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Verus

- Verus is a semi-automated program verifier for Rust programs
- Lots of systems and security work using Verus

- https://verus-lang.github.io/verus/publications-and-projects/
- Recent effort at AWS to adopt Verus
- Intrinsic Verification, proof and executable code are intermixed, no need for 

external tools to translate and verify
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Spec/Proof/Exec Mode

 spec fn divides(n: int, k: nat) -> bool { n % (k as int) == 0 }

 spec fn is_prime(n: nat) -> bool { forall|k: nat| 2 <= k < n ==> !divides(n as int, k) }

 spec fn is_even(i: int) -> bool { divides(i, 2) }

 proof fn even_gt_2_isnt_prime(i: nat)

   requires i > 2 && is_even(i as int)

   ensures !is_prime(i) { }

 fn is_prime_impl(n: u64) -> (result: bool)

   requires n >= 2,

   ensures result == is_prime(n as nat)

 { /* ... implementation and proof ... */}
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Quantification

Quantifier Instantiation is the primary source of incompleteness, also the primary 
source of automation.

In auto-active theorem provers, we often use user-level triggers to guide quantifier 
instantiations.
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Triggers

spec fn is_even(i: int) -> bool {

   i % 2 == 0

}

proof fn seq_trigger_example(s: Seq<int>)

   requires

       5 <= s.len(),

       forall|i: int| 0 <= i < s.len() ==> #[trigger] is_even(s[i]),

{

   assert(s[3] % 2 == 0); // FAILS

}
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Triggers

spec fn is_even(i: int) -> bool {

   i % 2 == 0

}

proof fn seq_trigger_example(s: Seq<int>)

   requires

       5 <= s.len(),

       forall|i: int| 0 <= i < s.len() ==> #[trigger] is_even(s[i]),

{

   assert(s[3] % 2 == 0); // FAILS

}
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is_even(#[trigger] s[i]),

then we can instantiate the forall:
       0 <= 3 < s.len() ==> is_even(s[3]),

// OK



Triggers

spec fn is_even(i: int) -> bool {

   i % 2 == 0

}

proof fn seq_trigger_example(s: Seq<int>)

   requires

       5 <= s.len(),

       forall|i: int| 0 <= i < s.len() ==> #[trigger] is_even(s[i]),

{

   assert(s[3] % 2 == 0); // FAILS

}
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   assert(is_even(s[3])); // OK

// OK

then we can instantiate the forall:
       0 <= 3 < s.len() ==> is_even(s[3]),



Implicit Context
In Dafny/Verus, there’s also an prelude of axioms, for example

proof fn seq_axiom_usage(s1: Seq<nat>, s2: Seq<nat>)

   requires

       s1.len() > 10 && s2.len() > 20,

   ensures

       s1.add(s2).len() > 30,

{}

pub broadcast axiom fn axiom_seq_add_len<A>(s1: Seq<A>, s2: Seq<A>)

   ensures

       #[trigger] s1.add(s2).len() == s1.len() + s2.len(),

;

uses this axiom:
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Verus

- Verus has a “conservative” design for verification performance, which leads to 
more manual proofs

- No preconditions for spec functions (total math functions)
- Limited Prelude

(~280 axioms in `DafnyPrelude.bpl` vs ~96 in `vir/src/prelude.rs`, and ~111 of them in vstd)
- No non-linear reasoning by default

All of this is because Verus wants more “native” encoding to SMT level
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Automation - Performance spectrum

more facts in contexts?
freer triggers?
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Quantified Facts à la Carte

A mechanism for fine-grained control of quantified facts.

You can import quantified facts at any level:

- after any `verus!` macro
- modules
- proof functions (`proof fn`)
- assert (expr)  by { /* proof */ }
- calculational proofs
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pub proof fn push_contains(a: Seq<int>)

{

   let b = a.push(3);

   assert(b.contains(3)); // FAILS

}

Quantified Facts à la Carte

because Verus can’t infer the following from the default Verus context:

pub proof fn lemma_seq_contains_after_push<A>(s: Seq<A>, v: A, x: A)

   ensures

       s.push(v).contains(x) <==> v == x || s.contains(x),

{/* manual proof … */}

12



pub broadcast proof fn lemma_seq_contains_after_push<A>(s: Seq<A>, v: A, x: A)

   ensures

       #[trigger] s.push(v).contains(x) <==> v == x || s.contains(x),

pub proof fn lemma_seq_contains_after_push<A>()

   ensures

       forall|s: Seq<A>, v: A, x: A| 

#[trigger] s.push(v).contains(x) <==> v == x || s.contains(x),

Quantified Facts à la Carte
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In VeriFast/Dafny, this kind of lemmas are named “auto” lemmas



pub proof fn push_contains(a: Seq<int>)

