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Verus

- Verus is a auto-active program verifier for Rust programs

- Lots of systems and security work using Verus

- https://verus-lang.github.io/verus/publications-and-projects/
- Used by AWS verifying production code (Nitro Isolation Engine, etc...)
- Fast Verification time due to

- leverage the Rust type system for heap reasoning
- conservative SMT encoding choices



Spec/Proof/Exec Mode

spec fn divides(n: int, k: nat) -> bool { n % (k as int) == 0 }
spec fn is prime(n: nat) -> bool { forall|k: nat| 2 <= k < n ==> !divides(n as int, k) }

spec fn is _even(i: int) -> bool { divides(i, 2) }

proof fn even gt 2 isnt prime(i: nat)
requires i > 2 && is_even(i as int)

ensures !'is prime (i) { }

fn is prime impl(n: u64) -> (result: bool)
requires n >= 2,
ensures result == is prime(n as nat)

{ /* ... implementation and proof ... */}



Quantification

Quantifier Instantiation is the primary source of automation, but also the primary
source of incompleteness.

In auto-active theorem provers, we often use user-level triggers to guide quantifier
instantiations.



Triggers

spec fn is even(i: int) -> bool {

i%2==0

proof fn seq trigger example(s: Seg<int>)

requires

5 <= s.len(), only instantiating for is_even(s[3]).

forall|i: int| 0 <= i < s.len() ==> |#[trigger] is even(s[i])

assert(s[3] %$ 2 == 0); // FAILS



Triggers

spec fn is even(i: int) -> bool {

i% 2 ==

proof fn seq trigger example(s: Seg<int>)
requires
5 <= s.len(),
forall|i: int| 0 <= i < s.len() ==> #[trigger] is even(s[i]),

{ assert(is_even(s[3])); // OK then we can instantiate the forall:
assert(s[3] % 2 == 0); // OK 0 <= 3 < s.len() ==> is_even(s[3]),



Triggers

spec fn is even(i: int) -> bool {

i% 2 ==

proof fn seq trigger example(s: Seg<int>)
requires
5 <= s.len(),
forall|i: int| 0 <= i < s.len() ==> i Esigaerl—is—eventstidlr
{ is_even (#[trigger] s[i]),
assert(s[3] $ 2 == 0); // OK

then we can instantiate the forall:
} 0 <= 3 < s.len() ==> is_even(s[3]),



Implicit Context

In Dafny/Verus, there’s also an prelude of axioms, for example

proof fn seq axiom usage(sl: Seg<nat>, s2: Seqg<nat>)
requires
sl.len() > 10 && s2.1len() > 20,
ensures

sl.add(s2) .1len() > 30,
{}

uses this axiom:

pub broadcast axiom fn axiom seq add len<A>(sl: Seq<A>, s2: Seq<A>)
ensures

#[trigger] sl.add(s2).len() == sl.len() + s2.len(),



Verus

- Verus has a “conservative” design for verification performance, which leads to

more manual proofs
- No preconditions for spec functions (total math functions)
- Limited Prelude
(~280 axioms in ‘DafnyPrelude.bpl” vs ~96 in "vir/src/prelude.rs’, and ~111 of them in vstd)
- No non-linear reasoning by default
- Restrictive automatic trigger selection



Automation - Performance spectrum

more solver search tunible increased automation more human hints
Dafny Verus
(default) (default)

more facts in contexts?
freer triggers?
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Quantified Facts a la Carte

A mechanism for fine-grained user-level control of quantified facts.

You can import quantified facts at any level:

- after any "verus!" macro

- modules

- proof functions (" proof fn’)

- assert (expr) by {/* proof */ }
- calculational proofs
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https://github.com/verus-lang/verus/pull/1694

Quantified Facts a la Carte

pub proof fn push contains(a: Seqg<int>)
{
let b = a.push(3);

assert(b.contains(3)); // FAILS

because Verus can'’t infer the following from the default Verus context:

pub proof fn lemma seq contains_after push<A>(s: Seq<A>, v: A, x: A)
ensures
s.push(v) .contains(x) <==> v == x || s.contains(x),

{/* manual proof .. */}
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Quantified Facts a la Carte

pub

broadcast

ensures

proof fn lemma seq contains_after push<A>(s: Seq<A>, v: A, x: A)

#[trigger] s.push(v) .contains (x) <==> v == || s.contains (x),

pub proof fn lemma seq contains_after push<A>()

ensures

forall|s: Seq<A>, v: A, x: A|

#[trigger] s.push(v).contains(x) <==> v == x || s.contains(x),

In VeriFast/Dafny, this kind of lemmas are named “auto” lemmas. In Why3, “lemma functions”.



