Tunable Automation

Alexander Bai, Chris Hawblitzel, Andrea Lattuada
Dafny 2026

Verus

- Verus is a auto-active program verifier for Rust programs

- Lots of systems and security work using Verus

- https://verus-lang.github.io/verus/publications-and-projects/
- Used by AWS verifying production code (Nitro Isolation Engine, etc...)
- Fast Verification time due to

- leverage the Rust type system for heap reasoning
- conservative SMT encoding choices

Spec/Proof/Exec Mode

spec fn divides(n: int, k: nat) -> bool { n % (k as int) == 0 }
spec fn is prime(n: nat) -> bool { forall|k: nat| 2 <= k < n ==> !divides(n as int, k) }

spec fn is _even(i: int) -> bool { divides(i, 2) }

proof fn even gt 2 isnt prime(i: nat)
requires i > 2 && is_even(i as int)

ensures !'is prime (i) { }

fn is prime impl(n: u64) -> (result: bool)
requires n >= 2,
ensures result == is prime(n as nat)

{ /* ... implementation and proof ... */}

Quantification

Quantifier Instantiation is the primary source of automation, but also the primary
source of incompleteness.

In auto-active theorem provers, we often use user-level triggers to guide quantifier
instantiations.

Triggers

spec fn is even(i: int) -> bool {

i%2==0

proof fn seq trigger example(s: Seg<int>)

requires

5 <= s.len(), only instantiating for is_even(s[3]).

forall|i: int| 0 <= i < s.len() ==> |#[trigger] is even(s[i])

assert(s[3] %$ 2 == 0); // FAILS

Triggers

spec fn is even(i: int) -> bool {

i% 2 ==

proof fn seq trigger example(s: Seg<int>)
requires
5 <= s.len(),
forall|i: int| 0 <= i < s.len() ==> #[trigger] is even(s[i]),

{ assert(is_even(s[3])); // OK then we can instantiate the forall:
assert(s[3] % 2 == 0); // OK 0 <= 3 < s.len() ==> is_even(s[3]),

Triggers

spec fn is even(i: int) -> bool {

i% 2 ==

proof fn seq trigger example(s: Seg<int>)
requires
5 <= s.len(),
forall|i: int| 0 <= i < s.len() ==> i Esigaerl—is—eventstidlr
{ is_even (#[trigger] s[i]),
assert(s[3] $ 2 == 0); // OK

then we can instantiate the forall:
} 0 <= 3 < s.len() ==> is_even(s[3]),

Implicit Context

In Dafny/Verus, there’s also an prelude of axioms, for example

proof fn seq axiom usage(sl: Seg<nat>, s2: Seqg<nat>)
requires
sl.len() > 10 && s2.1len() > 20,
ensures

sl.add(s2) .1len() > 30,
{}

uses this axiom:

pub broadcast axiom fn axiom seq add len<A>(sl: Seq<A>, s2: Seq<A>)
ensures

#[trigger] sl.add(s2).len() == sl.len() + s2.len(),

Verus

- Verus has a “conservative” design for verification performance, which leads to

more manual proofs
- No preconditions for spec functions (total math functions)
- Limited Prelude
(~280 axioms in ‘DafnyPrelude.bpl” vs ~96 in "vir/src/prelude.rs’, and ~111 of them in vstd)
- No non-linear reasoning by default
- Restrictive automatic trigger selection

Automation - Performance spectrum

more solver search tunible increased automation more human hints
Dafny Verus
(default) (default)

more facts in contexts?
freer triggers?

10

Quantified Facts a la Carte

A mechanism for fine-grained user-level control of quantified facts.

You can import quantified facts at any level:

- after any "verus!" macro

- modules

- proof functions (" proof fn’)

- assert (expr) by {/* proof */ }
- calculational proofs

11

https://github.com/verus-lang/verus/pull/1694

Quantified Facts a la Carte

pub proof fn push contains(a: Seqg<int>)
{
let b = a.push(3);

assert(b.contains(3)); // FAILS

because Verus can'’t infer the following from the default Verus context:

pub proof fn lemma seq contains_after push<A>(s: Seq<A>, v: A, x: A)
ensures
s.push(v) .contains(x) <==> v == x || s.contains(x),

{/* manual proof .. */}

12

Quantified Facts a la Carte

pub

broadcast

ensures

proof fn lemma seq contains_after push<A>(s: Seq<A>, v: A, x: A)

#[trigger] s.push(v) .contains (x) <==> v == || s.contains (x),

pub proof fn lemma seq contains_after push<A>()

ensures

forall|s: Seq<A>, v: A, x: A|

#[trigger] s.push(v).contains(x) <==> v == x || s.contains(x),

In VeriFast/Dafny, this kind of lemmas are named “auto” lemmas. In Why3, “lemma functions”.

