructions such as the RivShaAdl78 based constructions by Pietrzak [Pie19b]

and Wesolowski [Wes20]. These VDFs, in particular Wesolowski’s construction, have a significant

prover overhead. This leads to a suboptimal σ(t)-sequentiality. Using the same technique of com-

puting proofs in parallel we can create “tight” VDFs with only a logarithmic overhead in terms of

required parallelism, proof size, and verifier overhead.

4.6 A weak VDF based on injective rational maps

In this section we explore a framework for constructing a weak VDF satisfying (t2, o(t))-sequentiality

based on the existence of degree t injective rational maps that cannot be inverted faster than comput-

ing polynomial greatest common denominators (GCDs) of degree t polynomials, which we conjecture

cannot be solved in parallel time less than t−o(t) on fewer than t2 parallel processors. Our candidate

map will be a permutation polynomial over a finite field of degree t. The construction built from it

is a weak VDF because the Eval will require O(t) parallelism to run in parallel time t.

4.6.1 Injective rational maps

Rational maps on algebraic sets. An algebraic rational function on finite vector spaces is a

function F : Fn
q → Fm

q such that F = (f1, . . . , fm) where each fi : Fn
q → Fq is a rational function in

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 155

Fq(X1, . . . , Xn), for i = 1, . . . ,m. An algebraic set Y ⊆ Fn
q is the complete set of points on which

some set S of polynomials simultaneously vanish, i.e. Y = {x ∈ Fn
q |f(x) = 0 for all f ∈ S} for some

S ⊂ Fq[X1, . . . , Xn]. An injective rational map of algebraic sets Y ⊆ Fn
q to X ⊆ Fm

q is an algebraic

rational function F that is injective on Y, i.e. if X := F (Y), then for every x̄ ∈ X there exists a

unique ȳ ∈ Y such that F (ȳ) = x̄.

Inverting rational maps. Consider the problem of inverting an injective rational map F =

(f1,, fm) on algebraic sets Y ⊆ Fn
q to X ⊆ Fm

q . Here Y ⊆ Fn
q is the set of vanishing points of some

set of polynomials S. For x ∈ Fm
q , a solution to F (ȳ) = x̄ is a point ȳ ∈ Fn

q such that all polynomials

in S vanish at ȳ and fi(ȳ) = xi for i = 1, ...,m. Furthermore, each fi(ȳ) = g(ȳ)/h(ȳ) = xi for some

polynomials g, h, and hence yields a polynomial constraint zi(ȳ) := g(ȳ) − xih(ȳ) = 0. In total we

are looking for solutions to |S|+m polynomial constraints on ȳ.

We illustrate two special cases of injective rational maps that can be inverted by a univariate

polynomial GCD computation. In general, inverting injective rational maps on Fd
q for constant d

can be reduced to a univariate polynomial GCD computation using resultants.

• Rational functions on finite fields. Consider any injective rational function F (X) = g(X)/h(X),

for univariate polynomials h, g, on a finite field Fq. A finite field is actually a special case of

an algebraic set over itself; it is the set of roots of the polynomial Xq −X. Inverting F on a

point c ∈ Fq can be done by calculating GCD(Xq −X, g(X)− c · h(X)), which outputs X − s

for the unique s such that F (s) = c.

• Rational maps on elliptic curves. An elliptic curve E(Fq) over Fq is a 2-dimensional algebraic

set of vanishing points in F2
q of a bivariate polynomial E(y, x) = y2 − x3 − ax − b. Inverting

an injective rational function F on a point in the image of F (E(Fq)) involves computing the

GCD of three bivariate polynomials: E, z1, z2, where z1 and z2 come from the two rational

function components of F . The resultant R = Resy(z1, z2) is a univariate polynomial in x of

degree deg(z1) · deg(z2) such that R(x) = 0 iff there exists y such that (x, y) is a root of both

z1 and z2. Finally, taking the resultant again R′ = Resy(R,E) yields a univariate polynomial

such that any root x of R′ has a corresponding coordinate y such that (x, y) is a point on E

and satisfies constraints z1 and z2. Solving for the unique root of R′ reduces to a Euclidean

GCD computation as above. Then given x, there are two possible points (x, y) ∈ E, so we can

try them both and output the unique point that satisfies all the constraints.

Euclidean algorithm for univariate polynomial GCD. Univariate polynomials over a finite

field form a Euclidean domain, and therefore the GCD of two polynomials can be found using the

Euclidean algorithm. For two polynomials f and g such that deg(f) > deg(g) = d, one first reduces

f mod g and then computes GCD(f, g) = GCD(f mod g, g). In the example f = Xq − X, the

first step of reducing Xq mod g requires O(log(q)) multiplications of degree O(deg(g)) polynomials.

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 156

Starting with X, we run the sequence of repeated squaring operations to get Xq, reducing the

intermediate results mod g after each squaring operation. Then running the Euclidean algorithm

to find GCD(f mod g, g) involves O(d) sequential steps where in each step we subtract two O(d)

degree polynomials. On a sequential machine this computation takes O(d2) time, but on O(d)

parallel processors this can be computed in parallel time O(d).

NC algorithm for univariate polynomial GCD. There is an algorithm for computing the

GCD of two univariate polynomials of degree d in O(log2(d)) parallel time, but requires O(d3.8)

parallel processors. This algorithm runs d parallel determinant calculations on submatrices of the

Sylvester matrix associated with the two polynomials, each of size O(d2). Each determinant can be

computed in parallel time O(log2(d)) on M(d) ∈ O(d2.85) parallel processors [Cod+97]. The parallel

advantage of this method over the euclidean GCD method kicks in after O(d2.85) processors. For

any c ≤ d/ log2(d), it is possible to compute the GCD in O(d/c) steps on c log2(d)M(d) processors.

Sequentiality of univariate polynomial GCD. The GCD can be calculated in parallel time d

using d parallel processors via the Euclidean algorithm. The NC algorithm only beats this bound

on strictly greater than d2.85 processors, but a hybrid of the two methods can gain an o(d) speedup

on only d2 processors. Specifically, we can run the Euclidean method for d− d2/3 steps until we are

left with two polynomials of degree d2/3, then we can run the NC algorithm using log3(d)M(d2/3) <

(d2/3)3 = d2 processors to compute the GCD of these polynomials in O(d2/3/ log(d)) steps, for a

total of d− ϵd2/3 steps. This improvement can be tightened further, but generally results in d−o(d)

steps as long as M(d) ∈ ω(d2).

We pose the following assumption on the parallel complexity of calculating polynomials GCDs

on fewer that O(d2) processors. This assumption would be broken if there is an NC algorithm for

computing the determinant of a n×n matrix on o(n2) processors, but this would require a significant

advance in mathematics on a problem that has been studied for a long time.

Assumption 4.2. There is no general algorithm for computing the GCD of two univariate polyno-

mials of degree d over a finite field Fq (where q > d3) in less than parallel time d − o(d) on O(d2)

parallel processors.

On the other hand, evaluating a polynomial of degree d can be logarithmic in its degree, provided

the polynomial can be expressed as a small arithmetic circuit, e.g. (ax+ b)d can be computed with

O(log(d)) field operations.

Abstract weak VDF from an injective rational map. Let F : Fn
q → Fm

q be a rational function

that is an injective map from Y to X := F (Y). We further require that X is efficiently sampleable

and that F can be evaluated efficiently for all ȳ ∈ Y. When using F in a VDF we will require that

|X | > λt3 to prevent brute force attacks, where t and λ are given as input to the Setup algorithm.

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 157

We will need a family F := {(q, F,X ,Y)}λ,t parameterized by λ and t. Given such a family we

can construct a weak VDF as follows:

• Setup(λ, t): choose a (q, F,X ,Y) ∈ F specified by λ and t, and output pp := ((q, F), (q, F)).

• Eval((q, F), x̄): for an output x̄ ∈ X ⊆ Fm
q compute ȳ ∈ Y such that F (ȳ) = x̄; The proof π is

empty.

• Verify((q, F), x̄, ȳ, π) outputs Yes if F (ȳ) = x̄.

The reason we require that F be injective on Y is so that the solution ȳ be unique.

The construction is a weak (p(t), σ(t))-VDF for p(t) = t2 and σ(t) = t − o(t) assuming that there

is no algorithm that can invert of F ∈ F on a random value in less than parallel time d − o(d) on

O(d2) processors. Note that this is a stronger assumption than 4.2 as the inversion reduces to a

specific GCD computation rather than a general one.

Candidate rational maps. The question, of course, is how to instantiate the function family F
so that the resulting weak VDF system is secure. There are many examples of rational maps on

low dimensional algebraic sets among which we can search for candidates. Here we will focus on the

special case of efficiently computable permutation polynomials over Fq, and one particular family of

permutation polynomials that may be suitable.

4.6.2 Univariate permutation polynomials

The simplest instantiation of the VDF system above is when n = m = 1 and Y = Fq. In this case,

the function F is a univariate polynomial f : Fq → Fq. If f implements an injective map on Fq, then

it must be a permutation of Fq, which brings us to the study of univariate permutation polynomials

as VDFs.

The simplest permutation polynomials are the monomials xe for e ≥ 1, where gcd(e, q − 1) = 1.

These polynomials however, can be easily inverted and do not give a secure VDF. Dickson polyno-

mials [LMT93] Dn,α ∈ Fp[x] are another well known family of polynomials over Fp that permute Fp.

Dickson polynomials are defined by a recurrence relation and can be evaluated efficiently. Dickson

polynomials satisfy Dt,αn(Dn,α(x)) = x for all n, t, α where n · t = 1 mod p− 1, hence they are easy

to invert over Fp and again do not give a secure VDF.

A number of other classes of permutation polynomials have been discovered over the last several

decades [Hou15]. We need a class of permutation polynomials over a suitably large field that have

a tunable degree, are fast to evaluate (i.e. have polylog/(d) circuit complexity), and cannot be

inverted faster than running the parallelized Euclidean algorithm on O(d) processors.

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 158

Candidate permutation polynomial. We consider the following polynomial of Guralnick and

Muller [GM97] over Fpm :

(xs − ax− a) · (xs − ax+ a)s + ((xs − ax+ a)2 + 4a2x)(s+1)/2

2xs
(4.1)

where s = pr for odd prime p and a is not a (s− 1)st power in Fpm . This polynomial is a degree s3

permutation on the field Fpm for all s,m chosen independently.

Below we discuss why instantiating a VDF with nearly all other examples of permutation poly-

nomials would not be secure and why attacks on these other polynomials do not work against this

candidate.

Attacks on other families of permutation polynomials. We list here several other families

of permutation polynomials that can be evaluated in O(polylog/(d)) time, yet would not yield a

secure VDF. We explain why each of these attacks do not work against the candidate polynomial.

1. Sparse permutation polynomials. Sparse polynomials have a constant number of terms and

therefore can be evaluated in time O(log(d)). There exist families of non-monomial sparse

permutation polynomials, e.g. X2t+1+1 + X3 + X ∈ F22t+1 [X] [Hou15, Thm 4.12]. The

problem is that the degree of this polynomial is larger than the square root of the field size,

which allows for brute force parallel attacks. Unfortunately, all known sparse permutation

polynomials have this problem. In our candidate the field size can be made arbitrarily large

relative to the degree of the polynomial.

2. Linear algebraic attacks. A classic example of a sparse permutation polynomial of tunable

degree over an arbitrarily large field, due to Mathieu [Mat61], is the family xpi − ax over Fpm

where a is not a p−1st power. Unfortunately, this polynomial is easy to invert because x 7→ xpi

is a linear operator in characteristic p so the polynomial can be written as a linear equation

over an m-dimensional vector space. To prevent linear algebraic attacks the degree of at least

one non-linear term in the polynomial cannot be divisible by the field characteristic p. In our

candidate there are many such non-linear terms, e.g. of degree s+ 1 where s = pr.

3. Exceptional polynomials co-prime to characteristic. An exceptional polynomial is a polynomial

f ∈ Fq[X] which is a permutation on Fqm for infinitely many m, which allows us to choose

sufficiently largem to avoid brute force attacks. Any permutation polynomial of degree at most

q1/4 over Fq is exceptional [Zie]. Since we want q to be exponential in the security parameter

and the degree to be sub-exponential we can restrict the search for candidate polynomials to

exceptional polynomials. However, all exceptional polynomials over Fq. of degree co-prime to

q can be written as the composition of Dickson polynomials and linear polynomials, which are

easy to invert [Mül97]. In our candidate, the degree s3 of the polynomial and field size are

both powers of p, and are therefore not co-prime.

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 159

Additional application: a new family of one-way permutations. We note that a sparse

permutation polynomial of sufficiently high degree over a sufficiently large finite field may be a good

candidate for a one-way permutation. This may give a secure one-way permutation over a domain

of smaller size than what is possible by other methods.

4.6.3 Comparison to square roots mod p

A classic approach to designing a sequentially slow verifiable function, dating back to Dwork and

Naor [DN93], is computing modular square roots. Given a challenge x ∈ Zp, computing y = x
p+1
4

(mod p) can be efficiently verified by checking that y2 = x (mod p) (for p ≡ 3 (mod 4)). There is

no known way to compute this exponentiation in faster than log(p) sequential field multiplications.

This is a special case of inverting a rational function over a finite field, namely the polynomial

f(y) = y2, although this function is not injective and therefore cannot be calculated with GCDs.

An injective rational function with nearly the same characteristics is the permutation f(y) = y3.

Since the inverse of 3 mod p− 1 will be O(log p) bits, this requires O(log p) squaring operations to

invert. Viewed another way, this degree 3 polynomial can be inverted on a point c by computing the

GCD(yp − y, y2 − c), where the first step requires reducing yp − y mod y3 − c, involving O(log p))

repeated squarings and reductions mod y3 − c.

While this approach appears to offer a delay parameter of t = log(p), as t grows asymptotically the

evaluator can use O(t) parallel processors to gain a factor t parallel speedup in field multiplications,

thus completing the challenge in parallel time equivalent to one squaring operation on a sequential

machine. Therefore, there is asymptotically no difference in the parallel time complexity of the

evaluation and the total time complexity of the verification, which is why this does not even meet

our definition of a weak VDF. Our approach of using higher degree injective rational maps gives

a strict (asymptotic) improvement on the modular square/cubes approach, and to the best of our

knowledge is the first concrete algebraic candidate to achieve an exponential gap between parallel

evaluation complexity and total verification complexity.

4.7 Practical improvements on VDFs from IVC

In this section we propose a practical boost to constructing VDFs from IVC (Section 4.4). In an IVC

construction the prover constructs a SNARK which verifies a SNARK. Ben-Sasson et al. [Ben+14b]

showed an efficient construction for IVC using “cycles of Elliptic curves”. This construction builds

on the pairing-based SNARK [Par+13]. This SNARK system operates on arithmetic circuits defined

over a finite field Fp. The proof output consists of elements of an elliptic curve group E/Fq of prime

order p (defined over a field Fq). The SNARK verification circuit, which computes a pairing, is

therefore an arithmetic circuit over Fq. Since q ̸= p, the prover cannot construct a new SNARK

that directly operates on the verification circuit, as the SNARK operates on circuits defined over

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 160

Fp. Ben-Sasson et. al. propose using two SNARK systems where the curve order of one is equal

to the base field of the other, and vice versa. This requires finding a pair of pairing-friendly elliptic

curves E1, E2 (defined over two different base fields F1 and F2) with the property that the order of

each curve is equal to the size of the base field of the other.

The main practical consideration in V DFIVC is that the evaluator needs to be able to update

the incremental SNARK proofs at the same rate as computing the underlying sequential function,

and without requiring a ridiculous amount of parallelism to do so. Our proposed improvements are

based on two ideas:

1. In current SNARK/IVC constructions (including [Par+13], [Ben+14b]) the prover complexity

is proportional to the multiplicative arithmetic complexity of the underlying statement over

the field Fp used in the SNARK (p ≈ 2128). Therefore, as an optimization, we can use a

“SNARK friendly” hash function (or permutation) as the iterated sequential function such

that the verification of each iteration has a lower multiplicative arithmetic complexity over Fp.

2. We can use the Eval of a weak VDF as the iterated sequential function, and compute a SNARK

over the Verify circuit applied to each incremental output instead of the Eval circuit. This

should increase the number of sequential steps required to evaluate the iterated sequential

function relative to the number of multiplication gates over which the SNARK is computed.

An improvement of type (1) alone could be achieved by simply using a cipher or hash function

that has better multiplicative complexity over the SNARK field Fq than AES or SHA256 (e.g., see

MiMC [Alb+16], which has 1.6% complexity of AES). We will explain how using square roots in

Fq or a suitable permutation polynomial over Fq (from Section 4.6) as the iterated function achieve

improvements of both types (1) and (2).

4.7.1 Iterated square roots in Fq

Sloth A recent construction called Sloth [LW15] proposed a secure way to chain a series of square

root computations in Zp interleaved with a simple permutation 4 such that the chain must be

evaluated sequentially, i.e. is an iterated sequential function (Definition 4.7). More specifically,

Sloth defines two permutations on Fp: a permutation ρ such that ρ(x)2 = ±x, and a permutation

σ such that σ(x) = x ± 1 depending on the parity of x. The parity of x is defined as the integer

parity of the unique x̂ ∈ {0, ..., p− 1} such that x̂ = x mod p. Then Sloth iterates the permutation

τ = ρ ◦ σ.
The verification of each step in the chain requires a single multiplication over Zp compared to

the O(log(p)) multiplications required for evaluation. Increasing the size of p amplifies this gap,

4If square roots are iterated on a value x without an interleaved permutation then there is a shortcut to the iterated
computation that first computes v = (p+1

4
)ℓ mod p and then the single exponentiation xv .

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 161

however it also introduces an opportunity for parallelizing multiplication in Zp for up to O(log(p))

speedup.

Using Sloth inside V DFIVC would only achieve a practical benefit if p = q for the SNARK

field Fq, as otherwise implementing multiplication in Zp in an arithmetic circuit over Fq would

have O(log2(p)) complexity. On modern architectures, multiplication of integers modulo a 256-

bit prime is near optimal on a single core, whereas multi-core parallelized algorithms only offer

speed-ups for larger primes [BS12]. Computing a single modular square root for a 256-bit prime

takes approximately 45,000 cycles5 on an Intel Core i7 [LW15], while computing SHA256 for 256-bit

outputs takes approximately 864 cycles6.

The best known arithmetic circuit implementation of SHA256 has 27,904 multiplication gates[Ben+14a].

In stark contrast, the arithmetic circuit over Fp for verifying a modular square root is a single mul-

tiplication gate. Verifying the permutation σ is more complex as it requires a parity check, but this

requires at most O(log(p)) complexity.

Sloth++ extension Replacing SHA256 with Sloth as the iterated function in V DFIVC already

gives a significant improvement, as detailed above. Here we suggest yet a further optimization,

which we call Sloth++. The main arithmetic complexity of verifying a step of Sloth comes from the

fact that the permutation σ is not naturally arithmetic over Fp, which was important for preventing

attacks that factor τ ℓ(x) as a polynomial over Fp. Our idea here is to compute square roots over a

degree 2 extension field Fp2 interleaved with a permutation that is arithmetic over Fp but not over

Fp2 .

In any degree r extension field Fpr of Fp for a prime p = 3 mod 4 a square root of an element

x ∈ Fpr can be found by computing x(pr+1)/4. This is computed in O(r log(p)) repeated squaring

operations in Fr
p. Verifying a square root requires a single multiplication over Fpr . Elements of Fpr

can be represented as length r vectors over Fp, and each multiplication reduces to O(r2) arithmetic

operations over Fp. For r = 2 the verification multiplicative complexity over Fp is exactly 4 gates.

In Sloth++ we define the permutation ρ exactly as in Sloth, yet over Fp2 . Then we define a

simple non-arithmetic permutation σ on Fp2 that swaps the coordinates of elements in their vector

representation over Fp and adds a constant, i.e. maps the element (x, y) to (y + c1, x + c2). The

arithmetic circuit over Fp representing the swap is trivial: it simply swaps the values on the input

wires. The overall multiplicative complexity of verifying an iteration of Sloth++ is only 4 gates

over Fp. Multiplication can be parallelized for a factor 2 speedup, so 4 gates must be verified

roughly every 89,000 parallel-time evaluation cycles. Thus, even if an attacker could manage to

speedup the modular square root computation by a factor 100 using an ASIC designed for 256-

bit multiplication, for parameters that achieve the same wall-clock delay, the SNARK verification

5This is extrapolated from [LW15], which reported that 30 million iterations of a modular square root computation
for a 256-bit prime took 10 minutes on a single 2.3 GHz Intel Core i7.

6http://www.ouah.org/ogay/sha2/

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 162

complexity of Sloth++ is over a 7,000 fold improvement over that of a SHA256 chain.

Cube roots The underlying permutation in both Sloth and Sloth++ can be replaced by cube

roots over Fq when gcd(3, q − 1) = 1. In this case the slow function is computing ρ(x) = xv where

3v = 1 mod q − 1. The output can be verified as ρ(x)3 = x.

4.7.2 Iterated permutation polynomials

Similar to Sloth+, we can use our candidate permutation polynomial (Equation 4.1) over Fq as the

iterated function in V DFIVC. Recall that Fq is an extension field chosen independently from the

degree of the polynomial. We would choose q ≈ 2256 and use the same Fq as the field used for

the SNARK system. For each O(d) sequential provers steps required to invert the polynomial on a

point, the SNARK only needs to verify the evaluation of the polynomial on the inverse, which has

multiplicative complexity O(log(d)) over Fq. Concretely, for each 105 parallel-time evaluation cycles

a SNARK needs to verify approximately 16 gates. This is yet another factor 15 improvement over

Sloth+. The catch is that the evaluator must use 105 parallelism7 to optimize the polynomial GCD

computation. We must also assume that an adversary cannot feasibly amass more than 1014 parallel

processors to implement the NC parallelized algorithm for polynomial GCD.

From a theory standpoint, using permutation polynomials inside V DFIVC reduces it to a weak

VDF because the degree of the polynomial must be super-polynomial in λ to prevent an adversary

from implementing the NC algorithm on poly(λ) processors, and therefore the honest evaluator is

also required to use super-polynomial parallelism. However, the combination does yield a better

weak VDF, and from a practical standpoint appears quite promising for many applications.

4.8 Related work

Taking a broad perspective, VDFs can be viewed as an example of moderately hard cryptographic

functions. Moderately hard functions are those whose difficulty to compute is somewhere in be-

tween ‘easy’ (designed to be as efficient as possible) and ‘hard’ (designed to be so difficult as to be

intractable). The use of moderately hard cryptographic functions dates back at least to the use of

a deliberately slow DES variant for password hashing in early UNIX systems [MT79]. Dwork and

Naor [DN93] coined the term moderately hard in a classic paper proposing client puzzles or “pricing

functions” for the purpose of preventing spam. Juels and Brainard proposed the related notion of

a client puzzle, in which a TCP server creates a puzzle which must be solved before a client can

open a connection [JB99]. Both concepts have been studied for a variety of applications, including

TLS handshake requests [ANL00; DS01], node creation in peer-to-peer networks [Dou02], creation

7This is reasonable if the evaluator has an NVIDIA Titan V GPU, which can compute up to 1014 pipelined
arithmetic operations per second (https://www.nvidia.com/en-us/titan/titan-v/).

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 163

of digital currency [RS96; Dai98; Nak08] or censorship /resistance [BX11]. For interactive client

puzzles, the most common construction is as follows: the server chooses a random ℓ-bit value x and

sends to the client H(x) and x[ℓ − log2 t − 1]. The client must send back the complete value of x.

That is, the server sends the client H(x) plus all of the bits of x except the final log2 t+1 bits, which

the client must recover via brute force.

4.8.1 Inherently sequential puzzles

The simple interactive client puzzle described above is embarrassingly parallel and can be solved in

constant time given t processors. In contrast, the very first construction of a client puzzle proposed

by Dwork and Naor involved computing modular square roots and is believed to be inherently

sequential (although they did not discuss this as a potential advantage).

The first interest in designing puzzles that require an inherently sequential solving algorithm

appears to come for the application of hardware benchmarking. Cai et al. [Cai+93; CNW97] pro-

posed the use of inherently sequential puzzles to verify claimed hardware performance as follows: a

customer creates an inherently-sequential puzzle and sends it to a hardware vendor, who then solves

it and returns the solution (which the customer can easily verify) as quickly as possible. Note that

this work predated the definition of client puzzles. Their original construction was based on expo-

nentiation modulo an RivShaAdl78 number N , for which the customer has created N and therefore

knows φ(N). They later proposed solutions based on a number of other computational problems not

typically used in cryptography, including Gaussian elimination, fast Fourier transforms, and matrix

multiplication.

Time-lock puzzles Rivest, Shamir, and Wagner [RSW96] constructed a time-lock encryption

scheme, also based on the hardness of RivShaAdl78 factoring and the conjectured sequentiality

of repeated exponentiation in a group of unknown order. The encryption key K is derived as

K = x2t ∈ ZN for an RivShaAdl78 modulus N and a published starting value x. The encrypting

party, knowing φ(N), can reduce the exponent e = 2t mod φ(N) to quickly derive K = xe mod N .

The keyK can be publicly recovered slowly by 2t iterated squarings. Boneh and Naor [BN00] showed

that the puzzle creator can publish additional information enabling an efficient and sound proof that

K is correct. In the only alternate construction we are aware of, Bitansky et al. [Bit+16] show how to

construct time-lock puzzles from randomized encodings assuming any inherently-sequential functions

exist.

Time-lock puzzles are similar to VDFs in that they involve computing an inherently sequential

function. However, time-lock puzzles are defined in a private-key setting where the verifier uses

its private key to prepare each puzzle (and possibly a verification proof for the eventual answer).

In contrast to VDFs, this trusted setup must be performed per-puzzle and each puzzle takes no

unpredictable input.

CHAPTER 4. VERIFIABLE DELAY FUNCTIONS FOR ECOLOGICAL CONSENSUS 164

Proofs of sequential work Mahmoody et al.[MMV13] proposed publicly verifiable proofs of

sequential work (PoSW) which enable proving to any challenger that a given amount of sequential

work was performed on a specific challenge. As noted, time-lock puzzles are a type of PoSW, but

they are not publicly verifiable. VDFs can be seen as a special case of publicly verifiable proofs

of sequential work with the additional guarantee of a unique output (hence the use of the term

“function” versus “proof”).

Mahmoody et al.’s construction uses a sequential hash function H (modeled as a random oracle)

and depth robust directed-acyclic graph G. Their puzzle involves computing a labeling of G using H

salted by the challenge c. The label on each node is derived as a hash of all the labels on its parent

nodes. The labels are committed to in a Merkle tree and the proof involves opening a randomly

sampled fraction. Very briefly, the security of this construction is related to graph pebbling games

(where a pebble can be placed on a node only if all its parents already have pebbles) and the

fact that depth robust graphs remain sequentially hard to pebble even if a constant fraction of the

nodes are removed (in this case corresponding to places where the adversary cheats). Mahmoody et.

al. proved security unconditionally in the random oracle model. Depth robust graphs and parallel

pebbling hardness are use similarly to construct memory hard functions [ABP17] and proofs of space

[Dzi+15]. Cohen and Pietrzak [CP18] constructed a similar PoSW using a simpler non-depth-robust

graph based on a Merkle tree.

