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Abstract—We characterize what is feasible concerning clock syn-
chronization in wireline or wireless networks. We consider a net-
work of nodes, equipped with affine clocks relative to a desig-
nated [1] clock that exchange packets subject to link delays. Deter-
mining all unknown parameters, i.e., skews and offsets of all the
clocks as well as the delays of all the communication links, is im-
possible. All nodal skews, as well as all round-trip delays between
every pair of nodes, can be determined correctly. Also, every trans-
mitting node can predict precisely the time indicated by the re-
ceiver’s clock at which it receives the packet. However, the vector of
unknown link delays and clock offsets can only be determined up
to an � ��-dimensional subspace, with each degree of freedom
corresponding to the offset of one of the � �� clocks. Invoking
causality, that packets cannot be received before they are trans-
mitted, the uncertainty set can be reduced to a polyhedron. We
also investigate structured models for link delays as the sum of
a transmitter-dependent delay, a receiver-dependent delay, and a
known propagation delay, and identify conditions which permit a
unique solution, and conditions under which the number of the
residual degrees of freedom is independent of the network size.
For receiver-receiver synchronization, where only receipt times are
available, but no time-stamping is done by the sender, all nodal
skews can still be determined, but delay differences between neigh-
boring communication links with a common sender can only be
characterized up to an affine transformation of the � �� un-
known offsets. Moreover, causality does not help reduce the uncer-
tainty set.

Index Terms—Clock offsets, clock skews, clock synchronization,
delays, networked control, scheduling, sensor networks.

I. INTRODUCTION

D ISTRIBUTED clocks generally do not agree. Yet, several
applications in sensor networks and networked control

are grounded in accurate clock synchronization. Applications in
networked control include closing control loops or coordinating
events in a decentralized system, such as a traffic control or col-
lision avoidance system. In sensor networks, clock synchroniza-
tion requirements are omnipresent; in tracking, target localiza-
tion, data fusion, and power-efficient duty-cycling. Scheduled
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operations in wireless networks, e.g., slotted protocols, also re-
quire accurate clock synchronization. This motivates the study
of clock synchronization over communication networks. As we
head towards the era of event-cum-time driven systems fea-
turing the convergence of computation and communication with
control, the need for well-synchronized clocks becomes increas-
ingly important, affecting system performance, QoS, and safety.

A. Notions of Network Clock Synchronization

There are three main degrees of clock synchronization that
may be required by the specifications of a particular application.

1) Ordering of events. In this case, the problem is to create
a right chronology of the events in the entire network.
For this purpose, knowledge of the exact time instants is
not required, yet an ordering of events that occur at dif-
ferent nodes or the same node has to be determined. This
is the weakest notion of synchronization but is sufficient for
many applications such as financial transactions involving
locks in databases, several monitoring applications, etc.
This problem was first thoroughly studied in [3] where the
notion of virtual clocks was introduced.

2) Relative Synchronization. Here, the goal of synchroniza-
tion is to estimate the relative drift among a set of clocks in
the network. This information can be then used to translate
time-stamps from one clock to the units of any other clock.
This has the advantage that the translation mechanism does
not create undesirable dependencies by resetting clocks in
hosts [2], [16] and gives rise to the notion of relative clocks.

3) Absolute Synchronization. This is the strongest notion of
clock synchronization in a network. Each node has an ab-
solute clock and the goal is to set all clock displays to agree-
ment, so that a global definition of time is achieved in the
entire network. Networked control applications typically
require this stronger type of synchronization.

From the above definitions, it is immediate that absolute syn-
chronization implies relative synchronization which in turn im-
plies ordering of events in a network. However, if we define a
particular node as reference, then relative synchronization can
be used to achieve absolute synchronization.

In this paper, we focus on relative and absolute synchroniza-
tion.

B. Problem Under Study

The specific problem that we address is the characterization
of the extent to which clock synchronization is even feasible [1].
We consider clocks which run at a constant, but not necessarily
identical speed. Each clock is characterized by its “skew,” i.e.,
relative speed with respect to a reference clock, as well as an
“offset,” i.e., the time difference from the reference clock at a
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particular time, which, for convenience, we take to be the time
0 of the reference clock. Thus, we consider affine clocks.