Quantified Facts a la Carte

pub proof fn push contains(a: Seqg<int>)

{
broadcast use vstd::seq_lib::lemma seq contains_after push;
let b = a.push(3);

assert(b.contains (3)); // PASSES because of the increased context
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Verus Standard Library

In 2023, we provide some sort of automation by explicitly universally quantifying

the input parameters. Now it’s just a broadcast group.

// include all the Dafny prelude lemmas

pub broadcast group group_seq_properties {
lemma_seq_contains,
lemma_seq_empty_contains_nothing,

/// Properties of sequences from the Dafny prelude (which were axioms in Dafny, but proven here in Verus)

#[deprecated = "Use “broadcast use group_seq_properties’ instead"]

pub proof fn lemma_seq_properties<A>()

ensures
forall|s: Seq<A>, x: A|
s.contains(x) <==> exists|i: int| @ <= i < s.len() && #[trigger] s[i] == x, //from lemma_seq_contains(s, x),

forall|x: A| !(#[trigger] Seq::<A>::empty().contains(x)), //from lemma_seq_empty_contains_nothing(x),
forall|s: Seg<A>| #[trigger] s.len() == @ ==> s =~= Seq::<A>::empty(), //from lemma_seq_empty_equality(s),
forall|x: Seg<A>, y: Seq<A>, elt: A| #[trigger]

lemma_seq_empty_equality,
lemma_seq_concat_contains_all_elements,
lemma_seq_contains_after_push,
lemma_seq_subrange_elements,
lemma_seq_take_len,
lemma_seq_take_contains,

(x + y).contains(elt) <==> x.contains(elt) || y.contains(elt), //from lemma_seq_concat_contains_all_elements(x, y, elt), lemma_seq_take_index,
forall|s: Seg<A>, v: A, x: A| #[trigger] s.push(v).contains(x) <==> v == x || s.contains(x), //from lemma_seq_contains_after_push(s, v, x) lemma_seq_skip_len,
forall|s: Segq<A>, start: int, stop: int, x: A| lemma_seq_skip_contains,

(@ <= start <= stop <= s.len() & #[trigger] s.subrange(start, stop).contains(x)) <==> ( lemma_seq_skip_index,

exists|i: int| @ <= start <= i < stop <= s.len() && #[trigger] s[i] == x), //from lemma_seq_subrange_elements(s, start, stop, x), lemma_seq_skip_index2,
forall|s: Seg<A>, n: int| @ <= n <= s.len() ==> #[trigger] s.take(n).len() == n, //from lemma_seq_take_len(s, n) lemma_seq_append_take_skip,
forall|s: Seq<A>, n: int, x: A| lemma_seq_take_update_commut1,

(#[trigger] s.take(n).contains(x) & @ <= n <= s.len()) <==> (exists|i: int|
0 <= i < n <= s.len() & #[trigger] s[i] == x), //from lemma_seq_take_contains(s, n, x),
forall|s: Seg<A>, n: int, j: int| @ <= j < n <= s.len() ==> #[trigger] s.take(n)[j] == s[j], //from lemma_seq_take_index(s, n, j),
forall|s: Seg<A>, n: int| @ <= n <= s.len() ==> #[trigger] s.skip(n).len() == s.len() - n, //from lemma_seq_skip_len(s, n),
forall|s: Seg<A>, n: int, x: A|
(#[trigger] s.skip(n).contains(x) & @ <= n <= s.len()) <==> (exists|i: int|
@ <= n <=1 < s.len() & #[trigger] s[i] == x), //from lemma_seq_skip_contains(s, n, x),

lemma_seq_take_update_commut2,
lemma_seq_skip_update_commut1l,
lemma_seq_skip_update_commut2,

lemma_seq_skip_build_commut,

lemma_seq_skip_nothing,

lemma_seq_take_nothing,

// Removed the following from group due to bad verification
// for lemma_merge_sorted_with_ensures®

// lemma_seq_skip_of_skip,

group_to_multiset_ensures,

performance
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Quantified Facts a la Carte

pub proof fn push contains(a: Seqg<int>)
{

broadcast use vstd::seq lib::group seq properties;
let b = a.push(3);

assert(b.contains (3)); // PASSES

Worried about verification performance for larger proofs?
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Quantified Facts a la Carte

pub proof fn push contains(a: Seq<int>)