PoSWs based on graph labeling don’t naturally provide a VDF because removing any single edge

in the graph will change the output of the proof, yet is unlikely to be detected by random challenges.

Sequentially hard functions The most popular solution for a slow function which can be viewed

as a proto-VDF, dating to Dwork and Naor [DN93], is computing modular square roots. Given a

challenge x ∈ Zp, computing y = x
p+1
4 (mod p) can be efficiently verified by checking that y2 = x

(mod p) (for p ≡ 3 (mod 4)). There is no known algorithm for computing modular exponentiation

which is sublinear in the exponent. However, the difficulty of puzzles is fixed to t = log p as the

exponent can be reduced modulo p− 1 before computation, requiring the use of a very large prime

p to produce a difficult puzzle.

This puzzle has been considered before for similar applications as our VDFs, in particular ran-

domness beacons [JM11; LW15]. Lenstra and Wesolowski [LW15] proposed creating a more difficult

puzzle for a small p by chaining a series of such puzzles together (interleaved with a simple permuta-

tion) in a construction called Sloth. We proposed a simple improvement of this puzzle in Section 4.7.

Recall that this does not meet our asymptotic definition of a VDF because it does not offer (asymp-

totically) efficient verification, however we used it as an important building block to construct a

more practical VDF based on IVC. Asymptotically, Sloth is comparable to a hash chain of length t

with t checkpoints provided as a proof, which also provides O(polylog/(t))-time verification (with t

processors) and a solution of size Θ(t · λ).

Chapter 5

ProtoStar: Efficient IVC for VDFs

and succinct Blockchains

5.1 Introduction

Incrementally Verifiable Computation[Val08] is a powerful primitive that enables a possibly infinite

computation to be run, such that the correctness of the state of the computation can be verified at

any point. IVC, and it’s generalization to DAGs, PCD[CT10], have many applications, including

distributed computation[Bit+13a; CTV15], blockchains[Bon+20a; KB20], verifiable delay functions

[Bon+18], verifiable photo editing [NT16], and SNARKs for machine-computations[Ben+14b]. An

IVC-based VDF construction is the current candidate VDF for Ethereum[KMT22]. One of the most

exciting applications of IVC and PCD is the ZK-EVM. This is an effort to build a proof system that

can prove that Ethereum blocks, as they exist today, are valid[Fou22].

Accumulation and folding. Historically, IVC was built from recursive SNARKs, proving that

the previous computation step had a valid SNARK that proves correctness up to that point. Re-

cently, an exciting new approach was initiated by Halo[BGH19] and has led to a series of significant

advances[Bün+20; Bün+21a; KST22]. The idea is related to batch verification. Instead of verifying

a SNARK at every step of the computation, we can instead accumulate the SNARK verification

check with previous checks. We define an accumulator1 such that we can combine a new SNARK

and an old accumulator into a new accumulator. Checking or deciding the new accumulator implies

that all previously accumulated SNARKs were valid. Now the recursive statement just needs to

ensure the accumulation was performed correctly. Amazingly, this accumulation step can be signifi-

cantly cheaper than SNARK verification[BGH19; Bün+20]. Even more surprising, this process does

1Unrelated to set accumulators.

165

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS166

not even require a SNARK but instead can be instantiated with a non-succinct NARK[Bün+21a],

as long as there exists an efficient accumulation scheme for that NARK. The most efficient accu-

mulation (aka folding) scheme constructions yield IVC constructions, where the recursive circuit is

dominated by as few as 2 elliptic curve scalar multiplications[Bün+21a; KST22]. These construc-

tions only require the discrete logarithm assumption in the random oracle model and, unlike many

efficient SNARK-based IVCs, do not require a trusted setup, pairings, or FFTs. These constructions

build an accumulation scheme for one fixed (but universal) R1CS language by taking a random linear

combination between the accumulator and a new proof. R1CS is a minimal expression of NP, defined

by three matrices A,B,C, that close resembles arithmetic circuits with addition and multiplication

gates. However, it has limited flexibility, especially as the current constructions require fixing R1CS

matrices that are used for all computation steps. These limitations are especially problematic for

ZK-EVMs. In a ZK-EVM, each VM instruction (OP-CODE) is encoded in a different circuit. Each

circuit uses high-degree gates, instead of just multiplication, and so-called lookup gates [GWC19].

These lookup gates enable looking up that a circuit value is in some table, simplifying range proofs

and bit-operations. These R1CS-based accumulation schemes contrast non-IVC SNARK develop-

ments, with an increased focus on high-degree gate[GWC19; Che+22] and lookup support[GW20a].

For lookups, a recent line of work has shown that if the table can be pre-computed, we can perform n

lookups in a table of size T in time O(n log n), independent of T [Zap+22b; PK22; Zap+22c; EFG22].

More expressive accumulation. There have been efforts to build accumulation schemes that

overcome the limitations of fixed R1CS. SuperNova[KS22] enables selecting the appropriate R1CS

instance at runtime without a recursive circuit that is linear in all R1CS instances. The approach,

however, still has limitations. The recursive circuit still requires many (though a constant number

of) hashes and a hash-to-group gadget, and additionally, the accumulator, and thus the final proof,

is still linear in the total size of all instances. Sangria[Moh23] describes an accumulation scheme for

a Plonk-like[GWC19] constraint system with degree-2 gates. It also proposes a solution for higher-

degree gates in the future work section but without security proof. These accumulation schemes

are built from simple underlying protocols performing a linear combination between an accumulator

and a proof. However, the constructions seem ad hoc and need individual security proof. This leads

us to our main research questions:

Recipe for accumulation Is there a general recipe for building accumulation schemes? Can we

formalize this recipe, simplifying the task of constructing secure and efficient accumulation

schemes?

Efficient accumulation for ZK-EVM Can we build an accumulation/folding scheme for a lan-

guage that combines the benefits of the most advanced proof systems today? Can we support

multiple circuits, high-degree, and lookup gates?

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS167

We answer both questions positively. Firstly we show a general compiler that takes any (2k − 1)-

move special-sound interactive argument for an NP-complete relation RNP with an algebraic degree

d verifier and construct an efficient IVC-scheme from it. This is done in 4 simple steps.

1. We compress the prover message by committing to them in a homomorphic commitment

scheme.

2. Then we apply the Fiat-Shamir transform to yield a secure NARK. [AFK22; Wik21]

3. We build a simple and efficient accumulation scheme that samples a random challenge α and

takes a linear combination between the current accumulator and the new NARK.

4. We apply the compiler by [Bün+21a] to yield a secure IVC scheme.

The recursive circuit of this transformation is dominated by only d+ k− 1 scalar multiplications

in the additive group of the commitment scheme2 for a protocol with k prover messages and a

degree d verifier. For R1CS, where k = 1 and d = 2, this yields the same protocol and efficiency

as Nova[KST22]. We can further reduce the size of the recursive circuit to only k + 2 group scalar

multiplication, by compressing all verification equations using a random linear combination.

Efficient simple protocols for Rmplkup. Equipped with this compiler, we design ProtoStar,

a simple and efficient IVC scheme for a highly expressive language Rmplkup that supports multiple

non-uniform circuits and enables high degree and lookup gates. The schemes can be instantiated

from any linearly homomorphic vector commitment, e.g., the discrete logarithm-based Pedersen

commitment[Ped92], and do not require a trusted setup or the computation of large FFTs. The

protocol has several advantages over prior schemes:

Non-uniform IVC without overhead. Each iteration has a program counter pc that selects one

out of I circuits. Part of the circuit constrains pc; e.g., pc could depend on the iteration or

indicate which instruction within a VM is executed. The IVC-prover, including the recursive

statement, only requires one exponentiation per non-zero bit in the witness. The prover’s

computation is independent of I.

Flexible high degree gates. Our protocol supports Plonk-like constraint systems with degree d

gates instead of just addition and multiplication. The recursive statement consists of 3 group

scalar multiplications and d + O(1) hash and field operations. Unlike in traditional Plonk,

there is no additional cost for additional gate types (of degree less than d) and additional

selectors. This enables a high level of non-uniformity, even within a circuit.

2When instantiated with elliptic curve Pedersen commitments, this translates to d+ k − 1 elliptic curve multipli-
cations. This is usually the largest component of the recursive statement.

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS168

ProtoStar HyperNova SuperNova
Language Degree d Plonk/CCS Degree d CCS R1CS (degree 2)

Non-uniform yes no yes

P native
|w|G

O(|w|d log2 d)F
|w|G

O(|w|d log2 d)F |w|G

extra P native
w/ lookup

O(|ℓlk|)G O(T)F N/A

P recursive
3G

(d+O(1))H+ Hin

(d+O(1))F

1G
d log nH+ Hin

O(d log n)F

2G
Hin +Oλ(1)H+ 1HG

extra P recursive
w/ lookup

1H
O(log T)H

O(ℓlk log T)F
N/A

Table 5.1: The comparison between IVCs.

Lookups, linear and independent of table size. ProtoStar supports lookup gates that en-

sure a value is in some precomputed table T . In each computation step, the prover commits

to 2 vectors of length ℓlk, where ℓlk is the number of lookups. The prover, in each step, is

independent of the table size (assuming free indexing in T). We also support tables that store

tuples of size v using 1 additional challenge computations within the recursive circuit.

Our protocols are built of multiple small building blocks. In the protocol for high-degree gates, the

prover simply sends the witness, and the degree d verifier checks the circuit with degree d gates. For

lookup, we leverage an insight by Haböck [Hab22b] on logarithmic derivates. This yields a protocol

where a prover performing ℓlk in a table of size T only needs to commit to two vectors of length ℓlk,

independent of T . This is the most efficient lookup protocol today. While the verification is linear

time, it is low degree (2) and thus compatible with our generic compiler. Combining all these yields

ProtoStar, a new IVC-scheme for Rmplkup. We compare ProtoStar, with SuperNova [KS22]

and HyperNova [KS23], in Table 5.1 (for more detail see Corollary 5.4): In the table, |w| is the

number of non-zero entries of the witness for circuit i, and ℓlk is the number of lookups in a table

of size T . G is the cost of a group scalar multiplication. F is the cost of a field multiplication.

dH denotes the cost of hashing d λ-bit numbers. We assume that the cost scales linearly with the

size of the input and output. In ProtoStar d field elements are hashed once and in HyperNova d

field elements are hashed log(n) times. HG is the cost of a hash-to-group function. Hin is the cost

of hashing the public input and the accumulator instance. Note that the Oλ(1)H in SuperNova’s

recursive circuit involves constant number of hashes to the input of two accumulator instances and

one circuit verification key, by using multiset-based offline memory checking in a circuit [Set+18].

Additional related work

Traditionally, IVC has been built by using recursive SNARKs[Bit+13a; Ben+14b; COS20].

SNARKs are succinct arguments that allow a prover to convince an efficient verifier that a single

computation was performed correctly. There have been significant advances in SNARKs recently,

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS169

lowering the proof size time[Gro16], reducing the trust assumptions[Mal+19; Chi+20; Set20], and

making the computational model more flexible [GWC19; Che+22].

In the IVC from SNARK construction, the prover constructs a SNARK that proves a step of

the computation and that the previous SNARK was valid, i.e., a verifier would have accepted it.

This requires an expensive NP-reduction of the SNARK verifier into the computational model of

the SNARK, e.g. a circuit. This necessitates many compromises when implementing these schemes

in practice, such as significant prover overhead, use of cycles of elliptic curves, strong cryptographic

assumptions, and significant implementation overheads.

Concurrent work. In a paper concurrent with this work, Kothapalli and Setty [KS23] introduce

an IVC for high degree relations. They use a generalization of R1CS called customizable constraint

systems (CCS) [STW23] that covers the Plonkish relations. It also enables gates with a high additive

fan-in. ProtoStar also has no restriction to the fan-in an individual gate has, but we subsequently

showed that our compiler can also be directly applied to CCS (Section 5.8). HyperNova is based

on so-called multi-folding schemes. They also provide a lookup argument suitable for recursive

arguments. However, they do not explicitly explain how to integrate lookup to Plonk/CCS in their

IVC scheme or provide any explicit constructions for non-uniform computations. Their scheme is

built using sumchecks [Lun+92] and the resulting IVC recursive circuit is dominated by 1 group

scalar multiplication, d log n+ℓin hash operations and O(d log n+ℓin) field multiplications where d is

the custom gate degree, n is the number of gates and ℓin is the public input length. In comparison,

our IVC recursive circuit, even with lookup and non-uniformity support, is only dominated by 3

group scalar multiplications and O(ℓin + d) field/hash operations, entirely independent of n. The

2 additional group operations compared to HyperNova are likely offset by the additional lookup

support [Xio+22] and the significantly fewer hashes and non-native field operations (d vs. d log(n)).

A detailed comparison is given in Table 5.1.

For a lookup relation with table size T and ℓlk lookup gates, their accumulation/folding scheme

leads to an accumulation prover whose work is dominated by O(T) field operations and an accumu-

lation verifier whose work is dominated by O(ℓlk log T) field operations and O(log T) hashes. This is

undesirable when the table size T ≫ ℓlk. In comparison, our scheme has prover complexity O(ℓlk) and

the verifier is only dominated by 3 group scalar multiplications, 2 hashes and 2 field multiplications.

Moreover, the lookup support adds almost no overhead to the IVC scheme for high-degree Plonk

relations. In particular, it adds no group scalar multiplications. Lastly, their lookup scheme does

not support vector-valued lookups, which is essential for applications like ZK-EVM and encoding

bit-wise operations in circuits.

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS170

Πsps (Sec 5.3.1)

CV[Πsps]

cm[CV[Πsps]]

FS[cm[CV[Πsps]]]

acc[FS[cm[CV[Πsps]]]]

IVC[acc[FS[cm[CV[Πsps]]]]]

Sec 5.3.5 Sec 5.3.2 Sec 5.3.3 Sec 5.3.4 Thm 5.1

Figure 5.1: The workflow for building an IVC from a special sound protocol. We start from a
special-sound protocol Πsps for an NP-complete relation RNP, and transform it to CV[Πsps] with a
compressed verifier check. CV[Πsps] is converted to a NARK FS[cm[CV[Πsps]]] via commit-and-open
and the Fiat-Shamir transform. We then build a generic accumulation scheme for the NARK and
apply Theorem 5.1 from [Bün+21a] to obtain the IVC scheme. This last connection is dotted as it
requires heuristically replacing random oracles with cryptographic hash functions.

5.1.1 Technical overview

Given an NP-complete relation R, we introduce a generic framework for constructing efficient in-

cremental verifiable computation (IVC) schemes with predicates expressed in R. For R being the

non-uniform Plonkup circuit satisfiability relation, we obtain an efficient (non-uniform) IVC scheme

for proving correct program executions on stateful machines (e.g., EVM). The framework starts by

designing a simple special-sound protocol Πsps for relation R, which is easy to analyze. Next, we

use a generic compiler to transform Πsps into a Non-interactive Argument of Knowledge Scheme

(NARK) whose verification predicate is easy to accumulate/fold. Finally, we build an efficient ac-

cumulation/folding scheme for the NARK verifier, and apply the generic compiler from [Bün+21a]

to obtain the IVC/PCD scheme for relation R. We describe the workflow in Figure 5.1.

The paper begins by describing the compiler from special-sound protocols to NARKs in Sec-

tion 5.3, and presents an efficient accumulation scheme for the compiled NARK verifier in Sec-

tion 5.3.4. Next, we describe simple and efficient special-sound protocols for Plonkup circuit-

satisfiability relationsin Section 5.5 and extend it to support non-uniform computation in Section 5.6.

Similarly, we extend the CCS relation [STW23] to support non-uniform computation and lookup in

Section 5.8. We give an overview of our approach below.

Efficient IVCs from special-sound protocols. Let Πsps be any multi-round special-sound pro-

tocol for some relation R, in which the verifier is algebraic, that is, the verifier algorithm only checks

algebraic equations over the input and the prover messages. E.g., the following naive protocol for the

Hadamard product relation over vectors a,b, c ∈ Fn is special-sound and has a degree-2 algebraic

verifier: The prover simply sends the vectors a, b, c to the verifier, and the verifier checks that

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS171

ai · bi = ci for all i ∈ [n]. However, as shown in the example, the prover message can be large in Πsps

and the folding scheme can be expensive if we directly accumulate the verifier predicate. Inspired

by the splitting accumulation scheme [Bün+21a], to enable efficient accumulation/folding, we split

each prover message into a short instance and a large opening, where the short instance is built from

the homomorphic commitment to the prover message. Next, we use the Fiat-Shamir transform to

compile the protocol into a NARK where the verifier challenges are generated from a random oracle.

Now we can view the NARK transcript as an accumulator (or a relaxed NP instance-witness

pair in the language of folding schemes), where the accumulator instance consists of the prover

message commitments and the verifier challenges; while the accumulator witness consists of the

prover messages (i.e., the opening to the commitments). Note we also need to introduce an error

vector/commitment into the accumulator witness/instance to absorb the “noise” that arises after

each accumulation/folding step.

In the accumulation scheme, given two accumulators (or NARK proofs), the prover folds the

witnesses and the instances of both accumulators via a random linear combination and generates a list

of d “error-correcting terms” as accumulation proof (d is the degree of the NARK verifier); the verifier

only needs to check that the folded accumulator instance is consistent with the accumulation proof

and the original instances being folded, both of which are small. After finishing all the accumulation

steps, a decider applies a final check to the accumulator, scrutinizing that (i) the accumulator witness

is consistent with the commitments in the accumulator instance, and (ii) the “relaxed” NARK verifier

check still passes. Here by “relaxed” we mean that the algebraic equation also involves the error

vector in the accumulator. If the decider accepts, this implies that all accumulated NARKs were

valid and thus that all accumulated statements are in R (and the prover knows witnesses for these

statements).

Finally, given the accumulation scheme, if the relation R is NP-complete, we can apply the

compiler in [Bün+21a] to obtain an efficient IVC scheme with predicates expressed in R.
In Theorem 5.3, we show that for any (2k − 1)-move3 special-sound protocols with degree-d

verifiers, the resulting IVC recursive circuit only involves k+ d+O(1) hashes, k+1 non-native field

operations and k + d − 1 commitment group scalar multiplications. We also introduce a generic

approach for further reducing the number of group operations to k + 2 in Section 5.3.5. This

is favorable for d ≥ 3. The idea is to compress all ℓ degree d verification checks into a single

verification check using a random linear combination with powers of a challenge β. This means

that error-correcting terms are field elements and, thus, can be sent directly without committing to

them. The prover also sends a single commitment to powers of β and powers of β
√
ℓ. The verification

equation uses one power of β and one power of β
√
ℓ, which increases the degree of the verification

check to d+2. The verifier also checks the correctness of the powers of β using 2
√
ℓ degree 2 checks.

3k prover messages, k − 1 challenges

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS172

Permchk Πσ

(Sec 5.4.1)
Gatechk ΠGATE

(Sec 5.4.2)
Lookup ΠLK

(Sec 5.4.3)
Circ sel Πselect

(Sec 5.4.5)
CCS Πccs

(Appdix 5.8)

Πmplkup (Sec 5.6) Πmccs+ (Appdix 5.8)

Figure 5.2: The special-sound protocols for ProtoStar and ProtoStarccs. The special-sound
protocol Πmplkup for the multi-circuit Plonkup relation Rmplkup consists of the sub-protocols for
permutation, high-degree custom gate, lookup, and circuit selection relations. The special-sound
protocol Πmccs+ for the extended CCS relation Rmccs+ consists of the sub-protocols for lookup,
circuit selection, as well as the CCS relation [STW23]. From Πmplkup or Πmccs+, we can apply the
workflow described in Fig 5.1 to obtain the IVC schemes ProtoStar or ProtoStarccs.

Special-sound protocols for (non-uniform) Plonkup relations. Given the generic compiler

above, our ultimate goal of constructing a (non-uniform) IVC scheme for zkEVM becomes much

easier. It is now sufficient to design a multi-round special-sound protocol for the (non-uniform)

Plonkup relation. We describe the components of the special-sound protocol in Figure 5.2. Note

we also extend CCS relation [STW23] to support lookup and non-uniform computation and build

a special-sound protocol for it (See Figure 5.2). Recall that a Plonkup circuit-satisfiability relation

consists of three modular relations, namely, (i) a high-degree gate relation checking that each custom

gate is satisfied; (ii) a permutation (wiring-identity) relation checking that different gate values are

consistent if the same wire connects them, and (iii) a lookup relation checking that a subset of gate

values belongs to a preprocessed table. The special-sound protocols for the permutation and high-

degree gate relations are trivial, where the prover directly sends the witness to the verifier, and the

verifier checks that the permutation/high-degree gate relation holds. The degree of the permutation

check is only 1, and the degree of the gate-check is the highest degree in the custom gate formula.

The special-sound protocol for the lookup relation RLOOKUP is more interesting as the statement

of the lookup relation is not algebraic. Inspired by the log-derivative lookup scheme [Hab22b], in

Section 5.4.3, we design a simple 3-move special-sound protocol ΠLK for RLOOKUP, in which the

verifier degree is only 2. A great feature of ΠLK is that the number of non-zero elements in the

prover messages is only proportional to the number of lookups, but independent of the table size.

Thus the IVC prover complexity for computing the prover message commitments is independent

of the table size, which is advantageous when the table size is much larger than the witness size.

However, the prover work for computing the error terms is not independent of the table size because

the accumulator is not sparse. Fortunately, we observe that the prover can efficiently update the

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS173

error term commitments without recomputing the error term vectors from scratch, thus preserving

the efficiency of the accumulation prover. Moreover, we extend ΠLK in Section 5.4.4 to further

support vector-valued lookup, where each table entry is a vector of elements. This feature is useful

in applications like zkEVM and for simulating bit operations in circuits.

Given the special-sound protocols for permutation/high-degree gate/lookup relations, the special-

sound protocol Πplonkup for Plonkup is just a parallel composition of the three protocols. Further-

more, in Section 5.6, we apply a simple trick to support non-uniform IVC. More precisely, let {Ci}Ii=1

be I different branch circuits (e.g., the set of supported instructions in EVM), let pi := (pc, pi′) be

the public input where pc ∈ [I] is a program counter indicating which instruction/branch circuit

is going to be executed in the next IVC step. Our goal is to prove that (pi,w) is in the relation

Rmplkup in the sense that Cpc(pi,w) = 0 for witness w. The relation statement can also add addi-

tional constraints on pc depending on the applications. The special-sound protocol for Rmplkup is

almost identical to Πplonkup for the Plonkup relation, except that the prover further sends a bool

vector b ∈ FI , and the verifier uses 2I degree 2 equations to check that bpc = 1 and bi = 0∀i ̸= pc.

Additionally, each algebraic equation G checked in Πplonkup is replaced with
∑I

i=1 Gi · bi where Gi
(1 ≤ i ≤ I) is the corresponding gate in the i-th branch circuit. The resulting special-sound protocol

has 3 moves, and the verifier degree is d+1, where d is the highest degree of the custom gates. This

means that the IVC scheme for the non-uniform Plonkup relation adds negligible overhead to that

for the Plonkup relation.

5.2 Preliminaries

5.2.1 Special-sound Protocols and Fiat-Shamir Transform

We define special-soundness and non-interactive arguments according to the definitions by [AFK22].

Definition 5.1 (Public-coin interactive proof). An interactive proof Π = (P,V) for relation R is an

interactive protocol between two probabilistic machines, a prover P, and a polynomial time verifier

V. Both P and V take as public input a statement pi and, additionally, P takes as private input

a witness w ∈ R(pi) . The verifier V outputs 0 if it accepts and a non-zero value otherwise. It’s

output is denoted by (P(w),V)(pi). Accordingly, we say the corresponding transcript (i.e., the set of

all messages exchanged in the protocol execution) is accepting or rejecting. The protocol is public

coin if the verifier randomness is public. The verifier messages are referred to as challenges. Π is a

(2k − 1)-move protocol if there are k prover messages and k − 1 verifier messages.

Definition 5.2 (Tree of transcript). Let µ ∈ N and (a1, . . . , aµ) ∈ Nµ. An (a1, . . . , aµ)-tree of

transcript for a (2µ + 1)-move public-coin interactive proof Π is a set of a1 · a2 · · · aµ accepting

transcripts arranged in a tree of depth µ and arity a1, . . . , aµ respectively. The nodes in the tree

correspond to the prover messages and the edges to the verifier’s challenges. Every internal node at

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS174

depth i− 1 (1 ≤ i ≤ µ) has ai children with distinct challenges. Every transcript corresponds to one

path from the root to a leaf node. We simply write the transcripts as an (aµ)-tree of transcript when

a = a1 = a2 = · · · = aµ.

Definition 5.3 (Special-sound Interactive Protocol). Let µ,N ∈ N and (a1, . . . , aµ) ∈ Nµ. A

(2µ+1)-move public-coin interactive proof Π for relation R where the verifier samples its challenges

from a set of size N is (a1, . . . , aµ)-out-of-N special-sound if there exists a polynomial time algorithm

that, on input pi and any (a1, . . . , aµ)-tree of transcript for Π outputs w ∈ R(pi). We simply denote

the protocol as an aµ-out-of-N (or aµ) special-sound protocol if a = a1 = a2 = · · · = aµ.

Definition 5.4 (Random-Oracle Non-Interactive Argument of Knowledge (RO-NARK)). A non-

interactive random oracle proof for relation R is a pair (P,V) of probabilistic random-oracle algo-

rithms, such that: Given (pi,w) ∈ R and access to a random oracle ρNARK, the prover PρNARK(pi,w)

outputs a proof π. Given pi, a proof π, and access to the same random oracle ρNARK, the verifier

VρNARK(pi, π) outputs 0 to accept or any other value to reject.

Perfect Completeness: The NARK has perfect completeness if for all (pi,w) ∈ R

P [VρNARK(pi,PρNARK(pi,w)) = 0] = 1

Knowledge Soundness: The NARK has adaptive knowledge-soundness with knowledge error

κ : N × N → [0, 1] if there exists a knowledge extractor Ext, with the following properties: The

extractor, given input n, and oracle-access to any polynomial-time Q-query random oracle prover

P∗ that outputs statement of size n, runs in an expected polynomial time in |pi| + Q, and outputs

{(pi, π, aux, v;w)} such that a) (pi, π, aux, v) is identically distributed to {(pi, π, aux, v)} : (pi, π, aux)←
P∗,ρNARK , v ← VρNARK(pi, π) and b)

Pr

[
(pi;w) ∈ R

VρNARK(pi, π) = 0
: {(pi, π, aux, v;w)} ← ExtP

∗

]
≥ ϵ(P∗)− κ(n,Q)

poly(n)
,

where ϵ(P∗) is P’s success probability, i.e. ϵ(P∗) = P [VρNARK(pi, π) = 0 : (pi, π) ← P∗,ρNARK]. Here,

Ext implements ρNARK for P∗; in particular, it can arbitrarily program the random oracle.

