
Tunable Automation
Alexander Bai, Chris Hawblitzel, Andrea Lattuada

VSTTE 25

1

Verus

- Verus is a semi-automated program verifier for Rust programs
- Lots of systems and security work using Verus

- https://verus-lang.github.io/verus/publications-and-projects/
- Recent effort at AWS to adopt Verus
- Intrinsic Verification, proof and executable code are intermixed, no need for

external tools to translate and verify

2

Spec/Proof/Exec Mode

 spec fn divides(n: int, k: nat) -> bool { n % (k as int) == 0 }

 spec fn is_prime(n: nat) -> bool { forall|k: nat| 2 <= k < n ==> !divides(n as int, k) }

 spec fn is_even(i: int) -> bool { divides(i, 2) }

 proof fn even_gt_2_isnt_prime(i: nat)

 requires i > 2 && is_even(i as int)

 ensures !is_prime(i) { }

 fn is_prime_impl(n: u64) -> (result: bool)

 requires n >= 2,

 ensures result == is_prime(n as nat)

 { /* ... implementation and proof ... */}

3

Quantification

Quantifier Instantiation is the primary source of incompleteness, also the primary
source of automation.

In auto-active theorem provers, we often use user-level triggers to guide quantifier
instantiations.

4

Triggers

spec fn is_even(i: int) -> bool {

 i % 2 == 0

}

proof fn seq_trigger_example(s: Seq<int>)

 requires

 5 <= s.len(),

 forall|i: int| 0 <= i < s.len() ==> #[trigger] is_even(s[i]),

{

 assert(s[3] % 2 == 0); // FAILS

}

5

only instantiating for is_even(s[3]).

Triggers

spec fn is_even(i: int) -> bool {

 i % 2 == 0

}

proof fn seq_trigger_example(s: Seq<int>)

 requires

 5 <= s.len(),

 forall|i: int| 0 <= i < s.len() ==> #[trigger] is_even(s[i]),

{

 assert(s[3] % 2 == 0); // FAILS

}

6

is_even(#[trigger] s[i]),

then we can instantiate the forall:
 0 <= 3 < s.len() ==> is_even(s[3]),

// OK

Triggers

spec fn is_even(i: int) -> bool {

 i % 2 == 0

}

proof fn seq_trigger_example(s: Seq<int>)

 requires

 5 <= s.len(),

 forall|i: int| 0 <= i < s.len() ==> #[trigger] is_even(s[i]),

{

 assert(s[3] % 2 == 0); // FAILS

}

7

 assert(is_even(s[3])); // OK

// OK

then we can instantiate the forall:
 0 <= 3 < s.len() ==> is_even(s[3]),

Implicit Context
In Dafny/Verus, there’s also an prelude of axioms, for example

proof fn seq_axiom_usage(s1: Seq<nat>, s2: Seq<nat>)

 requires

 s1.len() > 10 && s2.len() > 20,

 ensures

 s1.add(s2).len() > 30,

{}

pub broadcast axiom fn axiom_seq_add_len<A>(s1: Seq<A>, s2: Seq<A>)

 ensures

 #[trigger] s1.add(s2).len() == s1.len() + s2.len(),

;

uses this axiom:

8

Verus

- Verus has a “conservative” design for verification performance, which leads to
more manual proofs

- No preconditions for spec functions (total math functions)
- Limited Prelude

(~280 axioms in `DafnyPrelude.bpl` vs ~96 in `vir/src/prelude.rs`, and ~111 of them in vstd)
- No non-linear reasoning by default

All of this is because Verus wants more “native” encoding to SMT level

9

Automation - Performance spectrum

more facts in contexts?
freer triggers?

10

Quantified Facts à la Carte

A mechanism for fine-grained control of quantified facts.

You can import quantified facts at any level:

- after any `verus!` macro
- modules
- proof functions (`proof fn`)
- assert (expr) by { /* proof */ }
- calculational proofs

11

https://github.com/verus-lang/verus/pull/1694

pub proof fn push_contains(a: Seq<int>)

{

 let b = a.push(3);

 assert(b.contains(3)); // FAILS

}

Quantified Facts à la Carte

because Verus can’t infer the following from the default Verus context:

pub proof fn lemma_seq_contains_after_push<A>(s: Seq<A>, v: A, x: A)

 ensures

 s.push(v).contains(x) <==> v == x || s.contains(x),

{/* manual proof … */}

12

pub broadcast proof fn lemma_seq_contains_after_push<A>(s: Seq<A>, v: A, x: A)

 ensures

 #[trigger] s.push(v).contains(x) <==> v == x || s.contains(x),

pub proof fn lemma_seq_contains_after_push<A>()

 ensures

 forall|s: Seq<A>, v: A, x: A|

#[trigger] s.push(v).contains(x) <==> v == x || s.contains(x),

Quantified Facts à la Carte

13
In VeriFast/Dafny, this kind of lemmas are named “auto” lemmas

pub proof fn push_contains(a: Seq<int>)

{

 broadcast use vstd::seq_lib::lemma_seq_contains_after_push;

 let b = a.push(3);

 assert(b.contains(3)); // PASSES because of the increased context

}

Quantified Facts à la Carte

14

Verus Standard Library

In 2023, we provide some sort of automation by explicitly universally quantifying
the input parameters. Now it’s just a broadcast group.