Quantified Facts a la Carte

pub proof fn push contains(a: Seqg<int>)

{
broadcast use vstd::seq_lib::lemma seq contains_after push;
let b = a.push(3);

assert(b.contains (3)); // PASSES because of the increased context

14

Verus Standard Library

In 2023, we provide some sort of automation by explicitly universally quantifying

the input parameters. Now it’s just a broadcast group.

// include all the Dafny prelude lemmas

pub broadcast group group_seq_properties {
lemma_seq_contains,
lemma_seq_empty_contains_nothing,

/// Properties of sequences from the Dafny prelude (which were axioms in Dafny, but proven here in Verus)

#[deprecated = "Use “broadcast use group_seq_properties’ instead"]

pub proof fn lemma_seq_properties<A>()

ensures
forall|s: Seq<A>, x: A|
s.contains(x) <==> exists|i: int| @ <= i < s.len() && #[trigger] s[i] == x, //from lemma_seq_contains(s, x),

forall|x: A| !(#[trigger] Seq::<A>::empty().contains(x)), //from lemma_seq_empty_contains_nothing(x),
forall|s: Seg<A>| #[trigger] s.len() == @ ==> s =~= Seq::<A>::empty(), //from lemma_seq_empty_equality(s),
forall|x: Seg<A>, y: Seq<A>, elt: A| #[trigger]

lemma_seq_empty_equality,
lemma_seq_concat_contains_all_elements,
lemma_seq_contains_after_push,
lemma_seq_subrange_elements,
lemma_seq_take_len,
lemma_seq_take_contains,

(x + y).contains(elt) <==> x.contains(elt) || y.contains(elt), //from lemma_seq_concat_contains_all_elements(x, y, elt), lemma_seq_take_index,
forall|s: Seg<A>, v: A, x: A| #[trigger] s.push(v).contains(x) <==> v == x || s.contains(x), //from lemma_seq_contains_after_push(s, v, x) lemma_seq_skip_len,
forall|s: Segq<A>, start: int, stop: int, x: A| lemma_seq_skip_contains,

(@ <= start <= stop <= s.len() & #[trigger] s.subrange(start, stop).contains(x)) <==> (lemma_seq_skip_index,

exists|i: int| @ <= start <= i < stop <= s.len() && #[trigger] s[i] == x), //from lemma_seq_subrange_elements(s, start, stop, x), lemma_seq_skip_index2,
forall|s: Seg<A>, n: int| @ <= n <= s.len() ==> #[trigger] s.take(n).len() == n, //from lemma_seq_take_len(s, n) lemma_seq_append_take_skip,
forall|s: Seq<A>, n: int, x: A| lemma_seq_take_update_commut1,

(#[trigger] s.take(n).contains(x) & @ <= n <= s.len()) <==> (exists|i: int|
0 <= i < n <= s.len() & #[trigger] s[i] == x), //from lemma_seq_take_contains(s, n, x),
forall|s: Seg<A>, n: int, j: int| @ <= j < n <= s.len() ==> #[trigger] s.take(n)[j] == s[j], //from lemma_seq_take_index(s, n, j),
forall|s: Seg<A>, n: int| @ <= n <= s.len() ==> #[trigger] s.skip(n).len() == s.len() - n, //from lemma_seq_skip_len(s, n),
forall|s: Seg<A>, n: int, x: A|
(#[trigger] s.skip(n).contains(x) & @ <= n <= s.len()) <==> (exists|i: int|
@ <= n <=1 < s.len() & #[trigger] s[i] == x), //from lemma_seq_skip_contains(s, n, x),

lemma_seq_take_update_commut2,
lemma_seq_skip_update_commut1l,
lemma_seq_skip_update_commut2,

lemma_seq_skip_build_commut,

lemma_seq_skip_nothing,

lemma_seq_take_nothing,

// Removed the following from group due to bad verification
// for lemma_merge_sorted_with_ensures®

// lemma_seq_skip_of_skip,

group_to_multiset_ensures,

performance

15

Quantified Facts a la Carte

pub proof fn push contains(a: Seqg<int>)
{

broadcast use vstd::seq lib::group seq properties;
let b = a.push(3);

assert(b.contains (3)); // PASSES

Worried about verification performance for larger proofs?

16

Quantified Facts a la Carte

pub proof fn push contains(a: Seq<int>)

{ lemma seq contains after push

broadcast use vstd::seq_lib:: SreessseteRiGRagpe

let b = a.push(3);

assert(b.contains (3)) ;
}

> verus broadcast.rs -V axiom-usage-info
note: checking this function used these broadcasted lemmas and broadcast groups:
- (group) vstd::seq lib::group_seq properties,
- vstd::seq_lib::lemma seq contains_after push
--> broadcast . rs:5:1

I
5 | pub proof fn push contains(a: Seg<int>)

I AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAN

verification results:: 1 verified, 0 errors
17

Modularized Proof Libraries

pub trait Key {

proof fn key obligations()

ensures // ... conditions necessary for the type to be a valid key

broadcast proof fn trans 1t lt(a:Self, b:Self, c:Self)
ensures a < b && b < c => a < ¢
{ /* justified thanks to the ensures of ‘key obligations™ */ }

// ... additional properties

pub broadcast group group key cmp properties {
Key::trans 1t 1t,
// ... additional ‘broadcast’ proofs from the trait

18

Exploring the Automation Tradeoff

With all the Dafny Prelude lemma in Verus (with broadcast proofs), we can see
what the impact is for increased implicit context:

Collection datatype Seq|Map|Set MultiSet || Total
of group_<type>_properties lemmas|| 25 | 2 |10 12 49

1. Does increasing the number of quantified facts in context result in more
automation, i.e. fewer manual user-provided hints (in the form of asserts)?