Definition 5.5 (Fiat-Shamir Transform (adaptive)). The Fiat-Shamir transform FS[Π] = (Pfs,Vfs)

is a RO-NARK, where PρNARK(pi;w) runs P(pi;w) but instead of receiving challenge ci, on message

mi, from the verifier, it computes it as follows:

ci = ρNARK(ci−1,mi) (5.1)

and c0 = ρNARK(pi). PρNARK

fs outputs π = (m1, . . . ,mµ). The verifier VρNARK

fs accepts, if V accepts the

transcript (m1, c1, . . . ,mµ, cµ,mµ+1) for input pi and the challenges are computed as per equation

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS175

(5.1).

5.2.2 Adaptive Fiat-Shamir transform

Lemma 5.1 (Fiat-Shamir transform of Special-sound Protocols [AFK22]). The Fiat-Shamir trans-

form of a (α1, . . . , αµ)-out-of-N special-sound interactive proof Π is knowledge sound with knowledge

error

κfs(Q) = (Q+ 1)κ

where κ = 1−
∏
(1− αi

N) is the knowledge error of the interactive proof Π.

5.2.3 Commitment Scheme

Definition 5.6 (Commitment Scheme). cm = (Setup,Commit) is a binding commitment scheme,

consisting of two algorithms:

Setup(1λ)→ ck takes as input the security parameter and outputs a commitment key ck.

Commit(ck,m ∈ M) → C ∈ C, takes as input the commitment key ck and a message m in M and

outputs a commitment C ∈ C.
The scheme is binding if for all polynomial-time randomized algorithms P∗:

Pr


Commit(ck,m) = Commit(ck,m′)

∧
m ̸= m′

∣∣∣∣∣∣∣∣
ck← Setup(1λ)

m,m′ ← P∗(ck)

 = negl(λ)

Homomorphic commitment. We say the commitment is homomorphic if (C,+) is an additive

group of prime order p.

5.2.4 Incremental Verifiable Computation (IVC)

We adapt and simplify the definition from [Bün+21a; KST22].

Definition 5.7 (IVC). An incremental verifiable computation (IVC) scheme for function predicates

expressed in a circuit-satisfiability relation RNP is a tuple of algorithms IVC = (PIVC,VIVC) with the

following syntax and properties:

• PIVC(m, z0, zm, zm−1,wloc, πm−1])→ πm. The IVC prover PIVC takes as input a program output

zm at step m, local data wloc, initial input z0, previous program output zm−1 and proof πm−1

and outputs a new IVC proof πm.

• VIVC(m, z0, zm, πm) → b. The IVC verifier VIVC takes the initial input z0, the output zm at

step m, and an IVC proof πm, ‘accepts’ by outputting b = 0 and ‘rejects’ otherwise.

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS176

The scheme IVC has perfect adversarial completeness if for any function predicate ϕ expressible

in RNP, and any, possibly adversarially created, (m, z0, zm, , zm−1,wloc, πm−1) such that

ϕ(z0, zm, zm−1,wloc) ∧ (VIVC(m− 1, z0, zm−1, πm−1) = 0)

it holds that VIVC(m, z0, zm, πm) accepts for proof πm ← PIVC(m, z0, zm−1, zm,wloc, πm−1).

The scheme IVC has knowledge soundness if for every expected polynomial-time adversary P∗,

there exists an expected polynomial-time extractor ExtP∗ such that

Pr


VIVC(m, z0, z, πm) = 0∧

([∃i ∈ [m] ,¬ϕ(z0, zi, zi−1,wi)]

∨z ̸= zm)

∣∣∣∣∣∣∣∣
[ϕ, (m, z0, z, πm)]← P∗

[zi,wi]
m
i=1 ← ExtP∗

 ≤ negl(λ) .

Here m is a constant.

5.2.5 Simple Accumulation

We take definitions and proofs from [Bün+21a].

Definition 5.8 (Accumulation Scheme). An accumulation scheme for a NARK (PNARK,VNARK) is

a triple of algorithms acc = (Pacc,Vacc, D), all of which have access to the same random oracle ρacc

as well as ρNARK, the oracle for the NARK. The algorithms have the following syntax and properties:

• Pacc(pi, π = (π.x, π.w), acc = (acc.x, acc.w)) → {acc′ = (acc′.x, acc′.w), pf}. The accumula-

tion prover Pacc takes as input a statement pi, NARK proof π, and an accumulator acc and

outputs a new accumulator acc′ and correction terms pf.

• Vacc(pi, π.x, acc.x, acc
′.x, pf) → v. The accumulation verifier takes as input the statement pi,

the instances of the NARK proof, the old and new accumulator, the correction terms, and

‘accepts’ by outputting 0 and ‘rejects’ otherwise.

• D(acc)→ v. The decider on input acc ‘accepts’ by outputting 0 and ‘rejects’ otherwise.

An accumulation scheme has knowledge-soundness with knowledge error κ if the RO-NARK

(P′,V′) has knowledge error κ for the relation

Racc((pi, π.x, acc.x); (π.w, acc.w)) : (VNARK(pi, π) = 0 ∧D(acc) = 0) ,

where P′ outputs acc′, pf and V′ on input ((pi, π.x, acc.x), (acc′, pf)) accepts if D(acc′) and Vacc(pi, π.x, acc.x, acc
′.x, pf) =

0.

The scheme has perfect completeness if the RO-NARK (P′,V′) has perfect completeness for Racc.

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS177

Theorem 5.1 (IVC from accumulation[Bün+21a]). Given a standard-model NARK for circuit-

satisfiability and a standard-model accumulation scheme (Definition 5.8) for that NARK, both with

negligible knowledge error, there exists an efficient transformation that outputs an IVC scheme (see

Section 3.2 of [Bün+21a]) for constant-depth compliance predicates, assuming that the circuit com-

plexity of the accumulation verifier Vacc is sub-linear in its input.

Random Oracle. Note that both the NARK and accumulation scheme we construct are in the

random oracle model. However, Theorem 5.1 requires a NARK and an accumulation scheme in

the standard model. It remains an open problem to construct such schemes. However, we can

heuristically instantiate the random oracle with a cryptographic hash function and assume that the

resulting schemes still have knowledge soundness.

Definition 5.9 (Fiat-Shamir Heuristic). The Fiat-Shamir Heuristic, relative to a secure crypto-

graphic hash function H, states that a random oracle NARK with negligible knowledge error yields

a NARK that has negligible knowledge error in the standard (CRS) model if the random oracle is

replaced with H.

Complexity. The IVC transformation from [Bün+21a] recursively proves that the accumulation

was performed correctly. To do that, it implements Vacc as a circuit and proves that the previous

accumulation step was done correctly. Note that this recursive circuit is independent of the size of

π.w, acc.w and the runtime of D. The IVC prover is linear in the size of the recursive circuit plus

the size of the IVC computation step expressed as a circuit. The final IVC verifier and the IVC

proof size are linear in these components. This can be reduced using an additional SNARK as in

[KST22].

PCD. IVC can be generalized to arbitrary DAGs instead of just path graphs in a primitive called

proof-carrying data[Bit+13a]. Accumulation schemes can be compiled into full PCD if they support

accumulating an arbitrary number of accumulators and proofs[Bün+20; Bün+21a]. For simplicity,

we only build accumulation for one proof and one accumulator, as well as for two accumulators.

This enables PCD for DAGs of degree two. By transforming higher degree graphs into degree two

graphs (by converting each degree d node into a log2(d) depth tree), we can achieve PCD for these

graphs.

Outsourcing the decider. In the accumulation to IVC transformation, the IVC proof is linear in

the accumulator, and the IVC verifier runs the decider. The accumulation schemes we construct are

linear in the witness of a single computation step. However, we can outsource the decider by pro-

viding a SNARK that, given acc.x, proves knowledge of acc.w, such that D(acc) = 0. Nova[KST22]

constructs a custom, concretely efficient SNARK for their accumulation/folding scheme. However,

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS178

when outsourcing the decider, the IVC cannot continue. This breaks the strict completeness re-

quirement of IVC, which says that any prover can continue from any valid IVC proof. Nevertheless,

this may be fine for some applications of IVC.

5.3 Protocols

5.3.1 Special-sound Protocols

In this section, we describe a class of special-sound protocols whose verifier is algebraic. The protocol

Πsps has 3 essential parameters k, d, ℓ ∈ N, meaning that Πsps is a (2k−1)-move protocol with verifier

degree d and output length ℓ (i.e. the verifier checks ℓ degree d algebraic equations). In each round

i (1 ≤ i ≤ k), the prover Psps(pi,w, [mj , rj]
i−1
j=1) generates the next message mi on input the public

input pi, the witness w, and the current transcript [mj , rj]
i−1
j=1, and sends mi to the verifier; the

verifier replies with a random challenge ri ∈ F. After the final message mk, the verifier computes

the algebraic map Vsps and checks that the output is a zero vector of length ℓ. More precisely,

deg(Vsps) = d, s.t.

Vsps(pi, [mi]
k
i=1, [ri]

k−1
i=1) :=

d∑
j=0

f
Vsps

j (pi, [mi]
k
i=1, [ri]

k−1
i=1) ,

where f
Vsps

j is a homogeneous degree-j algebraic map that outputs a vector of ℓ field elements.

We describe the special-sound protocol Πsps below.

Special-sound Protocol Πsps = (Psps,Vsps) for relation R with algebraic verifier

Prover Psps(pi,w) Verifier Vsps(pi)

mi ← Psps(pi,w, [mj , rj]
i−1
j=1)

mi

ri ri ←$ F

Repeat k − 1 time Repeat k − 1 time

Final message mk

Vsps(pi, [mi]
k
i=1, [ri]

k−1
i=1)

?
= 0ℓ

5.3.2 Commit and Open

For a commitment scheme cm = (Setup,Commit), consider the following relation RR
cm = (x;w,m ∈

M,m′ ∈ M) : {(x,w) ∈ R ∨ (Commit(m) = Commit(m′) ∧m ̸= m′)}. The relation’s witness is

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS179

either a valid witness for R or a break of the commitment scheme cm. We now design a special-

sound protocol Πcm = (Pcm,Vcm) for RR
cm given Πsps = (Psps,Vsps), a special-sound protocol for R.

Pcm runs Psps to generate the ith message and then commits to the message. Along with the final

message, Pcm sends the opening to the commitment. The verifier Vcm checks the correctness of the

commitments and runs Vsps on the commitment openings.

Special-sound Protocol Πcm for RR
cm as a cm transform of Πsps = (Psps,Vsps)

Prover Pcm(ck, pi,w) Verifier Vcm(ck, pi)

mi ← Psps(pi,w, [mj , rj]
i−1
j=1)

Ci ← Commit(ck,mi) Ci

ri ri ←$ F

Repeat k − 1 time Repeat k − 1 time

Ck ← Commit(ck,mk) Ck

Opening [mi]
k
i=1

Commit(ck,mi)
?
= Ci∀i ∈ [k]

Vsps(pi, [mi]
k
i=1, [ri]

k−1
i=1)

?
= 0ℓ

Lemma 5.2 (Πcm is (a1, . . . , aµ)-special-sound). Let Πsps be an (a1, . . . , aµ)-out-of-N special-sound

protocol for relation R, where the prover messages are all in a set M. Let (Setup,Commit) be a

binding commitment scheme for messages in M. For ck ← Setupcm(1
λ) let Rcm = (pi;w,m ∈

M,m′ ∈ M) : (pi;w) ∈ R ∨ (Commit(ck,m) = Commit(ck,m′) ∧m ̸= m′). Then Πcm = cm[Πsps] is

an (a1, . . . , aµ)-out-of-N special-sound protocol for RR
cm.

Proof. Let Extsps be the extractor for Πsps. We will construct Extcm for Πcm that computes a witness

for Rcm, i.e., a witness for R or a collision for cm given an (a1, . . . , aµ)-transcript tree for Πcm. The

extractor Extcm first checks whether there exist two transcripts that have inconsistent final messages.

That is, the final message opening is different for the nodes in the intersection of the root-to-leaf paths

of these two transcripts. This means we have mi and m′
i, such that Commit(mi) = Commit(m′

i) and

mi ̸= m′
i. This is a break for cm, i.e., a valid witness for Rcm. Otherwise Extcm builds a transcript

tree for Πsps by replacing all commitments with the openings and use Extsps to compute w ∈ R(pi),
such that (w,⊥,⊥) ∈ Rcm(pi).

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS180

5.3.3 Fiat-Shamir transform

Let ρNARK be a random oracle. Let Πcm be the commit-and-open protocol for the special-sound

protocol Πsps = (Psps,Vsps). The Fiat-Shamir Transform FS[Πcm] of the protocol Πcm is the following.

By Lemma 5.1, FS[Πcm] is knowledge sound if Πsps is special-sound.

Fiat-Shamir Transform FS of Special-sound Protocol Π for relation RR
cm: FS[Πcm]

Prover PρNARK
NARK (ck, pi,w) Verifier VρNARK

NARK (ck, pi)

r0 ← ρNARK(pi)

For i ∈ [k − 1] :

mi ← Psps(pi,w, [mj , rj]
i−1
j=1)

Ci ← Commit(ck,mi)

ri ← ρNARK(ri−1, Ci)

mk ← Psps(pi,w, [mj , rj]
k−1
j=1)

Ck ← Commit(ck,mi) π.x = [Ci]
k
i=1

π.w = [mi]
k
i=1

r0 ← ρNARK(x)

ri ← ρNARK(ri−1, Ci)∀i ∈ [k − 1]

Commit(ck,mi)
?
= Ci∀i ∈ [k]

Vsps(pi, π.x, π.w, [ri]
k−1
i=1)

?
= 0ℓ

5.3.4 Accumulation Scheme for VNARK

Let ρacc and ρNARK be two random oracles, and let VNARK be the verifier of FS[Πcm] in Section 5.3.3,

whose underlying special-sound protocol is Πsps = (Psps,Vsps) for a relation R. We describe the

accumulation scheme for VNARK.

The accumulated predicate. The predicate to be accumulated is the “relaxed” verifier check of

the NARK scheme FS[Πcm] for relation R. Namely, given public input pi ∈Mℓin , random challenges

[ri]
k−1
i=1 ∈ Fk−1, a NARK proof

π.x = [Ci]
k
i=1, π.w = [mi]

k
i=1

where [Ci]
k
i=1 ∈ Ck are commitments and [mi]

k
i=1 are prover messages in the special-sound protocol

Πsps, and a slack variable µ, the predicate checks that (i) ri = ρNARK(ri−1, Ci) for all i ∈ [k − 1]

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS181

(where r0 := ρNARK(pi)), (ii) Commit(ck,mi) = Ci for all i ∈ [k], and (iii)

Vsps(pi, π.x, π.w, [ri]
k−1
i=1 , µ) :=

d∑
j=0

µd−j · fVsps

j (pi, π.w, [ri]
k−1
i=1) = e

where e = 0ℓ and µ = 1 for the NARK verifier VNARK. Here f
Vsps

j is a degree-j homogeneous algebraic

map that outputs ℓ field elements. Degree-j homogeneity says that each monomial term of f
Vsps

j has

degree exactly j.

Remark 5.3.1. Without loss of generality, we assume that the public input pi is of constant size,

as otherwise, we can set it as the hash of the original public input.

Accumulator. The accumulator has the following format:

• Accumulator instance acc.x := {pi, [Ci]
k
i=1, [ri]

k−1
i=1 , E, µ}, where pi ∈ Mℓin is the accumulated

public input, [Ci]
k
i=1 ∈ Ck are the accumulated commitments, [ri]

k−1
i=1 ∈ Fk−1 are the accumu-

lated challenges, E ∈ C is the accumulated commitment to the error terms, and µ ∈ F is a

slack variable.

• Accumulator witness acc.w := {[mi]
k
i=1}, where [mi]

k
i=1 are the accumulated prover messages.

Accumulation prover. On input commitment key ck (which can be hardwired in the prover’s

algorithm), accumulator acc, an instance-proof pair (pi, π) where

acc := (acc.x = {pi′, [C ′
i]
k
i=1, [r

′
i]
k−1
i=1 , E, µ}, acc.w = {[m′

i]
k
i=1}) ,

π := (π.x = [Ci]
k
i=1, π.w = [mi]

k
i=1),

the accumulation prover Pacc works as in Figure 5.3.

Accumulation verifier. On input public input pi, NARK proof instance π.x, accumulator in-

stance acc.x, accumulation proof pf, and the updated accumulator instance acc′.x := {pi′′, [C ′′
i]

k
i=1, [r

′′
i]

k
i=1, E

′, µ′},
the accumulation verifier Vacc works as in Figure 5.4.

Decider. On input the commitment key ck (which can be hardwired) and an accumulator

acc = (acc.x = {pi, [Ci]
k
i=1, [ri]

k−1
i=1 , E, µ}, acc.w = {[mi]

k
i=1}) ,

the decider does the checks described in Figure 5.5.

Remark 5.3.2. The accumulation scheme for VNARK is also naturally a folding scheme as defined

in Nova [KST22], where we can view an accumulator as a relaxed NP instance with error terms.

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS182

Pρacc,ρNARK
acc (ck, acc, (pi, π))
1. ri ← ρNARK(ri−1, Ci)∀i ∈ [k − 1] where r0 := ρNARK(pi).

2. Compute [ej]
d−1
j=1 ∈ (Fℓ)d−1, such that

d∑
j=0

(X + µ)d−j · fVsps

j (X · pi+ pi′, [X ·mi +m′
i]
k
i=1, [X · ri + r′i]

k−1
i=1)

=

d∑
j=0

µd−jf
Vsps

j (pi′, [m′
i]
k
i=1, [r

′
i]
k−1
i=1) +Xd · VNARK(pi, [mi]

k
i=1, [ri]

k−1
i=1) +

d−1∑
j=1

ejX
j

=e+

d−1∑
j=1

ejX
j

3. Ej ← Commit(ck, ej)∀j ∈ [d− 1]
4. α← ρacc(acc.x, pi, π.x, [Ej]

d−1
j=1) ∈ F

5. Set vectors

v :=
(
1, pi, [ri]

k−1
i=1 , [Ci]

k
i=1, [mi]

k
i=1

)
, v′ :=

(
µ, pi′, [r′i]

k−1
i=1 , [C

′
i]
k
i=1, [m

′
i]
k
i=1

)
.

6. v′′ :=
(
µ′, pi′′, [r′′i]

k−1
i=1 , [C

′′
i]

k
i=1, [m

′′
i]

k
i=1

)
← α · v + v′.

7. E′ ← E +
∑d−1

j=1 α
j · Ej .

8. Set acc′.x := {pi′′, [C ′′
i]

k
i=1, [r

′′
i]

k
i=1, E

′, µ′}, acc′.w := {[m′′
i]

k
i=1}.

9. Set accumulation proof pf := [Ej]
d−1
j=1

Figure 5.3: Accumulation Prover for low-degree Fiat-Shamired NARKs

Vρacc,ρNARK
acc (pi, π.x = [Ci]

k
i=1, acc.x = (pi′, [C ′

i]
k
i=1, [r

′
i]
k−1
i=1 , E, µ), pf = [Ej]

d−1
j=1 , acc

′.x)
1. ri ← ρNARK(ri−1, Ci)∀i ∈ [k − 1] where r0 := ρNARK(pi).
2. α← ρacc(acc.x, pi, π.x, pf)
3. Set vectors

v :=
(
1, pi, [ri]

k−1
i=1 , [Ci]

k
i=1

)
, v′ := acc.x.

(
µ, pi′, [r′i]

k−1
i=1 , [C

′
i]
k
i=1

)
.

4. Check acc′.x.
(
µ′, pi′′, [r′′i]

k−1
i=1 , [C

′′
i]

k
i=1

) ?
= α · v + v′.

5. Check acc′.x.E′ ?
= acc.x.E +

∑d−1
j=1 α

j · Ej .

Figure 5.4: Accumulation Verifier for low-degree Fiat-Shamired NARKs

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS183

Dacc(acc = (acc.x = {pi, [Ci]
k
i=1, [ri]

k−1
i=1 , E, µ}, acc.w = {[mi]

k
i=1}))

1. Ci
?
= Commit(ck,mi) for all i ∈ [k].

2. e←
∑d

j=0 µ
d−jf

Vsps

j (pi, [mi]
k
i=1, [ri]

k−1
i=1) where f

Vsps

j is the degree-j homogeneous algebraic
map described in the accumulated predicate.

3. E
?
= Commit(ck, e).

Figure 5.5: Accumulation Decider for low-degree Fiat-Shamired NARKs

A NARK proof π is an accumulator with µ = 1 and E = 0 ∈ G. We can use the same accu-

mulation scheme to fold two accumulators (acc, acc′) into a new accumulator acc′′. The scheme

is identical to the one presented above but with non-trivial µ, e, E terms for acc. The verifier per-

forms one additional group scalar multiplication. In the language of folding schemes, we can fold

two NARK instances into an accumulator; or fold a NARK instance and an accumulator into an

updated accumulator; or fold two accumulators into an updated accumulator.

Complexity. Let Πsps be a (2k−1)-move special-sound protocol with the verifier checking ℓ degree-

d equations. Denote by |M | the number of elements in prover messages and |M∗| the number of

non-zero elements in the prover messages. Assume that pi is a hash with length 1 (this saves the

call r0 := ρNARK(pi)), and let |R| be the number of elements in verifier’s challenges. We analyze the

computational complexity of the accumulation scheme:

• The accumulation prover

– asks k − 1 queries to ρNARK and 1 query to ρacc;

– computes Ej = Commit(ck, ej) for all j ∈ [d− 1], where ej ∈ Fℓ;

– performs |R|+ |M∗|+ 2 F-ops to combine (µ, pi, [ri]
k−1
i=1 , [mi]

k
i=1);

– performs k G-ops to combine [Ci]
k
i=1;

– computes the coefficients of ℓ degree-d polynomials for [ej]
d−1
j=1 .

• The accumulation verifier performs

– asks k − 1 constant size queries to ρNARK and 1 d-sized query to ρacc;

– |R|+ 2 F-ops to combine (µ, pi, [ri]
k−1
i=1);

– k G-ops to combine [Ci]
k
i=1;

– d− 1 G-ops to add [Ej]
d−1
j=1 onto E.

• The decider

– computes Ci = Commit(ck,mi) for i ∈ [k] and E = Commit(ck, e), with total complexity

around |M |+ ℓ G-ops.

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS184

– evaluate ℓ degree-d multivariate polynomials to compute vector e.

Theorem 5.2. Let (PNARK,VNARK) be the RO-NARK defined in Section 5.3.3. Let cm = (Setup,Commit)

be a binding, homomorphic commitment scheme. Let ρacc be another random oracle. The accumu-

lation scheme (Pacc,Vacc, Dacc) for VNARK satisfies perfect completeness and has knowledge error

(Q+1)d+1
|F| + negl(λ) as defined in Definition 5.8, against any randomized polynomial-time Q-query

adversary.

Proof.

Completeness. Consider any tuple ((pi, π), acc) ∈ Racc, that is, VNARK(pi, π) and D(acc) both

accept. Let (acc′, pf) denote the output of the accumulation prover Pacc(ck, acc, (pi, π)). We argue

that both the decider D(acc′) and the accumulation verifier Vacc(pi, π.x, acc.x, pf, acc
′.x) will accept,

which finishes the proof of perfect completeness by Definition 5.8.

Vacc accepts as Pacc and Vacc go through the same process of computing challenges [ri]
k−1
i=1 and

α, thus the linear combinations of acc.x and (pi, π.x; pf, [ri]
k−1
i=1) via α will be consistent.

We prove that D(acc′) accepts by scrutinizing the following decider checks.

The check acc′.Ci
?
= Commit(ck, acc′.mi) succeeds for all i ∈ [k]. This is because

acc′.{Ci,mi} = acc.{Ci,mi}+ α · π.{Ci,mi}

for all i ∈ [k], where π.Ci = Commit(ck, π.mi) because VNARK(pi, π) accepts, and acc.Ci = Commit(ck, acc.mi)

because D(acc) accepts. Thus the check succeeds by the homomorphism of the commitment scheme.

The decider computes e′ ←
∑d

j=0(acc
′.µ)d−jf

Vsps

j (acc′.{pi, [mi]
k
i=1, [ri]

k−1
i=1 }) such that for e =∑d

j=0 acc.µ
(d−j) · fVsps

j (acc.{pi, [mi]
k
i=1, [ri]

k−1
i=1 }), it holds that

e′ = e+

d−1∑
j=1

αj · pf.ej

=

d∑
j=0

(α+ acc.µ)d−j · fVsps

j (α · {pi, π.[mi]
k
i=1, [ri]

k−1
i=1 }+ acc.{pi, [mi]

k
i=1, [ri]

k−1
i=1 }) .

By the definition of pf.ej and the homomorphism of the commitment scheme, and because D(acc)

accepts and checks E = Commit(ck, e), we have that E′ = Commit(ck, e′).

Knowledge-Soundness. We show that the scheme has knowledge-soundness by showing that

there exists an underlying (d+1)-special-sound protocol and then applying the Fiat-Shamir transform

to show that the accumulation scheme is knowledge sound. Consider the public-coin interactive

protocol ΠI = (PI(pi, π, acc),VI(pi, π.x, acc.x)) where PI sends pf = [Ej]
d−1
j=1 ∈ Gd−1 as computed

by Pacc to VI . The verifier sends a random challenge α ∈ F, and the prover PI responds with acc′

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS185

as computed by Pacc. VI accepts if Dacc(acc
′) = 0 and Vacc(pi, π.x, acc.x, pf, acc

′.x) = 0 using the

random challenge α, instead of a Fiat-shamir challenge.

Claim 1: ΠI is (d + 1)-special-sound Consider the relation Racc where Racc is defined in

Definition 5.8. Consider d+ 1 accepting transcripts for ΠI :

{Ti := (pi, π.x, acc.x; acc′i, pfi)}d+1
i=1 .

We construct an extractor Extacc that extracts a witness for Racc(pi.π.x, acc.x) given T .
For all i ∈ [d+ 1],

(acc′i) = (µ′
i, pi

′
i, [C

′
i,j]

k
j=1, [ri,j]

k−1
j=1 , E

′
i, [m

′
i,j]

k
j=1)

and pfi = pf = [Ej]
d−1
j=1 .

Given that the transcripts are accepting, i.e. both Vacc andDacc accept, we have that Commit(ck, e′i) =

E′
i = acc.E +

∑d−1
j=1 α

j
iEj for all i ∈ [d+ 1], whereas

e′i :=

d∑
j=0

µ′
i
d−j

fR
j (π′

i, [m
′
i,j]

k
j=1, [ri,j]

k−1
j=1) .

Using a Vandermonde matrix of the challenges α1, . . . , αd we can compute e, [ej]
d−1
j=1 such that

Ej = Commit(ck, ej) and acc.E = Commit(ck, e) from the equations above. Therefore we have that

e′i = e+
∑d−1

j=1 α
j
iej for all i ∈ [d+ 1].

Additionally using two challenges (α1, α2), Extacc can compute π.w = [mj]
k
j=1 = [

acc′.m1,j−acc′.m2,j

α1−α2
]kj=1.

It holds that acc.mj = acc′.m1,j − α1 · π.mj∀j ∈ [k], such that π.Cj = Commit(ck, π.mj) and

acc.Cj = Commit(ck, acc.mj). If for any other challenge and any j, acc′.mj ̸= απ.mj +acc.mj , then

this can be used to compute a break of the commitment scheme cm. This happens with negligible

probability by assumption.