{ lemma seq contains after push

broadcast use vstd::seq_lib:: SreessseteRiGRagpe

let b = a.push(3);

assert(b.contains (3)) ;
}

> verus broadcast.rs -V axiom-usage-info
note: checking this function used these broadcasted lemmas and broadcast groups:
- (group) vstd::seq lib::group_seq properties,
- vstd::seq_lib::lemma seq contains_after push
--> broadcast . rs:5:1

I
5 | pub proof fn push contains(a: Seg<int>)

I AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANAN

verification results:: 1 verified, 0 errors
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Modularized Proof Libraries

pub trait Key {

proof fn key obligations()

ensures // ... conditions necessary for the type to be a valid key

broadcast proof fn trans 1t lt(a:Self, b:Self, c:Self)
ensures a < b && b < c => a < ¢
{ /* justified thanks to the ensures of ‘key obligations™ */ }

// ... additional properties

pub broadcast group group key cmp properties {
Key::trans 1t 1t,
// ... additional ‘broadcast’ proofs from the trait
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Exploring the Automation Tradeoff

With all the Dafny Prelude lemma in Verus (with broadcast proofs), we can see
what the impact is for increased implicit context:

Collection datatype Seq|Map|Set MultiSet || Total
# of group_<type>_properties lemmas|| 25 | 2 |10 12 49

1. Does increasing the number of quantified facts in context result in more
automation, i.e. fewer manual user-provided hints (in the form of asserts)?

2. Does increasing the number of quantified facts in context hinder verification
performance or the verification experience?
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Projects under Study

- lronKV (SOSP24) is a distributed key-value store

- Splinter is an ongoing work on a key-value store designed around a Be-tree.

- Anvil (OSDI24) is a framework for building and formally verifying Kubernetes
controllers.

- CapybaraKV (OSDI25) is a storage system targeting persistent memory
devices
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Minimization

- To quantify “automation”, we use the number of asserts as a metric, but most
projects don’t have a minimized number of assertions.

- We ran VerusMinimizer to compare the number of asserts w/ and w/o ambient
facts

- Limitations:
- Only alinear scan
- Only target assertions (since detecting lemma calls can’t be done syntactically)
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Effect of Ambient Facts

System Original # |Minimized | Minimized with
of asserts | (baseline) | Ambient Facts
IronKV 646 268 245(-23, -8.6%)
Splinter 2678 1158 1130(-28, -2.4%)
Anvil 701 343 336(-7, -2.0%)
CapybaraKV 941 449 415 (-34, -7.6%)

Table 1: Assertion counts for verification systems after minimization and importing
ambient facts



Impact on Verification Time
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Fig. 3: Cumulative distribution of verification time ratio between ambient facts
(minimized) and original verification time for each function. We removed two
extreme cases of 10x+ verification slowdown, one in Splinter, where the runtime
bumped from 34ms to 669ms (19.1x), and one in Anvil, where the runtime
bumped from 3508ms to 43563ms (12.4x).
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Triggers

- default safe triggers, or more aggressive multiple trigger groups?

forall|x: int, y: int|
default: (@)

all_triggers: (1)
(5)
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More Automation with More Triggers (Axioms?)

Is it possible to obtain a more extensive automation (i.e. a smaller number of
required hints (asserts) to the solver) by changing how triggers are selected for the
default set of quantified facts imported when using the Verus standard library?
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You can’t really “free” the triggers without explosion

pub broadcast axiom fn axiom seq add len<A>(sl: Seq<A>, s2: Seq<A>)
ensures

#[trigger] sl.add(s2).len() == sl.len() + s2.len(),
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More Automation with More Triggers (User Code?)

We added 206 #![all _triggers] annotations in the 261 quantifiers in IronKV.

One proof broke.

System |Original [Min | All Triggers |Ambient Facts
IronKV 646 268 [235(-33, -12.3%) | 245(-23, -8.6%)
Table 2: Assertion counts for IronK'V after minimization with all triggers
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Lessons from all_triggers?

- all_triggers has a non-trivial impact, though it is more susceptible to
verification failure

- it's hard to automatically manage in bulk
- Experiment with multiple trigger groups for different level of automation?

29



: Thank you!
Conclusion ayb5065@nyu.edu

Broadcast as a way of managing quantified facts
- Customized axioms for user built abstractions
- unsat-core for pinpointing useful lemmas
VerusMinimizer to check “minimized” assertions

More ambient facts in context:

- reduced 2-9% assertions

- only have impact on a handful of functions
Freer triggers via "all_triggers’ Preprint Available

- Preliminary result showed it's more impactful than ambient facts
- harder to automatically manipulate "all_triggers’
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