2. Does increasing the number of quantified facts in context hinder verification
performance or the verification experience?

19

Projects under Study

- lronKV (SOSP24) is a distributed key-value store

- Splinter is an ongoing work on a key-value store designed around a Be-tree.

- Anvil (OSDI24) is a framework for building and formally verifying Kubernetes
controllers.

- CapybaraKV (OSDI25) is a storage system targeting persistent memory
devices

20

Minimization

- To quantify “automation”, we use the number of asserts as a metric, but most
projects don’t have a minimized number of assertions.

- We ran VerusMinimizer to compare the number of asserts w/ and w/o ambient
facts

- Limitations:
- Only alinear scan
- Only target assertions (since detecting lemma calls can’t be done syntactically)

21

Effect of Ambient Facts

System Original # |Minimized | Minimized with
of asserts | (baseline) | Ambient Facts
IronKV 646 268 245(-23, -8.6%)
Splinter 2678 1158 1130(-28, -2.4%)
Anvil 701 343 336(-7, -2.0%)
CapybaraKV 941 449 415 (-34, -7.6%)

Table 1: Assertion counts for verification systems after minimization and importing
ambient facts

Impact on Verification Time

100% fmmmm e =
:98.20% of IronKV functions take at most
g 80% A E 2x of their original verification time
= |
2 60% A i
32 E — lronKV
45 40% ; Splinter
O\O 20%4 E — Anvil
i —— Capybara
0% . f " ; "
0.0 1.0 2.0 3.0 4.0 5.0

Verification Time Ratio

Fig. 3: Cumulative distribution of verification time ratio between ambient facts
(minimized) and original verification time for each function. We removed two
extreme cases of 10x+ verification slowdown, one in Splinter, where the runtime
bumped from 34ms to 669ms (19.1x), and one in Anvil, where the runtime
bumped from 3508ms to 43563ms (12.4x).

23

Triggers

- default safe triggers, or more aggressive multiple trigger groups?

forall|x: int, y: int|
default: (@)

all_triggers: (1)
(5)

all candidates:

(
(
(
(
(

U B WN -
—_— — ~— ~— ~—

f(x) && g(y) && h(x,y)

ANANN

AANANAN

AANANN

AANANN

ANAANAN

ANAANAN

ANAANAN

ANANN

ANNANANN

ANNNANN

AAAAAA X <=

AAAAAA

(6]

24

More Automation with More Triggers (Axioms?)

Is it possible to obtain a more extensive automation (i.e. a smaller number of
required hints (asserts) to the solver) by changing how triggers are selected for the
default set of quantified facts imported when using the Verus standard library?

25

You can’t really “free” the triggers without explosion

pub broadcast axiom fn axiom seq add len<A>(sl: Seq<A>, s2: Seq<A>)
ensures

#[trigger] sl.add(s2).len() == sl.len() + s2.len(),

26

More Automation with More Triggers (User Code?)

We added 206 #![all _triggers] annotations in the 261 quantifiers in IronKV.

One proof broke.

System |Original [Min | All Triggers |Ambient Facts
IronKV 646 268 [235(-33, -12.3%) | 245(-23, -8.6%)
Table 2: Assertion counts for IronK'V after minimization with all triggers

% of Functions

100%+1_ .
- 597.22% of IronKV functions
80%: | take at most 2x of their
i original verification time
60%- ;
40%
20% - i
i —— lronKV All Triggers
0% - i , ,
0.0 1.0 2.0 3.0 4.0

Verification Time Ratio

Lessons from all_triggers?

- all_triggers has a non-trivial impact, though it is more susceptible to
verification failure

- it's hard to automatically manage in bulk
- Experiment with multiple trigger groups for different level of automation?

29

: Thank you!
Conclusion ayb5065@nyu.edu

Broadcast as a way of managing quantified facts
- Customized axioms for user built abstractions
- unsat-core for pinpointing useful lemmas
VerusMinimizer to check “minimized” assertions

More ambient facts in context:

- reduced 2-9% assertions

- only have impact on a handful of functions
Freer triggers via "all_triggers’ Preprint Available

- Preliminary result showed it's more impactful than ambient facts
- harder to automatically manipulate "all_triggers’

30