Otherwise, we have that
∑

j=0 µ
d−j
i fR

j (πj , [mi,j]
k
i=1, [ri,j]

k−1
i=1)−ei = 0 for all i ∈ [d+1]. Together

this implies that the degree d polynomial

p(X) =

d∑
j=0

(X + acc.µ)d−j · fVsps

j (X · pi+ acc.pi, [X ·mi + acc.mi]
k
i=1, [X · ri + acc.ri]

k−1
i=1)

− e−
d−1∑
j=1

ejX
j , (5.2)

is zero on d+1 points (α1, . . . , αd+1), i.e. is zero everywhere. The constant term of this polynomial

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS186

is
d∑

j=0

acc.µd−j · fVsps

j (acc.pi, [acc.mi]
k
i=1, [acc.ri]

k−1
i=1)− e .

It being 0 implies that D(acc) = 0. Additionally, the degree d term of the polynomial is

d∑
j=0

f
Vsps

j (pi, [π.mi]
k
i=1, [π.ri]

k−1
i=1) .

Together with Vacc checking that the challenges ri are computed correctly this implies that VNARK(pi, π) =

0. Ext thus outputs a valid witness (π.w, acc.w) ∈ Racc(pi, π.x, acc.x) and thus ΠI is (d+1)-special-

sound. Using Lemma 5.1, we have that ΠAS = FS[ΠI] is a NARK for Racc with knowledge soundness

(Q+1) · d+1
|F| +negl(λ). This implies that acc is an accumulation scheme with ((Q+1) · d+1

|F| +negl(λ))-

knowledge soundness.

5.3.5 Compressing verification checks for high-degree verifiers

Observe that the accumulation prover needs to perform Ω(dℓ) group operations to commit to the d−1
error vectors ej ∈ Fℓ (1 ≤ j < d); and the accumulation verifier needs to check the combination

of d error vector commitments. This can be a bottleneck when the verifier degree d is high. In

this circumstance, we can optimize the accumulation complexity by transforming the underlying

special-sound protocol Πsps into a new special-sound protocol CV[Πsps] for the same relation R. This
optimization compresses the ℓ degree-d equations checked by the verifier into a single degree-(d+2)

equation using a random linear combination, with the tradeoff of additionally checking 2
√
ℓ degree-2

equations. We describe the generic transformation below.

Compressing verification checks. W.l.o.g. assume ℓ is a perfect square, then we can transform

Πsps into a special-sound protocol CV[Πsps] where the Vsps reduces from ℓ degree-d checks to 1 degree-

(d + 2) check and additionally 2
√
ℓ degree-2 checks. Instead of checking the output of Vsps to be

ℓ zeroes, we take a random linear combination of the ℓ verification equations using powers of a

challenge β. For example, if the map is Vsps(x1, x2) := (f1(x1, x2), f2(x1, x2)) = (x1 + x2, x1x2) we

can set the new algebraic map as V′
sps(x1, x2, β) := f1(x1, x2) + β · f2(x1, x2) = (x1 + x2) + βx1x2

for a random β. Doing this naively reduces the output length to 1 but also requires the verifier to

compute the appropriate powers of β. This would increase the degree by ℓ, an undesirable tradeoff.

To mitigate this, we can have the prover precompute powers of β, i.e. β, β2, . . . , βℓ and send them

to the verifier. The verifier then only needs to check consistency between the powers of β, which can

be done using a degree 2 check, e.g. βi+1 = βi · β and the degree d verification equation increases

in degree by 1. This mitigates the degree increase but requires the prover to send another message

of length ℓ. To achieve a more optimal tradeoff, we write each i = j + k ·
√
ℓ for j, k ∈ [1,

√
ℓ]. The

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS187

Transformed Protocol CV[Πsps] = (Psps,V
′
sps) for relation R

Prover Psps(pi,w) Verifier V′
sps(pi)

mi ← Psps(pi,w, [mj , rj]
i−1
j=1)

mi

ri ri ←$ F

Repeat k − 1 time Repeat k − 1 time

Message mk

β β ←$ F

[βi ← βi]
√
ℓ−1

i=1
mk+1 = [βi, β

′
i]
√
ℓ−1

i=1

[β′
j ← βj

√
ℓ]

√
ℓ−1

j=1 V′
sps(pi, [mi]

k+1
i=1 , ([ri]

k−1
i=1 , β))

?
= 0

βi+1 = βi · β∀i ∈ [1,
√
ℓ− 2]

β′
i+1 = β′

i · β′
1∀i ∈ [1,

√
ℓ− 2]

β1 = β, β′
1 = β√

ℓ−1 · β

Figure 5.6: Compressed verification of Πsps.

prover then sends
√
ℓ powers of β and

√
ℓ− 1 powers of β

√
ℓ. From these, each power of β from 1 to

ℓ can be recomputed using just one multiplication. This results in the prover sending an additional

message of length 2
√
ℓ, the original ℓ verification checks being transformed into a single degree d+2

check and additionally 2
√
ℓ degree 2 checks for the consistency of the powers of β.

We describe the transformed protocol in Figure 5.6, where

V′
sps(pi, [mi]

k+1
i=1 , ([ri]

k−1
i=1 , β)) :=

√
ℓ−1∑
i=0

√
ℓ−1∑
j=0

βi · β′
j · Vsps,i+j

√
ℓ(pi, [mi]

k
i=1, [ri]

k−1
i=1)

=

ℓ−1∑
j=0

βj · Vsps,j(pi, [mi]
k
i=1, [ri]

k−1
i=1)

and Vsps,j(pi, [mi]
k
i=1, [ri]

k−1
i=1) is the (j+1)-th (0 ≤ j < ℓ) equation checked by Vsps. The transformed

protocol is a (2k+1)-move special-sound protocol for the same relation R. The transformed verifier

now checks 1 degree-(d+ 2) equation and additionally 2
√
ℓ degree-2 equations.

Lemma 5.3. Let Πsps be a (2k−1)-move protocol for relation R with (a1, . . . , ak−1)-special-soundness,

in which the verifier outputs ℓ elements. The transformed protocol CV[Πsps] of Πsps is (a1, . . . , , ak−1, ℓ)-

special-sound.

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS188

Proof. Let Extsps be the extractor for Πsps. We construct a extractor ExtCV of CV[Πsps] for the same

relation R. Given an (a1, . . . , , ak−1, ℓ)-tree T of accepting transcripts, ExtCV invokes Extsps on input

the depth-(k − 1) transcript subtree of T , and return what Extsps outputs.

We prove that the extractor succeeds. For each internal node u at depth k − 1, it has ℓ children

where each child maps to a distinct value of β ∈ F. Fix the messages msg = (pi, [mi]
k
i=1, [ri]

k−1
i=1) at

node u and let Vsps := (Vsps,1, . . . ,Vsps,ℓ) be the verifier of Πsps. Define the degree ℓ − 1 univariate

polynomial

p(X) :=

ℓ−1∑
j=0

Xj · cj

where cj := Vsps,j(msg) ∈ F is Vsps,j ’s output on message msg. Since the transcripts are accepting,

it holds that p evaluates to zero on the ℓ different values of β that correspond to the ℓ children of

node u. Thus the univariate polynomial p is a zero polynomial, which implies that Vsps outputs zero

vector on message msg. Therefore for every node u at depth k − 1, the sub-transcript from root to

node u is an accepting transcript to Πsps. Therefore the input to Extsps is a valid (a1, . . . , , ak−1)-tree

of accepting transcripts, and Extsps will output the correct witness.

High-low degree accumulation. After the transformation, the error vectors ej (1 ≤ j ≤ d+ 1)

become single field elements, and we can use the trivial commitment Ej := Commit(ck, ej) := ej

without group operations. Additionally, we can use a separate error vector e′ ∈ F2
√
ℓ to keep

track of the error terms for the 2
√
ℓ degree-2 checks, and set E′ := Commit(ck, e′) ∈ G to be the

corresponding error commitment. The accumulation prover only needs to perform O(
√
ℓ) additional

group operations to commit mk+1 and e′, and compute the coefficients of a degree-(d+2) univariate

polynomial, which is described as the sum of O(ℓ) polynomials. The accumulator instance needs to

include one more challenge β and two commitments (for mk+1 and e′). The accumulator verifier

needs to do only k + 2 (rather than k + d − 1) group scalar multiplications, with the tradeoff of 1

more hash and O(d) more field operations. This high-low degree accumulation is described in detail

in Appendix 5.7.

Theorem 5.3 (IVC for high-degree special-sound protocols). Let F be a finite field, such that

|F| ≥ 2λ and cm = (Setup,Commit) be a binding homomorphic commitment scheme for vectors in F.
Let Πsps = (Psps,Vsps) be a special-sound protocol for an NP-complete relation RNP with the following

properties:

• It’s (2k − 1) move.

• It’s (a1, . . . , ak−1)-out-of-|F| special-sound. Such that the knowledge error κ = 1 −
∏k−1

i=1 (1 −
ai

|F|) = negl(λ)

• The inputs are in Fℓin

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS189

• The verifier is degree d = poly(λ) with output in Fℓ

Then, under the Fiat-Shamir heuristic for a cryptographic hash function H(Definition 5.9), there

exist two IVC schemes IVC = (PIVC,VIVC) and IVCCV = (PCV,IVC,VCV,IVC) with predicates expressed

in RNP with the following efficiencies:

No CV CV

PIVC native

∑k
i=1 |m∗

i |+ (d− 1)ℓG
Psps + L(Vsps, d)

∑k
i=1 |m∗

i |+O(
√
ℓ)G

Psps + L′(Vsps, d+ 2)

PIVC recursive

k + d− 1G
k + ℓinF

(k + d+O(1))H + 1Hin

k + 2G
k + ℓin + d+ 1F

(k + d+O(1))H + 1Hin

VIVC:
ℓ+

∑k
i=1 |mi|G
Vsps

O(
√
ℓ) +

∑k
i=1 |mi|G

O(ℓ) + Vsps

|πIVC| :
k + ℓinF
k + 1G∑k
i=1 |mi|

k + ℓin + 1F
k + 2G∑k

i=1 |mi|+O(
√
ℓ)

The first row displays the native operations of the IVC prover. The second row describes the size of

the recursive statement expressed as an instance of RNP for which PIVC creates a proof. The third

row is the computation of VIVC, and the last row is the size of the proof.

In the table, |mi| denotes the prover message length; |m∗
i | is the number of non-zero elements in

mi; G for rows 1-3 is the total length of the messages committed using Commit. F are field operations.

H are calls to the random oracle and Hin are the hash to the public input and accumulator instance.

Psps (and Vsps) is the cost of running the prover (and the algebraic verifier) of the special-sound

protocol, respectively. L(Vsps, d) is the cost of computing the coefficients of the degree d polynomial

e(X) :=

d∑
j=0

(µ+X)d−j · fVsps

j (acc+X · π) , (5.3)

and L′(Vsps, d+ 2) is the cost of computing the coefficients of the degree d+ 2 polynomial

e(X) :=

√
ℓ−1∑

a=0

√
ℓ−1∑
b=0

(X ·π.βa + acc.βa)(X ·π.β′
b + acc.β′

b)

d∑
j=0

(µ+X)d−j · fVsps

j,a+b
√
ℓ
(acc+X ·π) , (5.4)

where all inputs are linear functions in a formal variable X4, and f
Vsps

j,i is the ith (0 ≤ i ≤ ℓ − 1)

component of f
Vsps

j ’s output. For the proof size, G and F are the number of commitments and field

elements, respectively.

4For example if fd =
∏d

i=1(ai+bi ·X) then a naive algorithm takes O(d2) time but using FFTs it can be computed
in time O(d log2 d)[Che+22].

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS190

Proof. The construction first defines the two NARKs

ΠNARK = (PNARK,VNARK) = FS[cm[Πsps]] ,

and

ΠNARK,CV = (PNARK,VNARK) = FS[cm[CV[Πsps]]] .

Then we construct the accumulation scheme (Pacc,Vacc) = acc[ΠNARK] using the accumulation scheme

from Section 5.3.4 and (Pacc,HLVacc,HL) = accHL[ΠNARK,CV] using the accumulation scheme from Sec-

tion 5.7. Then we apply the transformation from Theorem 5.1 to construct the IVC schemes IVC

and IVCCV.

Security: By Lemmas 5.1,5.2, we have that ΠNARK has (Q+1)·
[
1−
∏k−1

i=1 (1−
ai

|F|)
]
knowledge error

for relation RRNP
cm for a polynomial-time Q-query RO-adversary. Witnesses for RRNP

cm are either a

witness forRNP or a break of the binding property of cm. Assuming that cm is a binding commitment

scheme, the probability that a polynomial time adversary and a polynomial time extractor can

compute such a break is negl(λ). Thus ΠNARK has knowledge error κ = (Q + 1) ·
[
1 −

∏k−1
i=1 (1 −

ai

|F|)
]
+negl(λ) for RNP. Analogously and using Lemma 5.3, ΠNARK,CV has knowledge soundness with

knowledge error κ′ = (Q+1) ·
[
1− (1− ℓ

|F|)
∏k−1

i=1 (1−
ai

|F|)
]
+ negl(λ) for RNP. By assumption, κ and

κ′ are negligible in λ. Using Theorem 5.2 and Corollary 5.5 we can construct accumulation schemes

acc and accCV for ΠNARK and ΠNARK,CV, respectively. The accumulation schemes have negligible

knowledge error as d = poly(λ). Under the Fiat-Shamir heuristic for H we can turn the NARKs and

the accumulation schemes into secure schemes in the standard model.

By Theorem 5.1, this yields IVC and IVCCV, secure IVC schemes with predicates expressed in

RNP.

Efficiency: We first analyze the efficiency for IVC. The IVC-prover runs Psps to compute all

prover messages. It also commits to all the Psps messages using cm. Finally, it needs to compute

all error terms e1, . . . , ed−1 and commit to them. The error terms are computed by symbolically

evaluating the polynomial e(X) in Equation 5.4 with linear functions as inputs. The recursive circuit

combines a new proof π.x with an accumulator acc.x. The size of the accumulator instance is ℓin

field elements for the input, k − 1 field elements for the interactive-proof challenges, 1 field element

for the accumulator challenge, and k commitments for the Psps messages and d− 1 commitments for

the error terms. The IVC verifier checks the correctness of the commitments and runs Vsps.

For IVCCV, the prover needs to additionally commit to a message mk+1 with length O(
√
ℓ); the

number of error terms also increases from d− 1 to d+ 1. Fortunately, the error terms are only one

element in F, so we can use the identity function as the trivial commitment scheme. Thus, there is

no cost for committing to the d+ 1 error terms when using CV. However, there is another separate

error term e′ ∈ F2
√
ℓ for the additional O(

√
ℓ) degree-2 checks, thus the prover needs to commit to

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS191

E′ = Commit(e′). The size of the accumulator instance is ℓin field elements for the input, k field

elements for the interactive-proof challenges, 1 field element for the accumulator challenge, k + 1

commitments for the prover messages, d + 1 field elements for the error terms of the high-degree

checks, and 1 commitment for the additional error term e′.

Remark 5.3.3. For simplicity, we assume that the public input, the prover messages, and the verifier

challenges are all in the same field F. This isn’t strictly necessary; for example, the challenges could

be drawn from a subset of F. More generally, we can also allow prover messages to be group elements

in G given a homomorphic commitment scheme to group elements(e.g. [Abe+10]).

5.4 Special-sound subprotocols for ProtoStar

In this section, we present special-sound protocols for permutation, high-degree gate, circuit se-

lection and lookup relations, which are the building blocks for the (non-uniform) Plonkish circuit-

satisfiability relations. We can build accumulation schemes for (and thus IVCs from) these special-

sound protocols via the framework presented in Section 5.3.

5.4.1 Permutation relation

Definition 5.10. Let σ : [n] → [n] be a permutation, the relation Rσ is the set of tuples w ∈ Fn

such that wi = wσ(i) for all i ∈ [n].

Special-sound protocol Πσ for permutation relation Rσ

Prover P(σ,w ∈ Fn) Verifier V(σ)

w

Check wi −wσ(i) = 0∀i ∈ [n]

Complexity. Πσ is a 1-move protocol (i.e. k = 1); the degree of the verifier is 1.

5.4.2 High-degree custom gate relation

Definition 5.11. Given configuration CGATE := (n, c, d, [si ∈ Fn, Gi]
m
i=1) where n is the number

of gates, c is the arity per gate, d is the gate degree, [si]
m
i=1 are the selector vectors, and [Gi]

m
i=1

are the gate formulas, the relation RGATE is the set of tuples w ∈ Fcn such that
∑m

j=1 sj,i ·
Gj(wi,wi+n, . . . ,wi+(c−1)·n) = 0 for all i ∈ [n].

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS192

Special-sound protocol ΠGATE for relation RGATE

Prover P(CGATE,w ∈ Fcn) Verifier V(CGATE)

w

m∑
j=1

sj,i ·Gj(wi,wi+n, . . . ,wi+(c−1)·n)

?
= 0∀i ∈ [n]

Complexity. ΠGATE is a 1-move protocol (i.e. k = 1) with verifier degree d.

5.4.3 Lookup relation

Definition 5.12. Given configuration CLK := (T, ℓ, t) where ℓ is the number of lookups and t ∈ FT

is the lookup table, the relation RLOOKUP is the set of tuples w ∈ Fℓ such that wi ∈ t for all i ∈ [ℓ].

We recall a useful lemma for lookup relation from [Hab22b], and present a special-sound protocol

for the lookup relation.

Lemma 5.4 (Lemma 5 of [Hab22b]). Let F be a field of characteristic p > max(ℓ, T). Given two

sequences of field elements [wi]
ℓ
i=1 and [ti]

T
i=1, we have {wi} ⊆ {ti} as sets (with multiples of values

removed) if and only if there exists a sequence [mi]
T
i=1 of field elements such that

ℓ∑
i=1

1

X +wi
=

T∑
i=1

mi

X + ti
. (5.5)

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS193

Special-sound protocol ΠLK for RLOOKUP

Prover P(CLK,w ∈ Fℓ) Verifier V(CLK)

Compute m ∈ FT such that

mi :=

ℓ∑
j=1

1(wj = ti)∀i ∈ [T] w,m

r r ←$ F

Compute h ∈ Fℓ, g ∈ FT

hi :=
1

wi + r
∀i ∈ [ℓ]

gi :=
mi

ti + r
∀i ∈ [T] h,g

ℓ∑
i=1

hi
?
=

T∑
i=1

gi

hi · (wi + r)
?
= 1∀i ∈ [ℓ]

gi · (ti + r)
?
= mi∀i ∈ [T]

Achieving perfect completeness. Note that the protocol does not have perfect completeness.

If there exists an wi or ti such that wi + r = 0 ti + r = 0 then the prover message is undefined.

We can achieve perfect completeness by having the verifier set hi = 0 or gi = 0 in this case and

changing the verification equations to

(wi + r) · (hi · (wi + r)− 1) = 0

and

(ti + r) · (gi · (ti + r)−mi) = 0 .

These checks ensure that either hi =
1

wi+r or wi + r = 0. The checks increase the verifier degree to

3. Without these checks, the protocol has a negligible completeness error of ℓ+T
|F| . This completeness

error can likely be ignored in practice, and these checks do not need to be implemented. However,

to achieve the full definition of PCD (which has perfect completeness) and use Theorem 5.1 by

[Bün+21a], we require that all protocols have perfect completeness.

Complexity. ΠLK is a 3-move protocol (i.e. k = 2); the degree of the verifier is 2; the number of

non-zero elements in the prover message is at most 4ℓ.

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS194

Accumulation with O(ℓ) prover complexity. The prover complexity of ΠLK is due to the

sparseness of g ∈ FT and m ∈ FT . However, there is no guarantee that when building an accumu-

lation scheme for ΠLK, the accumulated acc.g and acc.m are sparse. This is an issue, as the prover

needs to compute the error term e1. If we expand the accumulation procedures, we see that the

three verification checks lead to three components of the error term e1:

e
(1)
1 =

(
ℓ∑

i=1

acc.hi −
T∑

i=1

acc.gi

)
+ µ

(
ℓ∑

i=1

π.hi −
T∑

i=1

π.gi

)
∈ F

e
(2)
1 = acc.h ◦ (π.w + π.r · 1ℓ) + π.h ◦ (acc.w + acc.r · 1ℓ)− 2µ · 1ℓ ∈ Fℓ

e
(3)
1 = acc.g ◦ (t+ π.r · 1T) + π.g ◦ (µ · t+ acc.r · 1T)− µ · π.m− acc.m ∈ FT .

We examine all three components below.

For e
(1)
1 , we see that (

∑ℓ
i=1 π.hi −

∑T
i=1 π.gi) = 0 by the assumption that π is valid, and

(
∑ℓ

i=1 acc.hi −
∑T

i=1 acc.gi) = acc.e(1)/acc.µ (where acc.e(1) is the first component of the error

vector for acc). Thus e
(1)
1 = acc.e(1)/acc.µ. We observe that since in IVC the accumulator acc.e(1)

is initiated with 0, this implies that for all iterations e
(1)
1 = 0.

For e
(2)
1 , it is computed from terms of size ℓ, so can be computed in time O(ℓ).

For e
(3)
1 , note that acc.µ, acc.r and π.r are all scalars. Also note that the accumulation prover only

needs to compute the commitment E1 = Commit(ck, e1) = Commit(ck, e
(1)
1) + Commit(ck, 0||e(2)1) +

Commit(ck,0ℓ+1||e(3)1), not the actual vector e1. We will compute E
(3)
1 = Commit(ck, e

(3)
1) homo-

morphically from the commitments below (dropping the zero padding for readability):

1. G = Commit(ck, π.g),

2. G′ = Commit(ck, acc.g),

3. M = Commit(ck, π.m),

4. M ′ = Commit(ck, acc.m),

5. GT = Commit(ck, π.g ◦ t),
6. GT ′ = Commit(ck, acc.g ◦ t).

Given these commitments, we can compute

E
(3)
1 = GT ′ + π.r ·G′ + acc.µ ·GT + acc.r ·G− acc.µ ·M −M ′ .

This reduces the problem to the problem of efficiently computing and updating the commitments.

G,M and GT are all commitments to ℓ-sparse vectors, thus can be efficiently computed. The prover

can cache the commitments G′,M ′, and GT ′ and efficiently update them during accumulation. That

is G′′ ← G′ + αG, M ′′ ← M ′ + αM and GT ′′ ← GT ′ + αGT . Additionally, we need to update

the accumulation witnesses: acc′.m ← acc.m + απ.m and acc′.g ← acc.g + απ.g. Again because

π.g, π.m are sparse this can be done in time O(ℓ) independent of T = |t|.

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS195

When ΠLK is used in composition with another special-sound protocol with a higher degree d,

the accumulation is made homogeneous using a (X +µ)d−2 factor when computing the error terms.

The contribution to the error terms ei (1 ≤ i ≤ d− 1) is still a linear function in acc.g, acc.m and

acc.g ◦ t, and thus can be computed homomorphically from commitments to these values.

Special-soundness. We prove special-soundness for the perfect complete version of ΠLK, the

proof for ΠLK is almost identical (but even simpler).

Lemma 5.5. The perfect complete version of ΠLK is 2(ℓ+ T)-special-sound.

Proof. We construct an extractor Ext that outputs w. To show that the witness is valid, we look at

the 2(ℓ+ T) transcripts that all have w,m as the first message but different (r(j),h(j) ∈ Fℓ,g(j) ∈
FT) as the second message. Note that by the pigeonhole principle, there must exist a subset of

S ⊆ [2(ℓ + T)] transcripts such that |S| = ℓ + T and wi + r(j) ̸= 0 for all i ∈ [ℓ] and j ∈ S,

and ti + r(j) ̸= 0 for all i ∈ [T] and j ∈ S. For these transcripts, we have that hi =
1

wi+r(j)
and

gi =
mi

ti+r(j)
. Define the degree ℓ+ T − 1 polynomial

p(X) =

ℓ∏
k=1

(X +wk) ·
T∏

j=1

(X + tj) ·

(
ℓ∑

i=1

1

X +wi
−

T∑
i=1

mi

X + ti

)
.

If p(X) is the zero polynomial then
∑ℓ

i=1
1

X+wi
=
∑T

i=1
mi

X+ti
and by Lemma 5.4 (CLK;w) ∈

RLOOKUP. Since we have ℓ+ T points r(j) at which p(rj) = 0 we get that p = 0 and thus that the

extracted witness w is valid.

5.4.4 Vector-valued lookup

In some applications (e.g., simulating bit operations in circuits), we need to support lookup for a

vector, i.e., each table value is a vector of field elements. In this section, we adapt the scheme in

Section 5.4.3 to support vector lookups.

Definition 5.13. Consider configuration CVLK := (T, ℓ, v ∈ N, t) where ℓ is the number of lookups,

and t ∈ (Fv)T is a lookup table in which the ith (1 ≤ i ≤ T) entry is

ti := (ti,1, . . . , ti,v) ∈ Fv .

A sequence of vectors w ∈ (Fv)ℓ is in relation RVLK if and only if for all i ∈ [ℓ],

wi := (wi,1, . . . ,wi,v) ∈ t .

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS196

As noted in Section 3.4 of [Hab22b], we can extend Lemma 5.4 and replace Equation 5.5 with

ℓ∑
i=1

1

X + wi(Y)
=

T∑
i=1

mi

X + ti(Y)
(5.6)

where the polynomials are defined as

wi(Y) :=

v∑
j=1

wi,j · Y j−1 , ti(Y) :=

v∑
j=1

ti,j · Y j−1 ,

which represent the witness vector wi ∈ Fv and the table vector ti ∈ Fv. We, therefore, can describe

a special-sound protocol for the vector lookup relation as follows.

Special-sound protocol Πv
VLK for RVLK

Prover P(CVLK,w ∈ (Fv)ℓ) Verifier V(CVLK)

Compute m ∈ FT such that

mi :=

ℓ∑
j=1

1(wj = ti)∀i ∈ [T] w,m

β β ←$ F

⊥

r r ←$ F

Compute [βi = βi−1]vi=1

and h ∈ Fℓ, g ∈ FT

hi :=
1

wi(β) + r
∀i ∈ [ℓ]

gi :=
mi

ti(β) + r
∀i ∈ [T] [βi]

v
i=1,h,g

ℓ∑
i=1

hi
?
=

T∑
i=1

gi

hi ·
[(v∑

j=1

wi,j · βj

)
+ r

] ?
= 1∀i ∈ [ℓ]

gi ·
[(v∑

j=1

ti,j · βj

)
+ r

] ?
= mi∀i ∈ [T]

βi+1
?
= βi · β∀i ∈ [v − 1] , β1

?
= 1

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS197

Achieving perfect completeness. We can use the same trick in Section 5.4.3 to achieve perfect

completeness for Πv
VLK. Namely, the verifier sets hi = 0 or gi = 0 when wi(β)+r = 0 or ti(β)+r = 0

respectively. The verification equations become

(wi(β1, . . . , βv) + r) · (hi · (wi(β1, . . . , βv) + r)− 1) = 0

and

(ti(β1, . . . , βv) + r) · (gi · (ti(β1, . . . , βv) + r)−mi) = 0 ,

where wi(β1, . . . , βv) :=
(∑v

j=1 wi,j · βj

)
and ti(β1, . . . , βv) :=

(∑v
j=1 ti,j · βj

)
. The degree of the

verifier is 5. In practice, the negligible completeness error can likely be ignored without implementing

these checks.