15

Quantified Facts à la Carte

Worried about verification performance for larger proofs?

pub proof fn push_contains(a: Seq<int>)

{

 broadcast use vstd::seq_lib::group_seq_properties;

 let b = a.push(3);

 assert(b.contains(3));

}

16

> verus broadcast.rs -V axiom-usage-info
note: checking this function used these broadcasted lemmas and broadcast groups:
 - (group) vstd::seq_lib::group_seq_properties,
 - vstd::seq_lib::lemma_seq_contains_after_push
 --> broadcast.rs:5:1
 |
5 | pub proof fn push_contains(a: Seq<int>)
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

verification results:: 1 verified, 0 errors

Quantified Facts à la Carte
pub proof fn push_contains(a: Seq<int>)

{

 broadcast use vstd::seq_lib::group_seq_properties;

 let b = a.push(3);

 assert(b.contains(3));

}

17

lemma_seq_contains_after_push

Modularized Proof Libraries
pub trait Key {

 ...

 proof fn key_obligations()

 ensures // ... conditions necessary for the type to be a valid key

 broadcast proof fn trans_lt_lt(a:Self, b:Self, c:Self)

 ensures a < b && b < c ==> a < c

 { /* justified thanks to the ensures of `key_obligations` */ }

 // ... additional properties ...

}

pub broadcast group group_key_cmp_properties {

 Key::trans_lt_lt,

 // ... additional `broadcast` proofs from the trait

}
18

Exploring the Automation Tradeoff

With all the Dafny Prelude lemma in Verus (with broadcast proofs), we can see
what the impact is for increased implicit context:

1. Does increasing the number of quantified facts in context result in more
automation, i.e. fewer manual user-provided hints (in the form of asserts)?

2. Does increasing the number of quantified facts in context hinder verification
performance or the verification experience?

19

20

Projects under Study

- IronKV (SOSP24) is a distributed key-value store
- Splinter is an ongoing work on a key-value store designed around a Bε-tree.
- Anvil (OSDI24) is a framework for building and formally verifying Kubernetes

controllers.
- CapybaraKV (OSDI25) is a storage system targeting persistent memory

devices

21

Minimization

- To quantify “automation”, we use the number of asserts as a metric, but most
projects don’t have a minimized number of assertions.

- We ran VerusMinimizer to compare the number of asserts w/ and w/o ambient
facts

- Limitations:
- Only a linear scan
- Only target assertions (since detecting lemma calls can’t be done syntactically)

22

Effect of Ambient Facts

23

Impact on Verification Failure Time

24

Verification Failure Time

- Once the solver finds a proof, it stops, which does not happen if the proof is
incomplete or incorrect.

- As we dramatically increased search space, we might also have dramatic
increase in verification failure time.

25

Impact on Verification Failure Time

26

Triggers

- default safe triggers, or more aggressive multiple trigger groups?

27

More Automation with More Triggers (Axioms?)

Is it possible to obtain a more extensive automation (i.e. a smaller number of
required hints (asserts) to the solver) by changing how triggers are selected for the
default set of quantified facts imported when using the Verus standard library?

28

pub broadcast axiom fn axiom_seq_add_len<A>(s1: Seq<A>, s2: Seq<A>)

 ensures

 #[trigger] s1.add(s2).len() == s1.len() + s2.len(),

;

You can’t really “free” the triggers without explosion

29

More Automation with More Triggers (User Code?)

We added 206 #![all_triggers] annotations in the 261 quantifiers in IronKV.

One proof broke.

30

31

Lessons from all_triggers?

- all_triggers has a non-trivial impact, though it is more susceptible to
verification failure

- Managing triggers are trickier, it’s hard to manage in bulk
- Experiment with multiple trigger groups for different level of automation?

32

Conclusion

- Broadcast as a way of managing quantified facts
- Customized axioms for user built abstractions
- unsat-core for pinpointing useful lemmas

- VerusMinimizer to check “minimized” assertions
- More ambient facts in context:

- reduced 2-9% assertions
- only have impact on a handful of functions

- Turning on `all_triggers`
- Preliminary result showed it’s more impactful than ambient facts
- harder to automatically use all_triggers

33

Thank you!
ayb5065@nyu.edu