Our purpose is to exhibit fundamental impossibility results
in clock synchronization. For this purpose, we will consider the
ideal scenario where neither offset nor skew drifts with time and
all time-stamps are noiseless. Clearly, if clocks cannot be syn-
chronized in such an ideal environment, then they cannot be syn-
chronized in the presence of noise. For the same reason, we sup-
pose that packets suffer delays dependent on the transmitter-re-
ceiver communication pair. We allow for noiseless communi-
cation where latencies in packet transfer are deterministic and
time-invariant but unknown. In the same spirit, we will allow
nodes to exchange an arbitrary number of packets containing
any information that the transmitting node knows about cur-
rent or past packets that the node has sent, or any informa-
tion contained in past packets that it has received. This includes
the time that the current packet is being sent according to the
transmitter’s clock, as well as the times that it received pre-
vious packets. This also includes hearsay information that an-
other node may send to it concerning information that it received
from yet other nodes. Thus, we allow for packets to contain any
causally acquired information that the sender may have.

C. Characterization of Limits on Clock Synchronization

We show that while all skews can be perfectly determined,
the delays of the links and the offsets of the nodes cannot be
exactly determined. Specifically, the vector of all link delays and
node offsets can only be characterized up to a translation of an

-dimensional subspace, where is the number of nodes.
In fact, we show that these indeterminable parameters
can be regarded as estimates of the nodal offsets.

If we further invoke causality, i.e., that packets cannot be re-
ceived before they are sent, then the uncertainty region is a poly-
hedron that is explicitly characterized. We provide necessary
and sufficient conditions on the network topology for the poly-
hedron to be compact and have a nonempty interior.

We also study the problem of receiver-receiver synchroniza-
tion where nodes only exchange information on the times at
which they receive broadcast packets, without any sender time-
stamping. We show that nodal skews can still be determined
correctly, but only delay differences between neighboring com-
munication links with a common sender, and not actual de-
lays themselves, can be expressed affinely by unknown
offsets. We prove that causality cannot be exploited and that
the uncertainty set remains the entire space . Moreover,
round-trip delays cannot be estimated from the known data.

We further study the case where link delays have the structure
of being the sum of a transmitter-specific delay, a receiver-spe-
cific delay, and a known electromagnetic propagation delay. For
such cases, we again characterize the uncertainty set.

The rest of the paper is organized as follows. In Section II
we summarize related literature on clock synchronization. In
Section III, we introduce the affine model for the clocks, and
the assumptions on the delays. In Section IV, we formulate the
problem, provide a formal description of the inter-node com-
munication, present an impossibility result for the case of two
clocks [2], and describe the structure of the residual uncertainty.
In Section V, we describe the network clock synchronization

problem and provide necessary and sufficient conditions on the
network topology for the determination of all nodal skews. In
Section VI, we prove that with no further assumption on the
unknown delays, determining the offsets is impossible for any
network topology under any communication scheme. We show
that while skews can be reliably determined from known data,
offsets involve an inherent indeterminacy. Furthermore, we out-
line a method for the optimal selection of the offset vector. In
Section VII, we study the problem of receiver-receiver synchro-
nization in a network, and prove the infeasibility and the funda-
mental fact that causality cannot be exploited in this case. In
Section VIII, we study the problem when the delays have an
additive decomposition in terms of transmission, reception and
propagation latencies. Finally, in Section IX, we cite some con-
cluding remarks of our work.

II. RELATED LITERATURE

In distributed systems, ordering of events is crucial for many
applications. Lamport [3] shows how to causally order events
by defining the notion of virtual clocks.

In [13], the authors study the problem of synchronizing clocks
in a fully connected network and show that an uncertainty of
in packet delivery leads to a maximum synchronization error no
less than . In [12], the authors derive a polyhedral
uncertainty set for link delays in a general network topology.
Establishing the impossibility of determining the offset in pair-
wise clock synchronization was carried out in [2], [16]. A sim-
ilar result is noted in [14], though without a complete rank-based
proof. The main result is that while determining the relative
skew between two clocks is possible, it is impossible to do so
for offsets, unless delays in the two-way communication are as-
sumed to be symmetric. The proof of this result together with
an extended analysis of the uncertainty set for the problem is
presented in Section IV and is used to establish the results for
the network case.

The basic mechanism for synchronizing clocks is to exchange
time-stamped packets, or “pings,” between nodes. The Network
Time Protocol (NTP [7]) is a widely used hierarchical protocol
implemented to achieve absolute synchronization of clocks in
large networks like the Internet. NTP provides accuracy in the
order of milliseconds [7] by typically using GPS to achieve
synchronization to external sources that are organized in levels
called stratums. While this accuracy may be sufficient for some
applications, recent applications in wireless sensor networks
typically require precision in the order of microseconds .
Moreover, in some cases, e.g., indoors, or during solar flares,
GPS may be unavailable.