Accumulation complexity. ΠVLK is a 5-move protocol (i.e. k = 3) with the 2nd prover message

being empty; the degree of the verifier is 3; the number of non-zero elements in the prover message

is at most (v + 3)ℓ+ v. To ensure that the accumulation procedure only requires O(vℓ) operations

independent of T , we can apply the same trick as in Section 5.4.3 and compute all error terms from

homomorphic commitments to g and m. This works because the error terms are a linear function

of g and m and scalars. This means the contributions of the not necessarily sparse acc.g, acc.m to

e1, e2 can be computed using the commitment homomorphism.

Special-soundness. We prove that the perfect complete version of Πv
VLK is special-sound.

Lemma 5.6. For any v ∈ N, the perfect complete version of Πv
VLK is [1+(v−1)·(ℓ+T−1), 2(ℓ+T)]-

special-sound.

Proof. We construct an extractor Ext that outputs w. To show that the witness is valid, we look at

the [1+(v−1) ·(ℓ+T −1), 2(ℓ+T)]-tree of accepting transcripts. Note that for each depth-1 internal

node u that fixes the message (w,m, β), it has 2(ℓ + T) different choices of challenge r(j). By the

pigeonhole principle, there exists at least ℓ + T challenges r such that ti(β) + r ̸= 0 for all i ∈ [T]

and wi(β) + r ̸= 0 for all i ∈ [ℓ]. Let h,g be the last prover message in the corresponding leaf node.

Since the transcript is accepting, we have that hi = 1/(wi(β)+ r) for all i ∈ [ℓ], gi = mi/(ti(β)+ r)

for all i ∈ [T], and
∑ℓ

i=1 hi =
∑T

i=1 gi.

Define the bivariate polynomial where the degree of X is ℓ + T − 1 and the degree of Y is at

most (v − 1) · (ℓ+ T − 1),

p(X,Y) =

ℓ∏
k=1

(X + wk(Y)) ·
T∏

j=1

(X + tj(Y)) ·

(
ℓ∑

i=1

1

X + wi(Y)
−

T∑
i=1

mi

X + ti(Y)

)
.

For every depth-1 internal node u, we denote by (r, β) the partial transcript for one of the u’s

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS198

children whose challenge r satisfies ti(β) + r ̸= 0 for all i ∈ [T] and wi(β) + r ̸= 0 for all i ∈ [ℓ].

As argued in the previous paragraph, we observe that
∑ℓ

i=1
1

r+wi(β)
−
∑T

i=1
mi

r+ti(β)
= 0, hence p

evaluates to zero at point (r, β). Note that there are (v−1)·(ℓ+T−1)+1 depth-1 internal nodes (i.e.

(v−1) ·(ℓ+T−1)+1 different βs) and each node has ℓ+T children (i.e. ℓ+T different r) such that p

evaluates to zero at point (r, β). Hence p is the zero polynomial and
∑ℓ

i=1
1

X+wi(Y) =
∑T

i=1
mi

X+ti(Y) .

Then by the extension of Lemma 5.4 described in Equation 5.6, we have (CVLK,w) ∈ RVLK and the

extracted witness is valid.

5.4.5 Circuit selection

We provide a sub-protocol for showing that a vector has a single one-bit (and zeros otherwise) at

the location of a program counter pc. This is later used to select the appropriate circuit.

Definition 5.14. For an integer n the relation Rselect is the set of tuples (b, pc) ∈ Fn×F such that

bi = 0∀i ∈ [n] \ {pc} and if pc ∈ [n] then bpc = 1.

Special-sound protocol Πselect for circuit selecting relation Rselect

Prover P(b ∈ Fn, pc ∈ F) Verifier V

b, pc

bi · (pc− i)
?
= 0∀i ∈ [n]

bi · (bi − 1)
?
= 0∀i ∈ [n]

Complexity and security. Πselect is a 1-move protocol (i.e. k = 1); the degree of the verifier is

2.

5.5 Special-sound protocols for Plonkup relations

Definition 5.15. Consider configuration Cplonkup := (n, T ;σ; c, d, [si, Gi]
m
i=1;L, t) where σ : [cn] →

[cn] is a permutation, (c, d, [si, Gi]
m
i=1) are the parameters for the high-degree custom gates, L ⊆ [cn]

is the subset of indices for variables that have a lookup gate, t ∈ FT is the lookup table. The relation

RPLONK+ is the set of tuples (pi ∈ Fℓin ,w ∈ Fcn) such that

w ∈ Rσ ∧w ∈ RGATE ∧wL ∈ RLOOKUP ∧w[1..ℓin] = pi .

We present the special-sound protocol for the Plonkup relation RPLONK+ below.

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS199

Special-sound protocol Πplonkup for relation RPLONK+

Prover P(Cplonkup, pi,w) Verifier V(Cplonkup, pi)

Compute m ∈ FT such that

mi :=
∑
j∈L

1(wj = ti)∀i ∈ [T] w,m wi −wσ(i)
?
= 0∀i ∈ [cn]

m∑
j=1

sj,i ·Gj(wi, . . . ,wi+cn−n)

?
= 0∀i ∈ [n]

wi
?
= pii∀i ∈ [ℓin]

r r ←$ F

Compute h ∈ F|L|, g ∈ FT

hi :=
1

wLi + r
∀i ∈ [|L|]

gi :=
mi

ti + r
∀i ∈ [T] h,g

|L|∑
i=1

hi
?
=

T∑
i=1

gi

hi · (wLi + r)
?
= 1∀i ∈ [|L|]

gi · (ti + r)
?
= mi∀i ∈ [T]

Complexity. Πplonkup is a 3-move protocol (i.e. k = 2); the degree of the verifier is d; the number

of non-zero elements in the prover message is at most cn+ 3|L|.

Completeness and security. We need to add the checks described in Section 5.4.3 to achieve

perfect completeness. This changes the verification degree to max(d, 3). Without these checks, the

protocol still has all but negligible completeness.

Lemma 5.7. Πplonkup is 2(T + |L|)-special-sound.

Proof. The protocol is a parallel composition of Πσ,ΠGATE and ΠLK plus a public input check. In

Πσ and ΠGATE, the prover simply sends the witness, and the verifier checks it is in the relation.

These protocols are thus trivially 1-special-sound, i.e. perfectly sound. The public input relation

also trivially holds as the verifier checks wi = pii for all i ∈ [ℓin]. By Lemma 5.5 ΠLK is 2(T + |L|)-
special-sound. Thus Πplonkup is 2(T + |L|)-special-sound.

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS200

5.6 Protostar

In this section, we describe ProtoStar. ProtoStar is built using a special-sound protocol for

capturing non-uniform Plonkup circuit computations. In particular, the relation is checking that one

of the I circuits is satisfied, where the index of the target circuit is determined by a part of the public

input called program counter pc. The non-uniform Plonkup circuit can add arbitrary constraints on

input pc. For example, the list of I circuits can be the opcodes supported by EVM, the program

counter pc can be computed from the pc′ and the register state in the previous step, and the circuit

will further check that opcode[pc] is executed correctly in the current step. For another application,

we can consider the I circuits as the predicates of I smart contracts (or transaction types), a user

can call one of the smart contracts/transaction types by specifying the index pc, and the cost of

proving correct execution is only proportional to the size of an individual smart contract/transaction

type rather than the sum of the sizes of the supported smart contracts/transaction types.

For ease of exposition, we assume that the I circuits have the same

• number of gates n;

• gate arity c;

• maximum gate degree d;

• number of gate types m;

• number of public inputs ℓin;

• number of lookup gates ℓlk.

The scheme naturally extends when different branch circuits have different parameters.

Definition 5.16. Consider configuration Cmplkup :=
(
pp = [n, T, c, d,m, ℓin, ℓlk]; [Ci]Ii=1; t

)
where the

ith (1 ≤ i ≤ I) branch circuit has configuration Ci := (pp, σi, [si,j , Gi,j]
m
j=1, Li), and t ∈ FT is the

global lookup table. For a public input pi := (pc, pi′) ∈ Fℓin where pc ∈ [I] is a program counter, we say

that a instance-witness pair (pi,w ∈ Fcn) is in the relation Rmplkup if and only if (pi,w) ∈ RPLONK+

w.r.t. circuit configuration (Cpc, t).

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS201

Protocol Πmplkup = ⟨P(Cmplkup, pi,w),V(Cmplkup, pi = (pc ∈ [I], pi′))⟩:

1. P sends V vector b = (0, . . . , 0, bpc = 1, 0, . . . , 0) ∈ FI .

2. V checks that bi · (1− bi)
?
= 0 and bi · (i− pc)

?
= 0 for all i ∈ [I].

3. P computes vector m ∈ FT such that mi :=
∑

j∈Lpc
1(wj = ti)∀i ∈ [T].

4. P sends V vectors w,m.

5. V checks that

Permutation check:
∑I

j=1 bj(wi −wσj(i))
?
= 0 for all i ∈ [cn].

Public input check: w[1..ℓin]
?
= pi.

Gate check: for all i ∈ [n], it holds that

I∑
j=1

bj · GTj(sj,1[i], . . . , sj,m[i],wi, . . . ,wi+cn−n) = 0

where GTj(s1, . . . , sm, x1, . . . , xc) :=
∑m

i=1 si ·Gj,i(x1, . . . , xc) .

6. V samples and sends P random challenge r ←$ F.

7. P computes vectors h ∈ Fℓlk , g ∈ FT such that

hi :=
1

wLpc[i] + r
∀i ∈ [ℓlk] , gi :=

mi

ti + r
∀i ∈ [T] .

8. V checks that
∑ℓlk

i=1 hi
?
=
∑T

i=1 gi and

I∑
j=1

bj ·
[
hi · (wLj [i] + r)

] ?
= 1 ∀i ∈ [ℓlk] ,

gi · (ti + r)
?
= mi ∀i ∈ [T]

We present the special-sound protocol Πmplkup for the multi-circuit Plonkup relation.

Remark 5.6.1. By the public input check w[1..ℓin]
?
= pi, we guarantee that w[1] = pc, and the circuit

relation can add arbitrary constraints on pc depending on the applications (like the ones described

in Section 5.6).

Complexity. Πmplkup is a 3-move protocol (i.e. k = 2); the degree of the verifier is d + 1; the

number of non-zero elements in the prover message is at most cn+3ℓlk+1; the prover message length

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS202

is I + cn+ 3T . Hence in the resulting accumulation scheme, the accumulation prover complexity is

only O(n+ ℓlk) that is independent of the table size, and the accumulator size is O(n+T + I) that is

independent of the sum of the sizes of the branch circuits. The decider still runs in time O(I · c · n)
as it needs to evaluate all circuits at the accumulator.

Special-soundness. We prove the special-soundness property of Πmplkup below.

Lemma 5.8. Πmplkup is 2(T + ℓlk)-special-sound.

Proof. The extractor Ext outputs the witness w sent by the prover. Note that if the verifier checks

in step 2 pass, it must be the case that b is a bool vector with a single non-zero element bpc.

Also, note that given 2(T + ℓlk) accepting transcripts with distinct challenges r, the vector b won’t

change. Therefore the sub-transcript after step 2 is essentially a transcript for a Plonkup special-

sound protocol Πplonkup with configuration Cplonkup := (n, T, c, d, Cpc, t). By Lemma 5.7, it holds

that Πmplkup is 2(T + ℓlk)-special-sound.

We will now use Πmplkup and our compiler described in Theorem 5.3 to design ProtoStar.

Before that, we must address an efficiency issue when combining the high-degree gate and sparse

lookup protocols with the generic transform CV in Section 5.3.5.

Error separation between high-degree checks and low-degree checks. In some scenarios,

the set of equations that a verifier checks can be with heterogeneous degrees. For example, in

Section 5.3.5, the transformed protocol CV[Πsps] has one degree-(d+ 2) checks and O(
√
ℓ) degree-2

checks. In this case, we can partition the checks into two sets whereas one with high-degree equations

and the other with low-degree equations. We then assign separate sets of error terms for the two

sets of equations. The first set of error terms can use the trivial identity commitment (as shown in

Section 5.3.5) and thus reduces the number of group operations. The rest of the error term vectors

can be committed using group elements. Since the degree of the second set is low, the number of

error commitments will be a small constant (e.g. 2), thus the number of additional group operations

performed in the recursive circuit will be small. We refer to Section 5.7 for more details.

Efficient accumulation of CV[Πmplkup]. CV[ΠGATE] reduces the number of degree-d verification

checks in ΠGATE from n to 1, with the tradeoff of O(
√
n) additional degree-2 checks. In the resulting

accumulation scheme, the error terms for high-degree gates are, thus, only of length 1. This enables

using the trivial identity commitment for these error terms and thus reduces the number of group

operations by the accumulation verifier. Unfortunately, applying CV to mplkup seems to have a

major tradeoff. The number of verification checks is n + ℓlk + T + c · n. This requires using a)

CV[mplkup] and b) is not composable with the sparseness optimizations for lookup described in

Sections 5.4.3 and 5.4.4. These optimizations make the prover computation independent of T .

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS203

Fortunately, a closer look at the verification of mplkup reveals that only n of these verification

checks are of high degree d, namely the checks in ΠGATE. The other checks are of degree 2 or lower.

With a slight abuse of notation, we can define CV[Πmplkup] as applying the generic transform CV

only to the ΠGATE part of Πmplkup. This means that there are d+1 cross error vectors (each of length

1) for the degree d+2 check in CV[ΠGATE]; and 1 cross error vector of length T + ℓlk + cn+O(
√
n)

for the rest checks—namely the low-degree checks in Πmplkup and the O(
√
n) degree-2 checks in

CV[ΠGATE]. By leveraging the error separation technique described above, we can use the identity

function to commit to the field elements and a vector commitment to commit to the long error term.

We can again leverage homomorphism as described in Section 5.4.3 to make the prover independent

of T .

Corollary 5.4 (ProtoStar protocol). Consider the configuration

Cmplkup := (n, T, c, d,m, ℓin, ℓlk; [Ci]Ii=1; t).

Given a binding homomorphic commitment scheme cm = (Setup,Commit), and under the Fiat-

Shamir Heuristic (Definition 5.9) for a hash function H, there exists an IVC scheme ProtoStar

for Rmplkup relations with the following efficiencies for m = 1 (i.e. each circuit has a single degree-d

gate type), public input length ℓin = 1: (we omit cost terms that are negligible compared to the dom-

inant parts)

PProtoStar

native

PProtoStar

recursive
VProtoStar |πProtoStar|

O(|w|+ ℓlk)G
L′(Ci, d+ 2) + 2ℓlkF

3G
d+ 4F

d+O(1)H + 1Hin

O(c · n+ T + ℓlk)G
n+

∑I
i=1 Ci + T + ℓlkF

O(c · n+ T + ℓlk)

Here |w| ≤ cn is the number of non-zero entries in the witness,
∑I

i=1 Ci is the cost of evalu-

ating all circuits on some random input, and L′(Ci, d) is the cost of computing the coefficients of

the polynomial e(X) defined in Equation 5.4.5 Hin is the cost of hashing the public input and the

(constant-sized) accumulator instance.

Proof. Let SPS− IVC[Π] = IVC[acc[FS[cm[CV[Π]]]]] be the transformation from a special-sound pro-

tocol to an IVC-scheme described by Theorem 5.3 (including CV). Then given a commitment scheme

cm by that theorem ProtoStar = SPS− IVC[Πmplkup] is an IVC scheme for predicates expressed

in Rmplkup. We apply Theorem 5.3 to get the efficiencies in the table above.

5As noted in Theorem 5.3, L′(Ci, d+ 2) is bounded by O(nd log2(d)).

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS204

Security: Since CV[ΠGATE] is only applied to ΠGATE which has perfect soundness, by Lemma 5.8

and Lemma 5.3, the NARK scheme FS[cm[CV[Π]]] for Rmplkup has knowledge soundness with knowl-

edge error (Q + 1) · n+2(T+ℓlk)
|F| + negl(λ), where Q is the number of RO queries by the adversary.

Using Theorem 5.2 and Corollary 5.5 we can construct a accumulation scheme for the NARK scheme

FS[cm[CV[Π]]]. The accumulation scheme has negligible knowledge error as d = poly(λ). Therefore,

under the Fiat-Shamir heuristic and by Theorem 5.1, SPS− IVC[Π] is a secure IVC scheme.

5.7 Accumulation Scheme for high/low degree verifier

We describe a modification for the accumulation scheme in Section 5.3.4 that can be useful if Vsps has

both a single high-degree verification check and multiple low-degree checks. E.g. assume that Vsps =

Vsps,1||Vsps,2 where Vsps,1 : (pi, [mi]
k
i=1, [ri]

k−1
i=1)→ F is degree d and Vsps,2 : (pi, [mi]

k
i=1, [ri]

k−1
i=1)→ Fℓ

is degree 2.

For simplicity, we assume that Vsps,1 maps to a single field element and that Vsps,2 is degree 2,

but this naturally extends to more arbitrary degrees, sizes and more components.

The accumulation scheme accHL = (Pacc,HL,Vacc,HL) for FS[Vsps,1||Vsps,2] is essentially a parallel

composition of the accumulation presented Section 5.3.4 applied to Vsps,1 and Vsps,2. Concretely

there are the following modifications to the scheme from Section 5.3.4:

• The prover computes error terms separately for Vsps,1 and Vsps,2. This means there are d − 1

constant size error terms and 1 error term vector of length ℓ.

• The prover uses the identity function to commit to the d error terms and a homomorphic

vector commitment cm = (Setup,Commit) to commit to the single length ℓ error term.

• The accumulator stores two error terms, one for each verifier. One is a field element e, and

the other is a commitment E to a length ℓ vector.

• The accumulation verifier checks the correct accumulation for each error term separately, thus

performing d− 1 field operations and 1 homomorphic commitment scalar multiplication.

Complexity and security. The scheme has the following complexity:

• The accumulation prover

– asks k− 1 queries to ρNARK with constant-sized inputs and 1 query to ρacc with input size

d+O(1);

– computes the coefficients of

e(X) =

d∑
j=0

(µ+X)d−jf
Vsps,1

j (X ·pi+acc.pi, [X ·mi+acc.mi]
k
i=1, [X ·ri+acc.ri]

k−1
i=1) ∈ F[X]

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS205

and computes e ∈ Fℓ, which are the coefficients of X in the polynomials

2∑
j=0

(µ+X)2−jf
Vsps,2

j (X · pi+ acc.pi, [X ·mi + acc.mi]
k
i=1, [X · ri + acc.ri]

k−1
i=1) ∈ (F[X])ℓ

– commits to e using ℓ G ops.

– performs |R|+ |M∗|+2 F-ops to combine (µ, pi, [ri]
k−1
i=1 , [mi]

k
i=1) (where |R| is the number

of challenges and |M∗| is the number of non-zero elements in prover messages);

– performs k G-ops to combine [Ci]
k
i=1;

– performs 1 G-op to add E = Commit(ck, e) to acc.E.

• The accumulation verifier performs

– asks k − 1 queries to ρNARK and 1 query to ρacc;

– |R|+ 2 F-ops to combine (µ, pi, [ri]
k−1
i=1);

– k G-ops to combine [Ci]
k
i=1;

– d− 1 F-ops to add [ej]
d−1
j=1 onto acc.e.

– 1 G-op to add E = Commit(ck, e) to acc.E

• The decider

– computes Ci = Commit(ck,mi) for i ∈ [k] and E = Commit(ck, e), with total complexity

around |M |+ ℓ G-ops.

– evaluate [f
Vsps,1

i]di=0 and [f
Vsps,2

i]2i=0 to verify e and e.

Corollary 5.5 (Hi-LowAccumulation). Let (PNARK,HL,VNARK,HL) = FS[Vsps,1||Vsps,2] be an RO-

NARK as defined above. Let cm be a binding, homomorphic commitment scheme and ρacc be a

random oracle. The accumulation scheme accHL for VNARK satisfies perfect completeness and has

knowledge-error (Q+ 1)d+4
|F| + negl(λ), as defined in Definition 5.8.

Proof sketch: Perfect completeness follows immediately from Theorem 5.2. For knowledge-

soundness, consider that accHL is a parallel composition of two accumulation schemes applied to

a high-degree and a low-degree verifier. Given an adversary that can break the knowledge soundness

of accHL, we can construct an adversary that can break the knowledge soundness of either the high or

the low-degree accumulation. By union bound, this leads to a knowledge error of (Q+1)d+4
|F| +negl(λ).

5.8 Protostar for CCS

Recently, Setty, Thaler and Wahby introduced Customizable Constraint System (CCS), a new char-

acterization of NP that is a generalization of R1CS[STW23]. It enables the use of high-degree gates

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS206

while not requiring permutation arguments. It is also powerful enough to capture both R1CS and

Plonk constraints. As described in the introduction, HyperNova builds an accumulation scheme and,

thus, IVC for CCS. However, HyperNova does not natively support non-uniform circuits and both

the recursion cost, as well as the cost for lookups is more expensive than ProtoStar, which is built

for mplkup. However, mplkup still requires a permutation argument and so-called copy-constraints.

We show that our general compiler is powerful enough to port the benefits of ProtoStar directly

to CCS. The starting point is the trivial special-sound protocol for CCS:

Definition 5.17 ([STW23]). Given public parameters m,n,N, ℓin, t, q, d ∈ N where n > ℓ, let

M1, . . . ,Mt ∈ Fm×n be matrices with at most N total non-zero entries. Let S1, . . . Sq be multi-

sets over domain [t] and each multiset has cardinality at most d. Let c1, . . . , cq ∈ F be constants. A

tuple (pi,w) ∈ Fℓin × Fn−ℓin−1 is in the relation Rccs if and only if

q−1∑
i=0

ci · ⃝j∈Sj
Mj · z = 0m ,

where z = (1, pi,w). ⃝ denotes the Hadamard product between vectors.

Special-sound protocol Πccs for relation Rccs

Prover P(Cccs, pi ∈ Fℓin ,w ∈ Fn−ℓin−1) Verifier V(Cccs, pi)

w

z = (1, pi,w) ∈ Fn

q−1∑
i=0

ci · ⃝j∈SjMj · z
?
= 0m

Complexity. Πccs is a 1-move protocol (i.e. k = 1) with verifier degree d.

Next, we present the special-sound protocol Πmccs+ for the extended CCS relation that has multi-

circuits and lookup support. Compared to Πmplkup in Section 5.6, the protocol Πmccs+ removes the

need of a permutation check.

Definition 5.18. Consider configuration Cmccs+ :=
(
pp = [m,n,N, ℓin, t, q, d, T, ℓlk]; [Ci]Ii=1; t

)
where

the ith (1 ≤ i ≤ I) branch circuit has configuration Ci := (pp, [Mj,i]
t
j=1, [Sj,i, cj,i]

q
j=1, Li), and t ∈ FT

is the global lookup table. For a public input pi := (pc, pi′) ∈ Fℓin where pc ∈ [I] is a program

counter, we say that a instance-witness pair (pi,w) ∈ Fn−1 is in the relation Rmccs+ if and only if

(pi,w) ∈ Rccs w.r.t. circuit configuration Cpc and wLpc
⊆ t.

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS207

Protocol Πmccs+ = ⟨P(Cmccs+, pi,w),V(Cmccs+, pi = (pc ∈ [I], pi′))⟩:

1. P sends V vector b = (0, . . . , 0, bpc = 1, 0, . . . , 0) ∈ FI .

2. V checks that bi · (1− bi)
?
= 0 and bi · (i− pc)

?
= 0 for all i ∈ [I].

3. P computes vector m ∈ FT such that mi :=
∑

j∈Lpc
1(wj = ti)∀i ∈ [T].

4. P sends V vectors w,m.

5. V computes z = (1, pi,w) ∈ Fn and checks that

I∑
k=1

bk ·
q∑

i=1

ci,k · ⃝j∈Si,k
Mj,k · z = 0m .

6. V samples and sends P random challenge r ←$ F.

7. P computes vectors h ∈ Fℓlk , g ∈ FT such that

hi :=
1

wLpc[i] + r
∀i ∈ [ℓlk] , gi :=

mi

ti + r
∀i ∈ [T] .

8. V checks that
∑ℓlk

i=1 hi
?
=
∑T

i=1 gi and

I∑
j=1

bj ·
[
hi · (wLj [i] + r)

] ?
= 1 ∀i ∈ [ℓlk] ,

gi · (ti + r)
?
= mi ∀i ∈ [T] .

Complexity. Πmccs+ is a 3-move protocol (i.e. k = 2); the degree of the verifier is d + 1; the

number of non-zero elements in the prover message is at most n+3ℓlk; the prover message length is

at most I+n+3T . Hence in the resulting accumulation scheme, the accumulation prover complexity

is only O(n+ ℓlk) that is independent of the table size, and the accumulator size is O(n+T + I) that

is independent of the sum of the sizes of the branch circuits. We detail the efficiency of the resulting

IVC scheme in the table below. The efficiency is almost identical to the ProtoStar scheme for

Rmplkup. However, the cost of computing the error terms L′(ccsi, d + 2) now depends on the ith

CCS instance.

CHAPTER 5. PROTOSTAR: EFFICIENT IVC FOR VDFS AND SUCCINCT BLOCKCHAINS208

PProtoStar,mccs+

native

PProtoStar,mccs+

recursive
VProtoStar,mccs+ |πProtoStar,mccs+|

O(|w|+ ℓlk)G
L′(ccsi, d+ 2) + 2ℓlkF

3G
d+ 4F

d+O(1)H + 1Hin

O(n+ T + ℓlk)G
n+ I ·N + T + ℓlkF

O(n+ T + ℓlk)

Chapter 6

Conclusion

The hype around blockchains is built on big promises. Sending money like email around the internet,

equitable and fair access to financial systems, strong censorship, and monopoly resistance. While,

some applications are starting to realize these promises, the failures and limitations of blockchains

are at least equally glaring. This might lead one to easily dismiss the space entirely, as many

commentators have done. However, this is entirely premature. In this dissertation, we show that

many of the most pressing issues can be directly addressed and solved through the use of technology.

In particular, we show the power of proof systems that seem to be a perfect antidote for many of the

issues blockchains face. Proof systems, such as the ones presented here, have, in the past decade,

morphed from a theoretical idea to an entirely practical tool. This can not only be seen in academia

but also in industry with many startups emerging and the rapid implementation of academic ideas.

An exciting prospect, that is starting to emerge, is that those proof systems will find many more

practical applications beyond blockchains. This includes trusted AI, verifiable outsourcing, and

private auditing. This can enable a digital future in which privacy, scalability, and authenticity are

not contradictory but symbiotic properties.

209

Bibliography

[Abe+10] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako

Ohkubo. “Structure-Preserving Signatures and Commitments to Group Elements”. In:

CRYPTO 2010. Ed. by Tal Rabin. Vol. 6223. LNCS. Springer, Heidelberg, Aug. 2010,

pp. 209–236. doi: 10.1007/978-3-642-14623-7_12.