{

   broadcast use vstd::seq_lib::lemma_seq_contains_after_push;

   let b = a.push(3);

   assert(b.contains(3)); // PASSES because of the increased context

}

Quantified Facts à la Carte
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Verus Standard Library

In 2023, we provide some sort of automation by explicitly universally quantifying 
the input parameters. Now it’s just a broadcast group.
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Quantified Facts à la Carte

Worried about verification performance for larger proofs?

pub proof fn push_contains(a: Seq<int>)

{

   broadcast use vstd::seq_lib::group_seq_properties;

   let b = a.push(3);

   assert(b.contains(3));

}
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> verus broadcast.rs -V axiom-usage-info
note: checking this function used these broadcasted lemmas and broadcast groups:
        - (group) vstd::seq_lib::group_seq_properties,
        - vstd::seq_lib::lemma_seq_contains_after_push
 --> broadcast.rs:5:1
  |
5 | pub proof fn push_contains(a: Seq<int>) 
  | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

verification results:: 1 verified, 0 errors

Quantified Facts à la Carte
pub proof fn push_contains(a: Seq<int>)

{

   broadcast use vstd::seq_lib::group_seq_properties;

   let b = a.push(3);

   assert(b.contains(3));

}
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Modularized Proof Libraries
pub trait Key {

   ...

   proof fn key_obligations()

       ensures // ... conditions necessary for the type to be a valid key

   broadcast proof fn trans_lt_lt(a:Self, b:Self, c:Self)

       ensures a < b && b < c ==> a < c

   { /* justified thanks to the ensures of `key_obligations` */ }

   // ... additional properties ...

}

pub broadcast group group_key_cmp_properties {

   Key::trans_lt_lt,

   // ... additional `broadcast` proofs from the trait

}
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Exploring the Automation Tradeoff

With all the Dafny Prelude lemma in Verus (with broadcast proofs), we can see 
what the impact is for increased implicit context:

1. Does increasing the number of quantified facts in context result in more 
automation, i.e. fewer manual user-provided hints (in the form of asserts)?

2. Does increasing the number of quantified facts in context hinder verification 
performance or the verification experience?
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Projects under Study

- IronKV (SOSP24) is a distributed key-value store
- Splinter is an ongoing work on a key-value store designed around a Bε-tree.
- Anvil (OSDI24) is a framework for building and formally verifying Kubernetes 

controllers.
- CapybaraKV (OSDI25) is a storage system targeting persistent memory 

devices
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Minimization

- To quantify “automation”, we use the number of asserts as a metric, but most 
projects don’t have a minimized number of assertions.

- We ran VerusMinimizer to compare the number of asserts w/ and w/o ambient 
facts

- Limitations:
- Only a linear scan
- Only target assertions (since detecting lemma calls can’t be done syntactically)
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Effect of Ambient Facts
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Impact on Verification Failure Time
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Verification Failure Time

- Once the solver finds a proof, it stops, which does not happen if the proof is 
incomplete or incorrect.

- As we dramatically increased search space, we might also have dramatic 
increase in verification failure time.
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Impact on Verification Failure Time
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Triggers

- default safe triggers, or more aggressive multiple trigger groups?
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More Automation with More Triggers (Axioms?)

Is it possible to obtain a more extensive automation (i.e. a smaller number of 
required hints (asserts) to the solver) by changing how triggers are selected for the 
default set of quantified facts imported when using the Verus standard library?
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pub broadcast axiom fn axiom_seq_add_len<A>(s1: Seq<A>, s2: Seq<A>)

   ensures

       #[trigger] s1.add(s2).len() == s1.len() + s2.len(),

;

You can’t really “free” the triggers without explosion
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More Automation with More Triggers (User Code?)

We added 206 #![all_triggers] annotations in the 261 quantifiers in IronKV. 

One proof broke.
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Lessons from all_triggers?

- all_triggers has a non-trivial impact, though it is more susceptible to 
verification failure

- Managing triggers are trickier, it’s hard to manage in bulk
- Experiment with multiple trigger groups for different level of automation?
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Conclusion

- Broadcast as a way of managing quantified facts
- Customized axioms for user built abstractions
- unsat-core for pinpointing useful lemmas

- VerusMinimizer to check “minimized” assertions
- More ambient facts in context: 

- reduced 2-9% assertions
- only have impact on a handful of functions

- Turning on `all_triggers`
- Preliminary result showed it’s more impactful than ambient facts
- harder to automatically use all_triggers
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