[ABP17] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. “Depth-Robust Graphs and Their

Cumulative Memory Complexity”. In: EUROCRYPT 2017, Part III. Ed. by Jean-

Sébastien Coron and Jesper Buus Nielsen. Vol. 10212. LNCS. Springer, Heidelberg,

Apr. 2017, pp. 3–32. doi: 10.1007/978-3-319-56617-7_1.

[AC20] Thomas Attema and Ronald Cramer. “Compressed Σ-Protocol Theory and Practical

Application to Plug & Play Secure Algorithmics”. In: CRYPTO 2020, Part III. Ed. by

Daniele Micciancio and Thomas Ristenpart. Vol. 12172. LNCS. Springer, Heidelberg,

Aug. 2020, pp. 513–543. doi: 10.1007/978-3-030-56877-1_18.

[ACK21] Thomas Attema, Ronald Cramer, and Lisa Kohl. “A Compressed Σ-Protocol The-

ory for Lattices”. In: CRYPTO 2021, Part II. Ed. by Tal Malkin and Chris Peikert.

Vol. 12826. LNCS. Virtual Event: Springer, Heidelberg, Aug. 2021, pp. 549–579. doi:

10.1007/978-3-030-84245-1_19.

[AFK21] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-Shamir Transformation of Multi-

Round Interactive Proofs. Cryptology ePrint Archive, Report 2021/1377. https://

eprint.iacr.org/2021/1377. 2021.

[AFK22] Thomas Attema, Serge Fehr, and Michael Klooß. “Fiat-Shamir Transformation of

Multi-round Interactive Proofs”. In: TCC 2022, Part I. Ed. by Eike Kiltz and Vinod

Vaikuntanathan. Vol. 13747. LNCS. Springer, Heidelberg, Nov. 2022, pp. 113–142. doi:

10.1007/978-3-031-22318-1_5.

[Alb+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge

Tiessen. “MiMC: Efficient Encryption and Cryptographic Hashing with Minimal Mul-

tiplicative Complexity”. In: ASIACRYPT 2016, Part I. Ed. by Jung Hee Cheon and

210

https://doi.org/10.1007/978-3-642-14623-7_12
https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/978-3-030-56877-1_18
https://doi.org/10.1007/978-3-030-84245-1_19
https://eprint.iacr.org/2021/1377
https://eprint.iacr.org/2021/1377
https://doi.org/10.1007/978-3-031-22318-1_5

BIBLIOGRAPHY 211

Tsuyoshi Takagi. Vol. 10031. LNCS. Springer, Heidelberg, Dec. 2016, pp. 191–219. doi:

10.1007/978-3-662-53887-6_7.

[Aly+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepi-

eniec. “Design of Symmetric-Key Primitives for Advanced Cryptographic Protocols”.

In: IACR Trans. Symm. Cryptol. 2020.3 (2020), pp. 1–45. issn: 2519-173X. doi: 10.

13154/tosc.v2020.i3.1-45.

[Ame+17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubrama-

niam. “Ligero: Lightweight Sublinear Arguments Without a Trusted Setup”. In: ACM

CCS 2017. Ed. by Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan

Xu. ACM Press, Oct. 2017, pp. 2087–2104. doi: 10.1145/3133956.3134104.

[And+13] Elli Androulaki, Ghassan Karame, Marc Roeschlin, Tobias Scherer, and Srdjan Cap-

kun. “Evaluating User Privacy in Bitcoin”. In: FC 2013. Ed. by Ahmad-Reza Sadeghi.

Vol. 7859. LNCS. Springer, Heidelberg, Apr. 2013, pp. 34–51. doi: 10.1007/978-3-

642-39884-1_4.

[And17] Oleg Andreev. Hidden in Plain Sight: Transacting Privately on a Blockchain. blog.

chain.com. 2017.

[ANL00] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. “DOS-resistant authentication

with client puzzles”. In: International workshop on security protocols. Springer. 2000,

pp. 170–177.

[ano] anonymous. “Mimblewimble”. In: ().

[Ara+21] Diego F. Aranha, Emil Madsen Bennedsen, Matteo Campanelli, Chaya Ganesh, Claudio

Orlandi, and Akira Takahashi. ECLIPSE: Enhanced Compiling method for Pedersen-

committed zkSNARK Engines. Cryptology ePrint Archive, Report 2021/934. https:

//eprint.iacr.org/2021/934. 2021.

[Arm+16] Frederik Armknecht, Ludovic Barman, Jens-Matthias Bohli, and Ghassan O. Karame.

“Mirror: Enabling Proofs of Data Replication and Retrievability in the Cloud”. In:

USENIX Security 2016. Ed. by Thorsten Holz and Stefan Savage. USENIX Association,

Aug. 2016, pp. 1051–1068.

[Bar+21] Mario Barbara, Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lueftenegger, Chris-

tian Rechberger, Markus Schofnegger, and Roman Walch. Reinforced Concrete: Fast

Hash Function for Zero Knowledge Proofs and Verifiable Computation. Cryptology

ePrint Archive, Report 2021/1038. https://eprint.iacr.org/2021/1038. 2021.

[BB04] Dan Boneh and Xavier Boyen. “Short Signatures Without Random Oracles”. In: EU-

ROCRYPT 2004. Ed. by Christian Cachin and Jan Camenisch. Vol. 3027. LNCS.

Springer, Heidelberg, May 2004, pp. 56–73. doi: 10.1007/978-3-540-24676-3_4.

https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-642-39884-1_4
https://doi.org/10.1007/978-3-642-39884-1_4
blog.chain.com
blog.chain.com
https://eprint.iacr.org/2021/934
https://eprint.iacr.org/2021/934
https://eprint.iacr.org/2021/1038
https://doi.org/10.1007/978-3-540-24676-3_4

BIBLIOGRAPHY 212

[BC23] Benedikt Bünz and Binyi Chen. ProtoStar: Generic Efficient Accumulation/Folding

for Special Sound Protocols. Cryptology ePrint Archive, Paper 2023/620. https://

eprint.iacr.org/2023/620. 2023. url: https://eprint.iacr.org/2023/620.

[BCG15] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On Bitcoin as a public random-

ness source. Cryptology ePrint Archive, Report 2015/1015. https://eprint.iacr.

org/2015/1015. 2015.

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. “Linear-Time Arguments with

Sublinear Verification from Tensor Codes”. In: TCC 2020, Part II. Ed. by Rafael Pass

and Krzysztof Pietrzak. Vol. 12551. LNCS. Springer, Heidelberg, Nov. 2020, pp. 19–46.

doi: 10.1007/978-3-030-64378-2_2.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”.

In: TCC 2016-B, Part II. Ed. by Martin Hirt and Adam D. Smith. Vol. 9986. LNCS.

Springer, Heidelberg, Oct. 2016, pp. 31–60. doi: 10.1007/978-3-662-53644-5_2.

[BCS21] Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. “Sumcheck Arguments and

Their Applications”. In: CRYPTO 2021, Part I. Ed. by Tal Malkin and Chris Peikert.

Vol. 12825. LNCS. Virtual Event: Springer, Heidelberg, Aug. 2021, pp. 742–773. doi:

10.1007/978-3-030-84242-0_26.

[Bd94] Josh Cohen Benaloh and Michael de Mare. “One-Way Accumulators: A Decentralized

Alternative to Digital Sinatures (Extended Abstract)”. In: EUROCRYPT’93. Ed. by

Tor Helleseth. Vol. 765. LNCS. Springer, Heidelberg, May 1994, pp. 274–285. doi:

10.1007/3-540-48285-7_24.

[Ben+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.

“SNARKs for C: Verifying Program Executions Succinctly and in Zero Knowledge”.

In: CRYPTO 2013, Part II. Ed. by Ran Canetti and Juan A. Garay. Vol. 8043. LNCS.

Springer, Heidelberg, Aug. 2013, pp. 90–108. doi: 10.1007/978-3-642-40084-1_6.

[Ben+14a] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers,

Eran Tromer, and Madars Virza. “Zerocash: Decentralized Anonymous Payments from

Bitcoin”. In: 2014 IEEE Symposium on Security and Privacy. IEEE Computer Society

Press, May 2014, pp. 459–474. doi: 10.1109/SP.2014.36.

[Ben+14b] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Scalable Zero

Knowledge via Cycles of Elliptic Curves”. In: CRYPTO 2014, Part II. Ed. by Juan

A. Garay and Rosario Gennaro. Vol. 8617. LNCS. Springer, Heidelberg, Aug. 2014,

pp. 276–294. doi: 10.1007/978-3-662-44381-1_16.

https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2015/1015
https://eprint.iacr.org/2015/1015
https://doi.org/10.1007/978-3-030-64378-2_2
https://doi.org/10.1007/978-3-662-53644-5_2
https://doi.org/10.1007/978-3-030-84242-0_26
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-662-44381-1_16

BIBLIOGRAPHY 213

[Ben+17a] Eli Ben-Sasson, Iddo Bentov, Alessandro Chiesa, Ariel Gabizon, Daniel Genkin, Matan

Hamilis, Evgenya Pergament, Michael Riabzev, Mark Silberstein, Eran Tromer, and

Madars Virza. “Computational Integrity with a Public Random String from Quasi-

Linear PCPs”. In: EUROCRYPT 2017, Part III. Ed. by Jean-Sébastien Coron and

Jesper Buus Nielsen. Vol. 10212. LNCS. Springer, Heidelberg, Apr. 2017, pp. 551–579.

doi: 10.1007/978-3-319-56617-7_19.

[Ben+17b] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas

Spooner. “Interactive Oracle Proofs with Constant Rate and Query Complexity”. In:

ICALP 2017. Ed. by Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca

Muscholl. Vol. 80. LIPIcs. Schloss Dagstuhl, July 2017, 40:1–40:15. doi: 10.4230/

LIPIcs.ICALP.2017.40.

[Ben+18a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed-Solomon

Interactive Oracle Proofs of Proximity”. In: ICALP 2018. Ed. by Ioannis Chatzi-

giannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella. Vol. 107. LIPIcs.

Schloss Dagstuhl, July 2018, 14:1–14:17. doi: 10.4230/LIPIcs.ICALP.2018.14.

[Ben+18b] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, trans-

parent, and post-quantum secure computational integrity. Cryptology ePrint Archive,

Report 2018/046. https://eprint.iacr.org/2018/046. 2018.

[Ben+19a] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Scalable Zero

Knowledge with No Trusted Setup”. In: CRYPTO 2019, Part III. Ed. by Alexan-

dra Boldyreva and Daniele Micciancio. Vol. 11694. LNCS. Springer, Heidelberg, Aug.

2019, pp. 701–732. doi: 10.1007/978-3-030-26954-8_23.

[Ben+19b] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,

and Nicholas P. Ward. “Aurora: Transparent Succinct Arguments for R1CS”. In: EU-

ROCRYPT 2019, Part I. Ed. by Yuval Ishai and Vincent Rijmen. Vol. 11476. LNCS.

Springer, Heidelberg, May 2019, pp. 103–128. doi: 10.1007/978-3-030-17653-2_4.

[Ber+12] Daniel J. Bernstein, Jeroen Doumen, Tanja Lange, and Jan-Jaap Oosterwijk. “Faster

Batch Forgery Identification”. In: INDOCRYPT 2012. Ed. by Steven D. Galbraith and

Mridul Nandi. Vol. 7668. LNCS. Springer, Heidelberg, Dec. 2012, pp. 454–473. doi:

10.1007/978-3-642-34931-7_26.

[BF22] Benedikt Bünz and Ben Fisch. Schwartz-Zippel for multilinear polynomials mod N.

Cryptology ePrint Archive, Report 2022/458. https://eprint.iacr.org/2022/458.

2022.

https://doi.org/10.1007/978-3-319-56617-7_19
https://doi.org/10.4230/LIPIcs.ICALP.2017.40
https://doi.org/10.4230/LIPIcs.ICALP.2017.40
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-642-34931-7_26
https://eprint.iacr.org/2022/458

BIBLIOGRAPHY 214

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. “Transparent SNARKs from DARK

Compilers”. In: EUROCRYPT 2020, Part I. Ed. by Anne Canteaut and Yuval Ishai.

Vol. 12105. LNCS. Springer, Heidelberg, May 2020, pp. 677–706. doi: 10.1007/978-

3-030-45721-1_24.

[BG12] Stephanie Bayer and Jens Groth. “Efficient Zero-Knowledge Argument for Correctness

of a Shuffle”. In: EUROCRYPT 2012. Ed. by David Pointcheval and Thomas Johans-

son. Vol. 7237. LNCS. Springer, Heidelberg, Apr. 2012, pp. 263–280. doi: 10.1007/978-

3-642-29011-4_17.

[BGB17] Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau. “Proofs-of-delay and random-

ness beacons in Ethereum”. In: IEEE SECURITY and PRIVACY ON THE BLOCKCHAIN

(IEEE S&B) (2017).

[BGG19] Sean Bowe, Ariel Gabizon, and Matthew D. Green. “A Multi-party Protocol for Con-

structing the Public Parameters of the Pinocchio zk-SNARK”. In: FC 2018 Workshops.

Ed. by Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali, Fed-

erico Pintore, and Massimiliano Sala. Vol. 10958. LNCS. Springer, Heidelberg, Mar.

2019, pp. 64–77. doi: 10.1007/978-3-662-58820-8_5.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive Proof Composition with-

out a Trusted Setup. Cryptology ePrint Archive, Report 2019/1021. https://eprint.

iacr.org/2019/1021. 2019.

[BGR98] Mihir Bellare, Juan A. Garay, and Tal Rabin. “Fast Batch Verification for Modu-

lar Exponentiation and Digital Signatures”. In: EUROCRYPT’98. Ed. by Kaisa Ny-

berg. Vol. 1403. LNCS. Springer, Heidelberg, May 1998, pp. 236–250. doi: 10.1007/

BFb0054130.

[BGZ16] Iddo Bentov, Ariel Gabizon, and David Zuckerman. “Bitcoin Beacon”. In: arXiv preprint

arXiv:1605.04559 (2016).

[Bit+12a] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “From extractable

collision resistance to succinct non-interactive arguments of knowledge, and back again”.

In: ITCS 2012. Ed. by Shafi Goldwasser. ACM, Jan. 2012, pp. 326–349. doi: 10.1145/

2090236.2090263.

[Bit+12b] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive Compo-

sition and Bootstrapping for SNARKs and Proof-Carrying Data. Cryptology ePrint

Archive, Report 2012/095. https://eprint.iacr.org/2012/095. 2012.

[Bit+13a] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “Recursive composi-

tion and bootstrapping for SNARKS and proof-carrying data”. In: 45th ACM STOC.

Ed. by Dan Boneh, Tim Roughgarden, and Joan Feigenbaum. ACM Press, June 2013,

pp. 111–120. doi: 10.1145/2488608.2488623.

https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-642-29011-4_17
https://doi.org/10.1007/978-3-662-58820-8_5
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1145/2090236.2090263
https://eprint.iacr.org/2012/095
https://doi.org/10.1145/2488608.2488623

BIBLIOGRAPHY 215

[Bit+13b] Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth.

“Succinct Non-interactive Arguments via Linear Interactive Proofs”. In: TCC 2013.

Ed. by Amit Sahai. Vol. 7785. LNCS. Springer, Heidelberg, Mar. 2013, pp. 315–333.

doi: 10.1007/978-3-642-36594-2_18.

[Bit+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan,

and Brent Waters. “Time-Lock Puzzles from Randomized Encodings”. In: ITCS 2016.

Ed. by Madhu Sudan. ACM, Jan. 2016, pp. 345–356. doi: 10.1145/2840728.2840745.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil Pairing”.

In: Journal of Cryptology 17.4 (Sept. 2004), pp. 297–319. doi: 10.1007/s00145-004-

0314-9.

[BM88] László Babai and Shlomo Moran. “Arthur-Merlin Games: A Randomized Proof System,

and a Hierarchy of Complexity Classes”. In: J. Comput. Syst. Sci. 36.2 (1988), pp. 254–

276.

[BN00] Dan Boneh and Moni Naor. “Timed Commitments”. In: CRYPTO 2000. Ed. by Mihir

Bellare. Vol. 1880. LNCS. Springer, Heidelberg, Aug. 2000, pp. 236–254. doi: 10.1007/

3-540-44598-6_15.

[Bon+15] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll,

and Edward W. Felten. “SoK: Research Perspectives and Challenges for Bitcoin and

Cryptocurrencies”. In: 2015 IEEE Symposium on Security and Privacy. IEEE Com-

puter Society Press, May 2015, pp. 104–121. doi: 10.1109/SP.2015.14.

[Bon+18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. “Verifiable Delay Func-

tions”. In: CRYPTO 2018, Part I. Ed. by Hovav Shacham and Alexandra Boldyreva.

Vol. 10991. LNCS. Springer, Heidelberg, Aug. 2018, pp. 757–788. doi: 10.1007/978-

3-319-96884-1_25.

[Bon+20a] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decentral-

ized Cryptocurrency at Scale. Cryptology ePrint Archive, Report 2020/352. https:

//eprint.iacr.org/2020/352. 2020.

[Bon+20b] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. “Mina: Decentral-

ized Cryptocurrency at Scale”. In: New York Univ. O (1) Labs, New York, NY, USA,

Whitepaper (2020), pp. 1–47.

[Bon+21] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. “Halo Infinite: Proof-Carrying

Data from Additive Polynomial Commitments”. In: CRYPTO 2021, Part I. Ed. by Tal

Malkin and Chris Peikert. Vol. 12825. LNCS. Virtual Event: Springer, Heidelberg, Aug.

2021, pp. 649–680. doi: 10.1007/978-3-030-84242-0_23.

https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1145/2840728.2840745
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1109/SP.2015.14
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2020/352
https://doi.org/10.1007/978-3-030-84242-0_23

BIBLIOGRAPHY 216

[Boo+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit.

“Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Set-

ting”. In: EUROCRYPT 2016, Part II. Ed. by Marc Fischlin and Jean-Sébastien Coron.

Vol. 9666. LNCS. Springer, Heidelberg, May 2016, pp. 327–357. doi: 10.1007/978-3-

662-49896-5_12.

[Boo+17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi,

and Sune K. Jakobsen. “Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit

Satisfiability”. In: ASIACRYPT 2017, Part III. Ed. by Tsuyoshi Takagi and Thomas

Peyrin. Vol. 10626. LNCS. Springer, Heidelberg, Dec. 2017, pp. 336–365. doi: 10.1007/

978-3-319-70700-6_12.

[Boo+20] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. “A

Non-PCP Approach to Succinct Quantum-Safe Zero-Knowledge”. In: CRYPTO 2020,

Part II. Ed. by Daniele Micciancio and Thomas Ristenpart. Vol. 12171. LNCS. Springer,

Heidelberg, Aug. 2020, pp. 441–469. doi: 10.1007/978-3-030-56880-1_16.

[Boo+22a] Jonathan Bootle, Alessandro Chiesa, Ziyi Guan, and Siqi Liu. Linear-Time Probabilistic

Proofs with Sublinear Verification for Algebraic Automata Over Every Field. Cryptology

ePrint Archive, Report 2022/1056. https://eprint.iacr.org/2022/1056. 2022.

[Boo+22b] Jonathan Bootle, Alessandro Chiesa, Yuncong Hu, and Michele Orrù. “Gemini: Elastic

SNARKs for Diverse Environments”. In: EUROCRYPT 2022, Part II. Ed. by Orr

Dunkelman and Stefan Dziembowski. Vol. 13276. LNCS. Springer, Heidelberg, May

2022, pp. 427–457. doi: 10.1007/978-3-031-07085-3_15.

[Bow+20] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and

Howard Wu. “ZEXE: Enabling Decentralized Private Computation”. In: 2020 IEEE

Symposium on Security and Privacy. IEEE Computer Society Press, May 2020, pp. 947–

964. doi: 10.1109/SP40000.2020.00050.

[BPS16] Iddo Bentov, Rafael Pass, and Elaine Shi. Snow White: Provably Secure Proofs of Stake.

Cryptology ePrint Archive, Report 2016/919. https://eprint.iacr.org/2016/919.

2016.

[BR93] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A Paradigm for

Designing Efficient Protocols”. In: ACM CCS 93. Ed. by Dorothy E. Denning, Raymond

Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby. ACM Press, Nov. 1993,

pp. 62–73. doi: 10.1145/168588.168596.

[BS12] Selcuk Baktir and Erkay Savas. Highly-Parallel Montgomery Multiplication for Multi-

core General-Purpose Microprocessors. Cryptology ePrint Archive, Report 2012/140.

https://eprint.iacr.org/2012/140. 2012.

https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-030-56880-1_16
https://eprint.iacr.org/2022/1056
https://doi.org/10.1007/978-3-031-07085-3_15
https://doi.org/10.1109/SP40000.2020.00050
https://eprint.iacr.org/2016/919
https://doi.org/10.1145/168588.168596
https://eprint.iacr.org/2012/140

BIBLIOGRAPHY 217

[BS+22] Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. “Elliptic Curve Fast

Fourier Transform (ECFFT) Part II: Scalable and Transparent Proofs over All Large

Fields”. In: (2022).

[BSS08] Eli Ben-Sasson and Madhu Sudan. “Short PCPs with polylog query complexity”. In:

SIAM Journal on Computing 38.2 (2008), pp. 551–607.

[Bün+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. “Bulletproofs: Short Proofs for Confidential Transactions and More”.

In: 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society Press,

May 2018, pp. 315–334. doi: 10.1109/SP.2018.00020.

[Bün+20] Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas Spooner. “Recursive

Proof Composition from Accumulation Schemes”. In: TCC 2020, Part II. Ed. by Rafael

Pass and Krzysztof Pietrzak. Vol. 12551. LNCS. Springer, Heidelberg, Nov. 2020, pp. 1–

18. doi: 10.1007/978-3-030-64378-2_1.

[Bün+21a] Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and Nicholas Spooner.

“Proof-Carrying Data Without Succinct Arguments”. In: CRYPTO 2021, Part I. Ed.

by Tal Malkin and Chris Peikert. Vol. 12825. LNCS. Virtual Event: Springer, Heidel-

berg, Aug. 2021, pp. 681–710. doi: 10.1007/978-3-030-84242-0_24.

[Bün+21b] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. “Proofs

for Inner Pairing Products and Applications”. In: ASIACRYPT 2021, Part III. Ed. by

Mehdi Tibouchi and Huaxiong Wang. Vol. 13092. LNCS. Springer, Heidelberg, Dec.

2021, pp. 65–97. doi: 10.1007/978-3-030-92078-4_3.

[BX11] Joseph Bonneau and Rubin Xu. “Scrambling for lightweight censorship resistance”. In:

International Workshop on Security Protocols. Springer. 2011.

[Cai+93] Jin-yi Cai, Richard J. Lipton, Robert Sedgewick, and Andrew Chi-Chih Yao. “Towards

Uncheatable benchmarks”. In: Structure in Complexity Theory. 1993.

[Cam+17] Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. “Zero-

Knowledge Contingent Payments Revisited: Attacks and Payments for Services”. In:

ACM CCS 2017. Ed. by Bhavani M. Thuraisingham, David Evans, Tal Malkin, and

Dongyan Xu. ACM Press, Oct. 2017, pp. 229–243. doi: 10.1145/3133956.3134060.

[Cam+21] Matteo Campanelli, Antonio Faonio, Dario Fiore, Anäıs Querol, and Hadrián Rodŕıguez.

“Lunar: A Toolbox for More Efficient Universal and Updatable zkSNARKs and Commit-

and-Prove Extensions”. In: ASIACRYPT 2021, Part III. Ed. by Mehdi Tibouchi and

Huaxiong Wang. Vol. 13092. LNCS. Springer, Heidelberg, Dec. 2021, pp. 3–33. doi:

10.1007/978-3-030-92078-4_1.

https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-030-64378-2_1
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-030-92078-4_3
https://doi.org/10.1145/3133956.3134060
https://doi.org/10.1007/978-3-030-92078-4_1

BIBLIOGRAPHY 218

[CCs08] Jan Camenisch, Rafik Chaabouni, and abhi shelat. “Efficient Protocols for Set Mem-

bership and Range Proofs”. In: ASIACRYPT 2008. Ed. by Josef Pieprzyk. Vol. 5350.

LNCS. Springer, Heidelberg, Dec. 2008, pp. 234–252. doi: 10.1007/978- 3- 540-

89255-7_15.

[CD17] Ignacio Cascudo and Bernardo David. “SCRAPE: Scalable Randomness Attested by

Public Entities”. In: ACNS 17. Ed. by Dieter Gollmann, Atsuko Miyaji, and Hiroaki

Kikuchi. Vol. 10355. LNCS. Springer, Heidelberg, July 2017, pp. 537–556. doi: 10.

1007/978-3-319-61204-1_27.

[CD98] Ronald Cramer and Ivan Damg̊ard. “Zero-Knowledge Proofs for Finite Field Arith-

metic; or: Can Zero-Knowledge Be for Free?” In: CRYPTO’98. Ed. by Hugo Krawczyk.

Vol. 1462. LNCS. Springer, Heidelberg, Aug. 1998, pp. 424–441. doi: 10.1007/BFb0055745.

[CFQ19] Matteo Campanelli, Dario Fiore, and Anäıs Querol. “LegoSNARK: Modular Design and

Composition of Succinct Zero-Knowledge Proofs”. In: ACM CCS 2019. Ed. by Lorenzo

Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz. ACM Press, Nov.

2019, pp. 2075–2092. doi: 10.1145/3319535.3339820.

[CFS17] Alessandro Chiesa, Michael A. Forbes, and Nicholas Spooner. A Zero Knowledge Sum-

check and its Applications. Cryptology ePrint Archive, Report 2017/305. https://

eprint.iacr.org/2017/305. 2017.

[CH10] Jeremy Clark and Urs Hengartner. On the Use of Financial Data as a Random Beacon.

Cryptology ePrint Archive, Report 2010/361. https://eprint.iacr.org/2010/361.

2010.

[Cha82] David Chaum. “Blind Signatures for Untraceable Payments”. In: CRYPTO’82. Ed. by

David Chaum, Ronald L. Rivest, and Alan T. Sherman. Plenum Press, New York, USA,

1982, pp. 199–203.

[Che+22] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk: Plonk with

Linear-Time Prover and High-Degree Custom Gates. Cryptology ePrint Archive, Re-

port 2022/1355. https://eprint.iacr.org/2022/1355. 2022.

[Che+23] Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. “HyperPlonk: Plonk with

Linear-Time Prover and High-Degree Custom Gates”. In: EUROCRYPT 2023, Part II.

Ed. by Carmit Hazay and Martijn Stam. Vol. 14005. LNCS. Springer, Heidelberg, Apr.

2023, pp. 499–530. doi: 10.1007/978-3-031-30617-4_17.

[Chi+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas

P. Ward. “Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS”. In:

EUROCRYPT 2020, Part I. Ed. by Anne Canteaut and Yuval Ishai. Vol. 12105. LNCS.

Springer, Heidelberg, May 2020, pp. 738–768. doi: 10.1007/978-3-030-45721-1_26.

https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-540-89255-7_15
https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/978-3-319-61204-1_27
https://doi.org/10.1007/BFb0055745
https://doi.org/10.1145/3319535.3339820
https://eprint.iacr.org/2017/305
https://eprint.iacr.org/2017/305
https://eprint.iacr.org/2010/361
https://eprint.iacr.org/2022/1355
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-030-45721-1_26

BIBLIOGRAPHY 219

[CHL05] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. “Compact E-Cash”. In:

EUROCRYPT 2005. Ed. by Ronald Cramer. Vol. 3494. LNCS. Springer, Heidelberg,

May 2005, pp. 302–321. doi: 10.1007/11426639_18.

[Cho+19] Arka Rai Choudhuri, Pavel Hubácek, Chethan Kamath, Krzysztof Pietrzak, Alon Rosen,

and Guy N. Rothblum. “Finding a Nash equilibrium is no easier than breaking Fiat-

Shamir”. In: 51st ACM STOC. Ed. by Moses Charikar and Edith Cohen. ACM Press,

June 2019, pp. 1103–1114. doi: 10.1145/3313276.3316400.

[Chu+20] Heewon Chung, Kyoohyung Han, Chanyang Ju, Myungsun Kim, and Jae Hong Seo.

Bulletproofs+: Shorter Proofs for Privacy-Enhanced Distributed Ledger. Cryptology

ePrint Archive, Report 2020/735. https://eprint.iacr.org/2020/735. 2020.

[CJJ21a] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. “Non-interactive Batch Ar-

guments for NP from Standard Assumptions”. In: CRYPTO 2021, Part IV. Ed. by

Tal Malkin and Chris Peikert. Vol. 12828. LNCS. Virtual Event: Springer, Heidelberg,

Aug. 2021, pp. 394–423. doi: 10.1007/978-3-030-84259-8_14.

[CJJ21b] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE.

Cryptology ePrint Archive, Report 2021/808. https://eprint.iacr.org/2021/808.

2021.

[CLs10] Rafik Chaabouni, Helger Lipmaa, and abhi shelat. “Additive Combinatorics and Dis-

crete Logarithm Based Range Protocols”. In: ACISP 10. Ed. by Ron Steinfeld and

Philip Hawkes. Vol. 6168. LNCS. Springer, Heidelberg, July 2010, pp. 336–351.

[CNW97] Jin-Yi Cai, Ajay Nerurkar, and Min-You Wu. The design of uncheatable benchmarks

using complexity theory. 1997.

[Cod+97] Bruno Codenottia, Biswa N. Datta, Karabi Datta, and Mauro Leoncini. “Parallel al-

gorithms for certain matrix computations”. In: Theoretical Computer Science. 1997.

[Coh17] Bram Cohen. Proofs of Space and Time. Blockchain Protocol Analysis and Security

Engineering. https://cyber.stanford.edu/sites/default/files/bramcohen.pdf.

2017.

[con22] arkworks contributors. arkworks zkSNARK ecosystem. 2022. url: https://arkworks.

rs.

[COS20] Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. “Fractal: Post-quantum and

Transparent Recursive Proofs from Holography”. In: EUROCRYPT 2020, Part I. Ed.

by Anne Canteaut and Yuval Ishai. Vol. 12105. LNCS. Springer, Heidelberg, May 2020,

pp. 769–793. doi: 10.1007/978-3-030-45721-1_27.

https://doi.org/10.1007/11426639_18
https://doi.org/10.1145/3313276.3316400
https://eprint.iacr.org/2020/735
https://doi.org/10.1007/978-3-030-84259-8_14
https://eprint.iacr.org/2021/808
https://cyber.stanford.edu/sites/default/files/bramcohen.pdf
https://arkworks.rs
https://arkworks.rs
https://doi.org/10.1007/978-3-030-45721-1_27

BIBLIOGRAPHY 220

[CP18] Bram Cohen and Krzysztof Pietrzak. “Simple Proofs of Sequential Work”. In: EURO-

CRYPT 2018, Part II. Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10821.

LNCS. Springer, Heidelberg, Apr. 2018, pp. 451–467. doi: 10.1007/978- 3- 319-

78375-8_15.

[CRR11] Ran Canetti, Ben Riva, and Guy N. Rothblum. “Practical delegation of computation

using multiple servers”. In: ACM CCS 2011. Ed. by Yan Chen, George Danezis, and Vi-

taly Shmatikov. ACM Press, Oct. 2011, pp. 445–454. doi: 10.1145/2046707.2046759.

[CT10] Alessandro Chiesa and Eran Tromer. “Proof-Carrying Data and Hearsay Arguments

from Signature Cards”. In: ICS 2010. Ed. by Andrew Chi-Chih Yao. Tsinghua Univer-

sity Press, Jan. 2010, pp. 310–331.

[CTV15] Alessandro Chiesa, Eran Tromer, and Madars Virza. “Cluster Computing in Zero

Knowledge”. In: EUROCRYPT 2015, Part II. Ed. by Elisabeth Oswald and Marc Fis-

chlin. Vol. 9057. LNCS. Springer, Heidelberg, Apr. 2015, pp. 371–403. doi: 10.1007/

978-3-662-46803-6_13.

[CW77] J Lawrence Carter and Mark N Wegman. “Universal classes of hash functions”. In: Pro-

ceedings of the ninth annual ACM symposium on Theory of computing. 1977, pp. 106–

112.

[Dag+15] Gaby G. Dagher, Benedikt Bünz, Joseph Bonneau, Jeremy Clark, and Dan Boneh.

“Provisions: Privacy-preserving Proofs of Solvency for Bitcoin Exchanges”. In: ACM

CCS 2015. Ed. by Indrajit Ray, Ninghui Li, and Christopher Kruegel. ACM Press, Oct.

2015, pp. 720–731. doi: 10.1145/2810103.2813674.

[Dai98] Wei Dai. “B-money”. In: Consulted 1 (1998), p. 2012.

[Dao+23] Quang Dao, Jim Miller, Opal Wright, and Paul Grubbs. Weak Fiat-Shamir Attacks

on Modern Proof Systems. Cryptology ePrint Archive, Report 2023/691. https://

eprint.iacr.org/2023/691. 2023.

[Dav+18] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. “Ouroboros

Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake Blockchain”. In: EU-

ROCRYPT 2018, Part II. Ed. by Jesper Buus Nielsen and Vincent Rijmen. Vol. 10821.

LNCS. Springer, Heidelberg, Apr. 2018, pp. 66–98. doi: 10.1007/978-3-319-78375-

8_3.

[De +19] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. “Verifiable Delay

Functions from Supersingular Isogenies and Pairings”. In: ASIACRYPT 2019, Part I.

Ed. by Steven D. Galbraith and Shiho Moriai. Vol. 11921. LNCS. Springer, Heidelberg,

Dec. 2019, pp. 248–277. doi: 10.1007/978-3-030-34578-5_10.

https://doi.org/10.1007/978-3-319-78375-8_15
https://doi.org/10.1007/978-3-319-78375-8_15
https://doi.org/10.1145/2046707.2046759
https://doi.org/10.1007/978-3-662-46803-6_13
https://doi.org/10.1007/978-3-662-46803-6_13
https://doi.org/10.1145/2810103.2813674
https://eprint.iacr.org/2023/691
https://eprint.iacr.org/2023/691
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-030-34578-5_10

BIBLIOGRAPHY 221

[Dfi] Threshold Relay. Dfinity. https : / / dfinity . org / pdfs / viewer . html ? file = . .

/library/threshold-relay-blockchain-stanford.pdf. 2017.

[DG23] Quang Dao and Paul Grubbs. “Spartan and Bulletproofs are Simulation-Extractable

(for Free!)” In: EUROCRYPT 2023, Part II. Ed. by Carmit Hazay and Martijn Stam.

Vol. 14005. LNCS. Springer, Heidelberg, Apr. 2023, pp. 531–562. doi: 10.1007/978-

3-031-30617-4_18.

[DKT21] Soubhik Deb, Sreeram Kannan, and David Tse. “PoSAT: Proof-of-Work Availability

and Unpredictability, Without the Work”. In: FC 2021, Part II. Ed. by Nikita Borisov

and Claudia Dı́az. Vol. 12675. LNCS. Springer, Heidelberg, Mar. 2021, pp. 104–128.

doi: 10.1007/978-3-662-64331-0_6.

[DN93] Cynthia Dwork and Moni Naor. “Pricing via Processing or Combatting Junk Mail”. In:

CRYPTO’92. Ed. by Ernest F. Brickell. Vol. 740. LNCS. Springer, Heidelberg, Aug.

1993, pp. 139–147. doi: 10.1007/3-540-48071-4_10.

[Döt+20] Nico Döttling, Sanjam Garg, Giulio Malavolta, and Prashant Nalini Vasudevan. “Tight

Verifiable Delay Functions”. In: SCN 20. Ed. by Clemente Galdi and Vladimir Kolesnikov.

Vol. 12238. LNCS. Springer, Heidelberg, Sept. 2020, pp. 65–84. doi: 10.1007/978-3-

030-57990-6_4.

[Dou02] John R Douceur. “The sybil attack”. In: International Workshop on Peer-to-Peer Sys-

tems. Springer. 2002, pp. 251–260.

[Dra19] Justing Drake. PLONK-style SNARKs without FFTs. link. 2019.

[DS01] Drew Dean and Adam Stubblefield. “Using Client Puzzles to Protect TLS”. In:USENIX

Security 2001. Ed. by Dan S. Wallach. USENIX Association, Aug. 2001.

[Dzi+15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak.

“Proofs of Space”. In: CRYPTO 2015, Part II. Ed. by Rosario Gennaro and Matthew

J. B. Robshaw. Vol. 9216. LNCS. Springer, Heidelberg, Aug. 2015, pp. 585–605. doi:

10.1007/978-3-662-48000-7_29.

[Eag22] Liam Eagen. Bulletproofs++. Cryptology ePrint Archive, Report 2022/510. https:

//eprint.iacr.org/2022/510. 2022.

[EFG22] Liam Eagen, Dario Fiore, and Ariel Gabizon. cq: Cached quotients for fast lookups.

Cryptology ePrint Archive, Report 2022/1763. https://eprint.iacr.org/2022/

1763. 2022.

[Eph+20a] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. “Continuous Ver-

ifiable Delay Functions”. In: EUROCRYPT 2020, Part III. Ed. by Anne Canteaut

and Yuval Ishai. Vol. 12107. LNCS. Springer, Heidelberg, May 2020, pp. 125–154. doi:

10.1007/978-3-030-45727-3_5.

https://dfinity.org/pdfs/viewer.html?file=../library/threshold-relay-blockchain-stanford.pdf
https://dfinity.org/pdfs/viewer.html?file=../library/threshold-relay-blockchain-stanford.pdf
https://doi.org/10.1007/978-3-031-30617-4_18
https://doi.org/10.1007/978-3-031-30617-4_18
https://doi.org/10.1007/978-3-662-64331-0_6
https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-030-57990-6_4
https://doi.org/10.1007/978-3-030-57990-6_4
https://notes.ethereum.org/DLRqK9V7RIOsTZkab8Hm_Q?view
https://doi.org/10.1007/978-3-662-48000-7_29
https://eprint.iacr.org/2022/510
https://eprint.iacr.org/2022/510
https://eprint.iacr.org/2022/1763
https://eprint.iacr.org/2022/1763
https://doi.org/10.1007/978-3-030-45727-3_5

BIBLIOGRAPHY 222

[Eph+20b] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. “SPARKs: Succinct

Parallelizable Arguments of Knowledge”. In: EUROCRYPT 2020, Part I. Ed. by Anne

Canteaut and Yuval Ishai. Vol. 12105. LNCS. Springer, Heidelberg, May 2020, pp. 707–

737. doi: 10.1007/978-3-030-45721-1_25.

[Esp22] EspressoSystems. Specifications: Configurable Asset Privacy. Github. 2022. url: https:

//github.com/EspressoSystems/cap/blob/96336e8822a9672c107a05e39cf7ec9fe897f2ea/

cap-specification.pdf.

[Fcw] In.

[Fila] Filecoin: A Decentralized Storage Network. Protocol Labs. https://filecoin.io/

filecoin.pdf. 2017.

[Filb] Proof of replication. Protocol Labs. https://filecoin.io/proof-of-replication.

pdf. 2017.

[Fis18] Ben Fisch. PoReps: Proofs of Space on Useful Data. Cryptology ePrint Archive, Report

2018/678. https://eprint.iacr.org/2018/678. 2018.

[Fou22] Ethereum Foundation. Zkevm Specifications. 2022. url: https : / / github . com /

privacy-scaling-explorations/zkevm-specs.

[Fur+03] Jun Furukawa, Hiroshi Miyauchi, Kengo Mori, Satoshi Obana, and Kazue Sako. “An

Implementation of a Universally Verifiable Electronic Voting Scheme based on Shuf-

fling”. In: FC 2002. Ed. by Matt Blaze. Vol. 2357. LNCS. Springer, Heidelberg, Mar.

2003, pp. 16–30.

[Gab] Ariel Gabizon.Multiset checks in PLONK and Plookup. https://hackmd.io/@arielg/

ByFgSDA7D.

[Gan+21] Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and Daniel Tschudi.

Fiat–Shamir Bulletproofs are Non-Malleable (in the Algebraic Group Model). Cryptol-

ogy ePrint Archive, Report 2021/1393. https://eprint.iacr.org/2021/1393. 2021.

[Gen+13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. “Quadratic Span

Programs and Succinct NIZKs without PCPs”. In: EUROCRYPT 2013. Ed. by Thomas

Johansson and Phong Q. Nguyen. Vol. 7881. LNCS. Springer, Heidelberg, May 2013,

pp. 626–645. doi: 10.1007/978-3-642-38348-9_37.

[GI08] Jens Groth and Yuval Ishai. “Sub-linear Zero-Knowledge Argument for Correctness of

a Shuffle”. In: EUROCRYPT 2008. Ed. by Nigel P. Smart. Vol. 4965. LNCS. Springer,

Heidelberg, Apr. 2008, pp. 379–396. doi: 10.1007/978-3-540-78967-3_22.

https://doi.org/10.1007/978-3-030-45721-1_25
https://github.com/EspressoSystems/cap/blob/96336e8822a9672c107a05e39cf7ec9fe897f2ea/cap-specification.pdf
https://github.com/EspressoSystems/cap/blob/96336e8822a9672c107a05e39cf7ec9fe897f2ea/cap-specification.pdf
https://github.com/EspressoSystems/cap/blob/96336e8822a9672c107a05e39cf7ec9fe897f2ea/cap-specification.pdf
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://filecoin.io/proof-of-replication.pdf
https://filecoin.io/proof-of-replication.pdf
https://eprint.iacr.org/2018/678
https://github.com/privacy-scaling-explorations/zkevm-specs
https://github.com/privacy-scaling-explorations/zkevm-specs
https://hackmd.io/@arielg/ByFgSDA7D
https://hackmd.io/@arielg/ByFgSDA7D
https://eprint.iacr.org/2021/1393
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-540-78967-3_22

BIBLIOGRAPHY 223

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. “The Bitcoin Backbone Pro-

tocol: Analysis and Applications”. In: EUROCRYPT 2015, Part II. Ed. by Elisabeth

Oswald and Marc Fischlin. Vol. 9057. LNCS. Springer, Heidelberg, Apr. 2015, pp. 281–

310. doi: 10.1007/978-3-662-46803-6_10.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegating computa-

tion: interactive proofs for muggles”. In: 40th ACM STOC. Ed. by Richard E. Ladner

and Cynthia Dwork. ACM Press, May 2008, pp. 113–122. doi: 10.1145/1374376.

1374396.

[GM97] Robert M Guralnick and Peter Müller. “Exceptional polynomials of affine type”. In:

Journal of Algebra 194.2 (1997), pp. 429–454.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The Knowledge Complexity of

Interactive Proof Systems”. In: SIAM Journal on Computing 18.1 (1989), pp. 186–208.

[Gol+21] Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and Riad S. Wahby.

Brakedown: Linear-time and post-quantum SNARKs for R1CS. Cryptology ePrint Archive,

Report 2021/1043. https://eprint.iacr.org/2021/1043. 2021.

[Gor98] Daniel M Gordon. “A survey of fast exponentiation methods”. In: Journal of algorithms

27.1 (1998), pp. 129–146.

[Gra+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus

Schofnegger. “Poseidon: A New Hash Function for Zero-Knowledge Proof Systems”.

In: USENIX Security 2021. Ed. by Michael Bailey and Rachel Greenstadt. USENIX

Association, Aug. 2021, pp. 519–535.

[Gro05] Jens Groth. “Non-interactive Zero-Knowledge Arguments for Voting”. In: ACNS 05.

Ed. by John Ioannidis, Angelos Keromytis, and Moti Yung. Vol. 3531. LNCS. Springer,

Heidelberg, June 2005, pp. 467–482. doi: 10.1007/11496137_32.

[Gro10a] Jens Groth. “A Verifiable Secret Shuffle of Homomorphic Encryptions”. In: Journal of

Cryptology 23.4 (Oct. 2010), pp. 546–579. doi: 10.1007/s00145-010-9067-9.

[Gro10b] Jens Groth. “Short Pairing-Based Non-interactive Zero-Knowledge Arguments”. In:

ASIACRYPT 2010. Ed. by Masayuki Abe. Vol. 6477. LNCS. Springer, Heidelberg,

Dec. 2010, pp. 321–340. doi: 10.1007/978-3-642-17373-8_19.

[Gro16] Jens Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: EURO-

CRYPT 2016, Part II. Ed. by Marc Fischlin and Jean-Sébastien Coron. Vol. 9666.

LNCS. Springer, Heidelberg, May 2016, pp. 305–326. doi: 10.1007/978- 3- 662-

49896-5_11.

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1145/1374376.1374396
https://eprint.iacr.org/2021/1043
https://doi.org/10.1007/11496137_32
https://doi.org/10.1007/s00145-010-9067-9
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-662-49896-5_11

BIBLIOGRAPHY 224

[Gro+18] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. “Up-

datable and Universal Common Reference Strings with Applications to zk-SNARKs”.

In: CRYPTO 2018, Part III. Ed. by Hovav Shacham and Alexandra Boldyreva. Vol. 10993.

LNCS. Springer, Heidelberg, Aug. 2018, pp. 698–728. doi: 10.1007/978- 3- 319-

96878-0_24.

[GS08] Jens Groth and Amit Sahai. “Efficient Non-interactive Proof Systems for Bilinear

Groups”. In: EUROCRYPT 2008. Ed. by Nigel P. Smart. Vol. 4965. LNCS. Springer,

Heidelberg, Apr. 2008, pp. 415–432. doi: 10.1007/978-3-540-78967-3_24.

[GS98] David M. Goldschlag and Stuart G. Stubblebine. “Publicly Verifiable Lotteries: Appli-

cations of Delaying Functions”. In: FC’98. Ed. by Rafael Hirschfeld. Vol. 1465. LNCS.

Springer, Heidelberg, Feb. 1998, pp. 214–226.

[GSV98] Oded Goldreich, Amit Sahai, and Salil P. Vadhan. “Honest-Verifier Statistical Zero-

Knowledge Equals General Statistical Zero-Knowledge”. In: 30th ACM STOC. ACM

Press, May 1998, pp. 399–408. doi: 10.1145/276698.276852.

[GT21] Ashrujit Ghoshal and Stefano Tessaro. “Tight State-Restoration Soundness in the Al-

gebraic Group Model”. In: CRYPTO 2021, Part III. Ed. by Tal Malkin and Chris

Peikert. Vol. 12827. LNCS. Virtual Event: Springer, Heidelberg, Aug. 2021, pp. 64–93.

doi: 10.1007/978-3-030-84252-9_3.

[GVW01] Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. “On Interactive Proofs with

a Laconic Prover”. In: ICALP 2001. Ed. by Fernando Orejas, Paul G. Spirakis, and

Jan van Leeuwen. Vol. 2076. LNCS. Springer, Heidelberg, July 2001, pp. 334–345. doi:

10.1007/3-540-48224-5_28.

[GW11] Craig Gentry and Daniel Wichs. “Separating succinct non-interactive arguments from

all falsifiable assumptions”. In: 43rd ACM STOC. Ed. by Lance Fortnow and Salil P.

Vadhan. ACM Press, June 2011, pp. 99–108. doi: 10.1145/1993636.1993651.

[GW20a] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial protocol for

lookup tables. Cryptology ePrint Archive, Report 2020/315. https://eprint.iacr.

org/2020/315. 2020.

[GW20b] Ariel Gabizon and Zachary J Williamson. Proposal: The Turbo-PLONK program syntax

for specifying SNARK programs. https://docs.zkproof.org/pages/standards/

accepted-workshop3/proposal-turbo_plonk.pdf. 2020.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations

over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryp-

tology ePrint Archive, Report 2019/953. https://eprint.iacr.org/2019/953. 2019.

https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1145/276698.276852
https://doi.org/10.1007/978-3-030-84252-9_3
https://doi.org/10.1007/3-540-48224-5_28
https://doi.org/10.1145/1993636.1993651
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://eprint.iacr.org/2019/953

BIBLIOGRAPHY 225

[Hab22a] Ulrich Haböck. “A summary on the FRI low degree test”. In: Cryptology ePrint Archive

(2022).

[Hab22b] Ulrich Haböck.Multivariate lookups based on logarithmic derivatives. Cryptology ePrint

Archive, Report 2022/1530. https://eprint.iacr.org/2022/1530. 2022.

[Hop+22] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash Protocol Spec-

ification. Version 2022.3.8. Online. https://zips.z.cash/protocol/protocol.pdf.

2022. url: https://zips.z.cash/protocol/protocol.pdf.

[Hou15] Xiang-dong Hou. “Permutation polynomials over finite fields—a survey of recent ad-

vances”. In: Finite Fields and Their Applications 32 (2015), pp. 82–119.

[HVDH22] David Harvey and Joris Van Der Hoeven. “Polynomial Multiplication over Finite Fields

in Time”. In: Journal of the ACM (JACM) 69.2 (2022), pp. 1–40.

[JB99] Ari Juels and John G. Brainard. “Client Puzzles: A Cryptographic Countermeasure

Against Connection Depletion Attacks”. In: NDSS’99. The Internet Society, Feb. 1999.

[Jed16] TE Jedusor. Mimblewimble. 2016.

[JK07] Ari Juels and Burton S. Kaliski Jr. “Pors: proofs of retrievability for large files”. In:

ACM CCS 2007. Ed. by Peng Ning, Sabrina De Capitani di Vimercati, and Paul F.

Syverson. ACM Press, Oct. 2007, pp. 584–597. doi: 10.1145/1315245.1315317.

[JM11] Yves Igor Jerschow and Martin Mauve. “Non-parallelizable and non-interactive client

puzzles from modular square roots”. In: Availability, Reliability and Security (ARES).

2011.

[JT20] Joseph Jaeger and Stefano Tessaro. “Expected-Time Cryptography: Generic Techniques

and Applications to Concrete Soundness”. In: TCC 2020, Part III. Ed. by Rafael Pass

and Krzysztof Pietrzak. Vol. 12552. LNCS. Springer, Heidelberg, Nov. 2020, pp. 414–

443. doi: 10.1007/978-3-030-64381-2_15.

[KB20] Assimakis Kattis and Joseph Bonneau. Proof of Necessary Work: Succinct State Verifi-

cation with Fairness Guarantees. Cryptology ePrint Archive, Report 2020/190. https:

//eprint.iacr.org/2020/190. 2020.

[Kia+17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. “Ouroboros:

A Provably Secure Proof-of-Stake Blockchain Protocol”. In: CRYPTO 2017, Part I. Ed.

by Jonathan Katz and Hovav Shacham. Vol. 10401. LNCS. Springer, Heidelberg, Aug.

2017, pp. 357–388. doi: 10.1007/978-3-319-63688-7_12.

[Kil92] Joe Kilian. “A Note on Efficient Zero-Knowledge Proofs and Arguments (Extended

Abstract)”. In: 24th ACM STOC. ACM Press, May 1992, pp. 723–732. doi: 10.1145/

129712.129782.

https://eprint.iacr.org/2022/1530
https://zips.z.cash/protocol/protocol.pdf
https://zips.z.cash/protocol/protocol.pdf
https://doi.org/10.1145/1315245.1315317
https://doi.org/10.1007/978-3-030-64381-2_15
https://eprint.iacr.org/2020/190
https://eprint.iacr.org/2020/190
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1145/129712.129782
https://doi.org/10.1145/129712.129782

BIBLIOGRAPHY 226

[KMB17] Dmitry Kogan, Nathan Manohar, and Dan Boneh. “T/Key: Second-Factor Authenti-

cation From Secure Hash Chains”. In: ACM CCS 2017. Ed. by Bhavani M. Thuraising-

ham, David Evans, Tal Malkin, and Dongyan Xu. ACM Press, Oct. 2017, pp. 983–999.

doi: 10.1145/3133956.3133989.

[KMT22] Dmitry Khovratovich, Mary Maller, and Pratyush Ranjan Tiwari. MinRoot: Candidate

Sequential Function for Ethereum VDF. Cryptology ePrint Archive, Report 2022/1626.

https://eprint.iacr.org/2022/1626. 2022.

[KN] S King and S Nadal. “Peercoin–Secure & Sustainable Cryptocoin”. In: Aug-2012 [On-

line]. Available: https://peercoin. net/whitepaper ().

[Kos+16] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-

thou. “Hawk: The Blockchain Model of Cryptography and Privacy-Preserving Smart

Contracts”. In: 2016 IEEE Symposium on Security and Privacy. IEEE Computer So-

ciety Press, May 2016, pp. 839–858. doi: 10.1109/SP.2016.55.

[KP98] Joe Kilian and Erez Petrank. “An Efficient Noninteractive Zero-Knowledge Proof Sys-

tem for NP with General Assumptions”. In: Journal of Cryptology 11.1 (Jan. 1998),

pp. 1–27. doi: 10.1007/s001459900032.

[KPV19] Assimakis Kattis, Konstantin Panarin, and Alexander Vlasov. RedShift: Transparent

SNARKs from List Polynomial Commitment IOPs. Cryptology ePrint Archive, Report

2019/1400. https://eprint.iacr.org/2019/1400. 2019.

[KS22] Abhiram Kothapalli and Srinath Setty. SuperNova: Proving universal machine execu-

tions without universal circuits. Cryptology ePrint Archive, Report 2022/1758. https:

//eprint.iacr.org/2022/1758. 2022.

[KS23] Abhiram Kothapalli and Srinath Setty. “HyperNova: Recursive arguments for customiz-

able constraint systems”. In: Cryptology ePrint Archive (2023).

[KST21] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla.Nova: Recursive Zero-Knowledge

Arguments from Folding Schemes. Cryptology ePrint Archive, Report 2021/370. https:

//eprint.iacr.org/2021/370. 2021.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. “Nova: Recursive Zero-Knowledge

Arguments from Folding Schemes”. In: CRYPTO 2022, Part IV. Ed. by Yevgeniy Dodis

and Thomas Shrimpton. Vol. 13510. LNCS. Springer, Heidelberg, Aug. 2022, pp. 359–

388. doi: 10.1007/978-3-031-15985-5_13.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. “Constant-Size Commitments

to Polynomials and Their Applications”. In: ASIACRYPT 2010. Ed. by Masayuki Abe.

Vol. 6477. LNCS. Springer, Heidelberg, Dec. 2010, pp. 177–194. doi: 10.1007/978-3-

642-17373-8_11.

https://doi.org/10.1145/3133956.3133989
https://eprint.iacr.org/2022/1626
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1007/s001459900032
https://eprint.iacr.org/2019/1400
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2021/370
https://eprint.iacr.org/2021/370
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11

BIBLIOGRAPHY 227

[Lee21] Jonathan Lee. “Dory: Efficient, Transparent Arguments for Generalised Inner Products

and Polynomial Commitments”. In: TCC 2021, Part II. Ed. by Kobbi Nissim and Brent

Waters. Vol. 13043. LNCS. Springer, Heidelberg, Nov. 2021, pp. 1–34. doi: 10.1007/

978-3-030-90453-1_1.

[Ler14] Sergio Demian Lerner. Proof of unique blockchain storage. https://bitslog.wordpress.

com/2014/11/03/proof-of-local-blockchain-storage/. 2014.

[Lin03] Yehuda Lindell. “Parallel Coin-Tossing and Constant-Round Secure Two-Party Com-

putation”. In: Journal of Cryptology 16.3 (June 2003), pp. 143–184. doi: 10.1007/

s00145-002-0143-7.

[Lip03] Helger Lipmaa. “On Diophantine Complexity and Statistical Zero-Knowledge Argu-

ments”. In: ASIACRYPT 2003. Ed. by Chi-Sung Laih. Vol. 2894. LNCS. Springer,

Heidelberg, Nov. 2003, pp. 398–415. doi: 10.1007/978-3-540-40061-5_26.

[LMT93] Rudolf Lidl, Gary L Mullen, and Gerhard Turnwald. Dickson polynomials. Vol. 65.

Chapman & Hall/CRC, 1993.

[Lun+92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. “Algebraic methods

for interactive proof systems”. In: Journal of the ACM (JACM) 39.4 (1992), pp. 859–

868.

[LV20] Alex Lombardi and Vinod Vaikuntanathan. “Fiat-Shamir for Repeated Squaring with

Applications to PPAD-Hardness and VDFs”. In: CRYPTO 2020, Part III. Ed. by

Daniele Micciancio and Thomas Ristenpart. Vol. 12172. LNCS. Springer, Heidelberg,

Aug. 2020, pp. 632–651. doi: 10.1007/978-3-030-56877-1_22.

[LW15] Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn, and trx.

Cryptology ePrint Archive, Report 2015/366. https://eprint.iacr.org/2015/366.

2015.

[Mal+19] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. “Sonic: Zero-

Knowledge SNARKs from Linear-Size Universal and Updatable Structured Reference

Strings”. In: ACM CCS 2019. Ed. by Lorenzo Cavallaro, Johannes Kinder, XiaoFeng

Wang, and Jonathan Katz. ACM Press, Nov. 2019, pp. 2111–2128. doi: 10.1145/

3319535.3339817.

[Mat61] Émile Mathieu. “Mémoire sur l’étude des fonctions de plusieurs quantités sur la manière

de les former et sur les substitutions qui les laissent invariables”. In: J. Math. Pures

Appl. (2) 6. 1861.

[Max] G Maxwell. “Zero knowledge contingent payment. 2011”. In: URl: https://en. bitcoin.

it/wiki/Zero Knowledge Contingent Payment (visited on 05/01/2016) ().

https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-030-90453-1_1
https://bitslog.wordpress.com/2014/11/03/proof-of-local-blockchain-storage/
https://bitslog.wordpress.com/2014/11/03/proof-of-local-blockchain-storage/
https://doi.org/10.1007/s00145-002-0143-7
https://doi.org/10.1007/s00145-002-0143-7
https://doi.org/10.1007/978-3-540-40061-5_26
https://doi.org/10.1007/978-3-030-56877-1_22
https://eprint.iacr.org/2015/366
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1145/3319535.3339817

BIBLIOGRAPHY 228

[Max13] Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world. bitcointalk.org.

2013.

[Max16] Greg Maxwell. Confidential Transactions. https://people.xiph.org/~greg/confidential_

values.txt. 2016.

[Mei+13] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy,

Geoffrey M Voelker, and Stefan Savage. “A fistful of bitcoins: characterizing payments

among men with no names”. In: IMC. 2013.

[Mic16] Silvio Micali. “ALGORAND: the efficient and democratic ledger”. In: arXiv preprint

arXiv:1607.01341 (2016).

[Mic94] Silvio Micali. “CS Proofs (Extended Abstracts)”. In: 35th FOCS. IEEE Computer

Society Press, Nov. 1994, pp. 436–453. doi: 10.1109/SFCS.1994.365746.

[Mil+14] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz. “Permacoin:

Repurposing Bitcoin Work for Data Preservation”. In: 2014 IEEE Symposium on Se-

curity and Privacy. IEEE Computer Society Press, May 2014, pp. 475–490. doi: 10.

1109/SP.2014.37.

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. “Publicly verifiable proofs

of sequential work”. In: ITCS 2013. Ed. by Robert D. Kleinberg. ACM, Jan. 2013,

pp. 373–388. doi: 10.1145/2422436.2422479.

[MNS16] Tal Moran, Moni Naor, and Gil Segev. “An Optimally Fair Coin Toss”. In: Journal of

Cryptology 29.3 (July 2016), pp. 491–513. doi: 10.1007/s00145-015-9199-z.

[Moh23] Nicholas Mohnblatt. Sangria: A Folding Scheme for PLONK. https://github.com/

geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf.

Accessed: 2023-04-27. 2023.

[Mon] Monero - Private Digital Currency. https://getmonero.org/.

[MP15] Gregory Maxwell and Andrew Poelstra. “Borromean ring signatures”. In: Accessed: Jun

8 (2015), p. 2019.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. “Indifferentiability, Impos-

sibility Results on Reductions, and Applications to the Random Oracle Methodology”.

In: TCC 2004. Ed. by Moni Naor. Vol. 2951. LNCS. Springer, Heidelberg, Feb. 2004,

pp. 21–39. doi: 10.1007/978-3-540-24638-1_2.

[MSH17] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. “A Smart Contract for

Boardroom Voting with Maximum Voter Privacy”. In: FC 2017. Ed. by Aggelos Kiayias.

Vol. 10322. LNCS. Springer, Heidelberg, Apr. 2017, pp. 357–375.

bitcointalk.org
https://people.xiph.org/~greg/confidential_values.txt
https://people.xiph.org/~greg/confidential_values.txt
https://doi.org/10.1109/SFCS.1994.365746
https://doi.org/10.1109/SP.2014.37
https://doi.org/10.1109/SP.2014.37
https://doi.org/10.1145/2422436.2422479
https://doi.org/10.1007/s00145-015-9199-z
https://github.com/geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf
https://github.com/geometryresearch/technical_notes/blob/main/sangria_folding_plonk.pdf
https://getmonero.org/
https://doi.org/10.1007/978-3-540-24638-1_2

BIBLIOGRAPHY 229

[MSZ21] Simon Masson, Antonio Sanso, and Zhenfei Zhang. Bandersnatch: a fast elliptic curve

built over the BLS12-381 scalar field. Cryptology ePrint Archive, Report 2021/1152.

https://eprint.iacr.org/2021/1152. 2021.

[MT79] Robert Morris and Ken Thompson. “Password security: A case history”. In: Commu-

nications of the ACM 22.11 (1979), pp. 594–597.

[Mül97] Peter Müller. “A Weil-bound free proof of Schur’s conjecture”. In: Finite Fields and

Their Applications 3.1 (1997), pp. 25–32.

[Nak08] S Nakamoto. Bitcoin: A peer-to-peer electionic cash system. Unpublished. 2008.

[Nef01] C. Andrew Neff. “A Verifiable Secret Shuffle and Its Application to e-Voting”. In: ACM

CCS 2001. Ed. by Michael K. Reiter and Pierangela Samarati. ACM Press, Nov. 2001,

pp. 116–125. doi: 10.1145/501983.502000.

[NM+16] Shen Noether, Adam Mackenzie, et al. “Ring confidential transactions”. In: Ledger 1

(2016), pp. 1–18.

[NT16] Assa Naveh and Eran Tromer. “PhotoProof: Cryptographic Image Authentication for

Any Set of Permissible Transformations”. In: 2016 IEEE Symposium on Security and

Privacy. IEEE Computer Society Press, May 2016, pp. 255–271. doi: 10.1109/SP.

2016.23.

[Par+13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. “Pinocchio: Nearly

Practical Verifiable Computation”. In: 2013 IEEE Symposium on Security and Privacy.

IEEE Computer Society Press, May 2013, pp. 238–252. doi: 10.1109/SP.2013.47.

[Par+18] Sunoo Park, Albert Kwon, Georg Fuchsbauer, Peter Gazi, Joël Alwen, and Krzysztof

Pietrzak. “SpaceMint: A Cryptocurrency Based on Proofs of Space”. In: FC 2018. Ed.

by Sarah Meiklejohn and Kazue Sako. Vol. 10957. LNCS. Springer, Heidelberg, Feb.

2018, pp. 480–499. doi: 10.1007/978-3-662-58387-6_26.

[Pea+22] Luke Pearson, Joshua Fitzgerald, Héctor Masip, Marta Bellés-Muñoz, and Jose Luis

Muñoz-Tapia. PlonKup: Reconciling PlonK with plookup. Cryptology ePrint Archive,

Report 2022/086. https://eprint.iacr.org/2022/086. 2022.

[Ped92] Torben P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifiable Se-

cret Sharing”. In: CRYPTO’91. Ed. by Joan Feigenbaum. Vol. 576. LNCS. Springer,

Heidelberg, Aug. 1992, pp. 129–140. doi: 10.1007/3-540-46766-1_9.

[Pie19a] Krzysztof Pietrzak. “Proofs of Catalytic Space”. In: ITCS 2019. Ed. by Avrim Blum.

Vol. 124. LIPIcs, Jan. 2019, 59:1–59:25. doi: 10.4230/LIPIcs.ITCS.2019.59.

[Pie19b] Krzysztof Pietrzak. “Simple Verifiable Delay Functions”. In: ITCS 2019. Ed. by Avrim

Blum. Vol. 124. LIPIcs, Jan. 2019, 60:1–60:15. doi: 10.4230/LIPIcs.ITCS.2019.60.

https://eprint.iacr.org/2021/1152
https://doi.org/10.1145/501983.502000
https://doi.org/10.1109/SP.2016.23
https://doi.org/10.1109/SP.2016.23
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-662-58387-6_26
https://eprint.iacr.org/2022/086
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.4230/LIPIcs.ITCS.2019.59
https://doi.org/10.4230/LIPIcs.ITCS.2019.60

BIBLIOGRAPHY 230

[Pip80] Nicholas Pippenger. “On the evaluation of powers and monomials”. In: SIAM Journal

on Computing 9 (1980), pp. 230–250. issn: 0097–5397.

[PK22] Jim Posen and Assimakis A. Kattis. Caulk+: Table-independent lookup arguments.

Cryptology ePrint Archive, Report 2022/957. https://eprint.iacr.org/2022/957.

2022.

[Poe+19] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell, and Pieter Wuille.

“Confidential Assets”. In: FC 2018 Workshops. Ed. by Aviv Zohar, Ittay Eyal, Vanessa

Teague, Jeremy Clark, Andrea Bracciali, Federico Pintore, and Massimiliano Sala.

Vol. 10958. LNCS. Springer, Heidelberg, Mar. 2019, pp. 43–63. doi: 10.1007/978-

3-662-58820-8_4.

[PS17] Rafael Pass and Elaine Shi. “The Sleepy Model of Consensus”. In: ASIACRYPT 2017,

Part II. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10625. LNCS. Springer,

Heidelberg, Dec. 2017, pp. 380–409. doi: 10.1007/978-3-319-70697-9_14.

[PST13] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. “Signatures of Cor-

rect Computation”. In: TCC 2013. Ed. by Amit Sahai. Vol. 7785. LNCS. Springer,

Heidelberg, Mar. 2013, pp. 222–242. doi: 10.1007/978-3-642-36594-2_13.

[PW16] Cecile Pierrot and Benjamin Wesolowski. Malleability of the blockchain’s entropy. Cryp-

tology ePrint Archive, Report 2016/370. https://eprint.iacr.org/2016/370. 2016.

[Rab83] Michael O Rabin. “Transaction protection by beacons”. In: Journal of Computer and

System Sciences (1983).

[Ran] RANDAO: A DAO working as RNG of Ethereum. Tech. rep. 2016.

[RMK14] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. “CoinShuffle: Practical De-

centralized Coin Mixing for Bitcoin”. In: ESORICS 2014, Part II. Ed. by Miroslaw

Kutylowski and Jaideep Vaidya. Vol. 8713. LNCS. Springer, Heidelberg, Sept. 2014,

pp. 345–364. doi: 10.1007/978-3-319-11212-1_20.

[RS96] Ronald L Rivest and Adi Shamir. “PayWord and MicroMint: Two simple micropayment

schemes”. In: International Workshop on Security Protocols. Springer. 1996, pp. 69–87.

[RSW96] Ronald L Rivest, Adi Shamir, and David A Wagner. “Time-lock puzzles and timed-

release crypto”. In: (1996).

[Sab13] Nicolas van Saberhagen. Cryptonote v 2. 0. 2013.

[San99] Tomas Sander. “Efficient Accumulators without Trapdoor Extended Abstracts”. In:

ICICS 99. Ed. by Vijay Varadharajan and Yi Mu. Vol. 1726. LNCS. Springer, Heidel-

berg, Nov. 1999, pp. 252–262.

https://eprint.iacr.org/2022/957
https://doi.org/10.1007/978-3-662-58820-8_4
https://doi.org/10.1007/978-3-662-58820-8_4
https://doi.org/10.1007/978-3-319-70697-9_14
https://doi.org/10.1007/978-3-642-36594-2_13
https://eprint.iacr.org/2016/370
https://doi.org/10.1007/978-3-319-11212-1_20

BIBLIOGRAPHY 231

[Set+18] Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan Lee. “Proving the correct

execution of concurrent services in zero-knowledge”. In: 13th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 18). 2018, pp. 339–356.

[Set20] Srinath Setty. “Spartan: Efficient and General-Purpose zkSNARKs Without Trusted

Setup”. In: CRYPTO 2020, Part III. Ed. by Daniele Micciancio and Thomas Risten-

part. Vol. 12172. LNCS. Springer, Heidelberg, Aug. 2020, pp. 704–737. doi: 10.1007/

978-3-030-56877-1_25.

[SL20] Srinath Setty and Jonathan Lee. Quarks: Quadruple-efficient transparent zkSNARKs.

Cryptology ePrint Archive, Report 2020/1275. https://eprint.iacr.org/2020/

1275. 2020.

[Sti94] Douglas R. Stinson. “Universal hashing and authentication codes”. In: Designs, Codes

and Cryptography 4.3 (1994), pp. 369–380.

[STW23] Srinath Setty, Justin Thaler, and Riad Wahby. “Customizable constraint systems for

succinct arguments”. In: Cryptology ePrint Archive (2023).

[Sys22] Espresso System. Jellyfish Jellyfish cryptographic library. 2022. url: https : / /

github.com/EspressoSystems/jellyfish.

[Syt+17] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus Gasser,

Ismail Khoffi, Michael J. Fischer, and Bryan Ford. “Scalable Bias-Resistant Distributed

Randomness”. In: 2017 IEEE Symposium on Security and Privacy. IEEE Computer

Society Press, May 2017, pp. 444–460. doi: 10.1109/SP.2017.45.

[Tha13] Justin Thaler. “Time-Optimal Interactive Proofs for Circuit Evaluation”. In: CRYPTO 2013,

Part II. Ed. by Ran Canetti and Juan A. Garay. Vol. 8043. LNCS. Springer, Heidelberg,

Aug. 2013, pp. 71–89. doi: 10.1007/978-3-642-40084-1_5.

[Tha20] Justin Thaler. Proofs, arguments, and zero-knowledge. 2020.

[TR] Jason Teutsch and Christian Reitwießner. “A scalable verification solution for blockchains”.

In: ().

[Val08] Paul Valiant. “Incrementally Verifiable Computation or Proofs of Knowledge Imply

Time/Space Efficiency”. In: TCC 2008. Ed. by Ran Canetti. Vol. 4948. LNCS. Springer,

Heidelberg, Mar. 2008, pp. 1–18. doi: 10.1007/978-3-540-78524-8_1.

[Val22] Henry de Valence. Merlin transcript. 2022. url: https://merlin.cool/.

[vW94] Paul C. van Oorschot and Michael J. Wiener. “Parallel Collision Search with Applica-

tion to Hash Functions and Discrete Logarithms”. In: ACM CCS 94. Ed. by Dorothy E.

Denning, Raymond Pyle, Ravi Ganesan, and Ravi S. Sandhu. ACM Press, Nov. 1994,

pp. 210–218. doi: 10.1145/191177.191231.

https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2020/1275
https://eprint.iacr.org/2020/1275
https://github.com/EspressoSystems/jellyfish
https://github.com/EspressoSystems/jellyfish
https://doi.org/10.1109/SP.2017.45
https://doi.org/10.1007/978-3-642-40084-1_5
https://doi.org/10.1007/978-3-540-78524-8_1
https://merlin.cool/
https://doi.org/10.1145/191177.191231

BIBLIOGRAPHY 232

[Wah+15] Riad S. Wahby, Srinath T. V. Setty, Zuocheng Ren, Andrew J. Blumberg, and Michael

Walfish. “Efficient RAM and control flow in verifiable outsourced computation”. In:

NDSS 2015. The Internet Society, Feb. 2015.

[Wah+18] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Walfish. “Doubly-

Efficient zkSNARKs Without Trusted Setup”. In: 2018 IEEE Symposium on Security

and Privacy. IEEE Computer Society Press, May 2018, pp. 926–943. doi: 10.1109/

SP.2018.00060.

[WC81] Mark N Wegman and J Lawrence Carter. “New hash functions and their use in authen-

tication and set equality”. In: Journal of computer and system sciences 22.3 (1981),

pp. 265–279.

[Wes19] Benjamin Wesolowski. “Efficient Verifiable Delay Functions”. In: EUROCRYPT 2019,

Part III. Ed. by Yuval Ishai and Vincent Rijmen. Vol. 11478. LNCS. Springer, Heidel-

berg, May 2019, pp. 379–407. doi: 10.1007/978-3-030-17659-4_13.

[Wes20] Benjamin Wesolowski. “Efficient Verifiable Delay Functions”. In: Journal of Cryptology

33.4 (Oct. 2020), pp. 2113–2147. doi: 10.1007/s00145-020-09364-x.

[Wik21] Douglas Wikström. Special Soundness in the Random Oracle Model. Cryptology ePrint

Archive, Report 2021/1265. https://eprint.iacr.org/2021/1265. 2021.

[Woo14] Gavin Wood. Ethereum: A secure decentralized transaction ledger. http://gavwood.

com/paper.pdf. 2014.

[WW22] Brent Waters and David J. Wu. Batch Arguments for NP and More from Standard

Bilinear Group Assumptions. Cryptology ePrint Archive, Report 2022/336. https:

//eprint.iacr.org/2022/336. 2022.

[Xie+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn

Song. “Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation”.

In: CRYPTO 2019, Part III. Ed. by Alexandra Boldyreva and Daniele Micciancio.

Vol. 11694. LNCS. Springer, Heidelberg, Aug. 2019, pp. 733–764. doi: 10.1007/978-

3-030-26954-8_24.

[Xio+22] Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz, Ben Fisch, Fernando

Krell, and Philippe Camacho. VERI-ZEXE: Decentralized Private Computation with

Universal Setup. Cryptology ePrint Archive, Report 2022/802. https://eprint.iacr.

org/2022/802. 2022.

[XZS22a] Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero Knowledge Proof with

Linear Prover Time. Cryptology ePrint Archive, Report 2022/1010. https://eprint.

iacr.org/2022/1010. 2022.

https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/s00145-020-09364-x
https://eprint.iacr.org/2021/1265
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf
https://eprint.iacr.org/2022/336
https://eprint.iacr.org/2022/336
https://doi.org/10.1007/978-3-030-26954-8_24
https://doi.org/10.1007/978-3-030-26954-8_24
https://eprint.iacr.org/2022/802
https://eprint.iacr.org/2022/802
https://eprint.iacr.org/2022/1010
https://eprint.iacr.org/2022/1010

BIBLIOGRAPHY 233

[XZS22b] Tiancheng Xie, Yupeng Zhang, and Dawn Song. “Orion: Zero Knowledge Proof with

Linear Prover Time”. In: CRYPTO 2022, Part IV. Ed. by Yevgeniy Dodis and Thomas

Shrimpton. Vol. 13510. LNCS. Springer, Heidelberg, Aug. 2022, pp. 299–328. doi: 10.

1007/978-3-031-15985-5_11.

[Zam+21] Abel Zambrano, Alejandro Palacio Betancur, Luis Burbano, Andres Felipe Niño, Luis

Felipe Giraldo, Mariantonieta Gutierrez Soto, Jairo Giraldo, and Alvaro A. Cárdenas.

“You Make Me Tremble: A First Look at Attacks Against Structural Control Systems”.

In: ACM CCS 2021. Ed. by Giovanni Vigna and Elaine Shi. ACM Press, Nov. 2021,

pp. 1320–1337. doi: 10.1145/3460120.3485386.

[Zap+22a] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nitulescu,

and Mark Simkin. Caulk: Lookup Arguments in Sublinear Time. Cryptology ePrint

Archive, Report 2022/621. https://eprint.iacr.org/2022/621. 2022.

[Zap+22b] Arantxa Zapico, Vitalik Buterin, Dmitry Khovratovich, Mary Maller, Anca Nitulescu,

and Mark Simkin. “Caulk: Lookup Arguments in Sublinear Time”. In: ACM CCS 2022.

Ed. by Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi. ACM Press, Nov.

2022, pp. 3121–3134. doi: 10.1145/3548606.3560646.

[Zap+22c] Arantxa Zapico, Ariel Gabizon, Dmitry Khovratovich, Mary Maller, and Carla Ràfols.

Baloo: Nearly Optimal Lookup Arguments. Cryptology ePrint Archive, Report 2022/1565.

https://eprint.iacr.org/2022/1565. 2022.

[Zca22] Zcash. PLONKish Arithmetization. link. 2022.

[Zha+20] Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Song. “Transparent Polyno-

mial Delegation and Its Applications to Zero Knowledge Proof”. In: 2020 IEEE Sympo-

sium on Security and Privacy. IEEE Computer Society Press, May 2020, pp. 859–876.

doi: 10.1109/SP40000.2020.00052.

[Zie] Micheal Zieve. Exceptional polynomials. http://dept.math.lsa.umich.edu/~zieve/

papers/epfacts.pdf.

https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1007/978-3-031-15985-5_11
https://doi.org/10.1145/3460120.3485386
https://eprint.iacr.org/2022/621
https://doi.org/10.1145/3548606.3560646
https://eprint.iacr.org/2022/1565
https://zcash.github.io/halo2/concepts/arithmetization.html
https://doi.org/10.1109/SP40000.2020.00052
http://dept.math.lsa.umich.edu/~zieve/papers/epfacts.pdf
http://dept.math.lsa.umich.edu/~zieve/papers/epfacts.pdf

	Abstract
	Acknowledgments
	Introduction
	The proof paradigm
	Bulletproofs: Privacy through zero-knowledge.
	Application to confidential transactions

	HyperPlonk: A proof system for the zkEVM
	Application to Rollups and ZK-EVMs

	Verifiable Delay Functions
	An unbiasable, ecological and communication-efficient beacon from VDFs
	Impact

	ProtoStar: Proofs for VDFs and Succinct Blockchains
	Efficient and Flexible IVC from accumulation

	Preliminaries and Notation

	Bulletproofs: Privacy through Zero-Knowledge
	Introduction
	Our Contributions
	Applications
	Additional Related Work

	Preliminaries
	Assumptions
	Commitments
	Zero-Knowledge Arguments of Knowledge
	Notation

	Improved Inner-Product Argument
	Inner-Product Verification through Multi-Exponentiation

	Range Proof Protocol with Logarithmic Size
	Inner-Product Range Proof
	Logarithmic Range Proof
	Aggregating Logarithmic Proofs
	Non-Interactive Proof through Fiat-Shamir
	A Simple MPC Protocol for Bulletproofs
	Perfectly Binding Commitments and Proofs

	Zero-Knowledge Proof for Arithmetic Circuits
	Inner-Product Proof for Arithmetic Circuits
	Logarithmic-Sized Protocol

	Bulletproofs for R1CS with committed witness
	Performance
	Theoretical Performance
	An Optimized Verifier Using Multi-Exponentiation and Batch Verification
	Implementation and Performance

	A General Forking Lemma
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Theorem 4

	HyperPlonk: A proof system for the zkEVM
	Introduction
	Technical overview
	Additional related work

	Preliminaries
	Proofs and arguments of knowledge.
	Multilinear polynomial commitments.
	PIOP compilation

	A toolbox for multivariate polynomials
	SumCheck PIOP for high degree polynomials
	ZeroCheck PIOP
	ProductCheck PIOP
	Multiset Check PIOP
	Permutation PIOP
	Another permutation PIOP for small fields
	Lookup PIOP
	Batch openings

	HyperPlonk: Scalable SNARKs for scaling Blockchains
	Constraint systems
	The PolyIOP protocol

	HyperPlonk+: HyperPlonk with Lookup Gates
	Constraint systems
	The PolyIOP protocol

	Instantiation and evaluation
	Implementation
	Evaluation
	MultiThreading performance
	High degree gates
	Comparisons

	Orion+: a linear-time multilinear PCS with constant proof size
	Zero Knowledge PIOPs and zk-SNARKs
	Definition
	Polynomial masking
	Zero knowledge SumCheck
	Zero knowledge compilation for SumCheck-based PIOPs
	zk-SNARKs from PIOPs

	The FRI-based multilinear polynomial commitment
	Unrolled and optimized Hyperplonk
	Using only one sumcheck

	Verifiable Delay Functions for Ecological Consensus
	Introduction
	Applications
	Model and definitions
	VDF Security

	VDFs from Incrementally Verifiable Computation
	VDFs from Verifiable Computation
	Discussion

	A weak VDF based on injective rational maps
	Injective rational maps
	Univariate permutation polynomials
	Comparison to square roots mod p

	Practical improvements on VDFs from IVC
	Iterated square roots in Fq
	Iterated permutation polynomials

	Related work
	Inherently sequential puzzles

	ProtoStar: Efficient IVC for VDFs and succinct Blockchains
	Introduction
	Technical overview

	Preliminaries
	Special-sound Protocols and Fiat-Shamir Transform
	Adaptive Fiat-Shamir transform
	Commitment Scheme
	Incremental Verifiable Computation (IVC)
	Simple Accumulation

	Protocols
	Special-sound Protocols
	Commit and Open
	Fiat-Shamir transform
	Accumulation Scheme for Vnark
	Compressing verification checks for high-degree verifiers

	Special-sound subprotocols for ProtoStar
	Permutation relation
	High-degree custom gate relation
	Lookup relation
	Vector-valued lookup
	Circuit selection

	Special-sound protocols for Plonkup relations
	Protostar
	Accumulation Scheme for high/low degree verifier
	Protostar for CCS

	Conclusion