In sensor networks and networked control, a variety of al-
gorithms have been suggested for synchronization such as the
Reference Broadcast Synchronization (RBS [8]) and Flooding
Time Synchronization Protocol (FTSP [9]). RBS is a receiver-
receiver synchronization algorithm, which uses the broadcast
nature of the wireless medium. It does not make use of sender
side time-stamping. Nodes broadcast packets and the nodes that
receive a common transmission then record and exchange the
reception times so as to estimate the receiving nodes’ clock dif-
ferences. The scheme attains precision within 11 . In FTSP
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[9], the Medium Access Control (MAC) time-stamping capa-
bilities are exploited and linear regression is used to compen-
sate for clock drifts; the precision is of the order of 10 for
absolute synchronization in a network with several hundreds of
nodes. Elson et al. [6] studied fundamental properties of min-
imum variance estimates, and presented algorithms. Solis et al.
[4] developed and implemented a decentralized asynchronous
algorithm based on spatial smoothing, and performed compar-
ative evaluations showing improvements. Giridhar and Kumar
[5] analyzed the performance of this spatial smoothing method,
both to determine asymptotic accuracy as well as convergence
rates. In [15], the authors studied a stochastic differential equa-
tion model-based approach to clock synchronization.

III. MODEL FOR CLOCKS AND DELAYS

A. Affine Model for Clocks

Throughout this paper, we will assume the simple model of
affine clocks. Denoting the time of a fixed reference clock by ,
we will assume that the display of a clock in the network at
time , denoted by , satisfies

(1)

We call the ratio of the speeds of the two clocks, , as the
skew,1 while the difference in their displays will be referred to as
the offset at a particular instant. Above, is the offset of clock
at the time 0 of the reference clock. An affine clock can thus be
represented by the pair of parameters . For the purpose
of establishing fundamental impossibility results, unknown pa-
rameters such as are considered to be constant time-in-
variant parameters, throughout the entirety of this paper. The
reason for such an assumption is that if we can prove that the
determination of the unknown parameters is impossible under
this idealistic scenario, then impossibility will naturally carry
over to the case of time-varying parameters.

We also suppose that , i.e., forward evolution of the
time in all clocks. In practice, the skew takes values very close
to 1.2 On the contrary, offsets are sign-indefinite and so no con-
straints are imposed on the values of .

For notational convenience, we fix node 1’s clock to be the
reference clock; hence , . A useful formula
that provides time translation of clock ’s time to clock ’s time
units, as can be obtained from (1), is

(2)

The reason for assuming such clock model is because this is
the simplest model that captures the reality that clocks are not
synchronized because of non-nominal speeds and offsets. The
model assumes constant but unknown clock skew and has been
validated to be accurate for some clocks [11], [17], [18]. Estab-
lishing impossibility of clock synchronization under the affine
model implies impossibility for more general models that cap-
ture skew variations, even though the uncertainty sets derived

1Some authors [14] define the skew to be � � �, but here we use the termi-
nology of [2].

2Our analysis essentially requires only that � �� �; the only place where
� � � is used is when studying causality.

in this paper do not apply in such cases. A stochastic model for
clocks and delays was introduced in [15].

B. Model for Packet Delay

Delays in packet delivery constitute a fundamental limitation
in synchronizing clocks over wireless networks since they can
be much larger than the required synchronization precision. We
will suppose that whenever a packet is sent by node , it is re-
ceived by node after a delay of time units (measured in the
time units of the reference clock, clock 1). The delays are
assumed to be unknown but fixed; this is again an ideal scenario
used to establish general impossibility results.

By the word “delay” here, we mean not only the electromag-
netic propagation delay, but rather the sum of all delays incurred
by a packet after it is time-stamped by the transmitter and before
it is time-stamped by the receiver, as discussed in Section VIII.
With the exclusion of the electromagnetic propagation delay, the
other delays can depend on the communication and computa-
tion platforms of the nodes involved and the load experienced at
them. Due to this heterogeneity, delays cannot be expected to be
symmetric or identical between links. Hence we allow
and .

Even though the link delays are not clock parameters, their
estimation is, however, a very important bi-product of clock
synchronization, since knowledge of such quantities is crucial
for many applications including routing and the stability of net-
worked control loops [2], [16].

IV. PAIRWISE SYNCHRONIZATION OF TWO CLOCKS

We shall denote the time (as measured by the -th clock) that
node sends its -th packet by (see Fig. 1). In a wireless
network where packets are broadcast, this packet might have
multiple receivers, so we avoid specifying the receiver in the
above notation. We will denote by the time (as measured
by the -th clock) that node receives the -th packet sent by
node (see Fig. 1).3

In this section, we will consider the case of only two nodes
trying to synchronize their clocks. Thus, suppose that clock 1
(the reference) and clock are the only two clocks in the system.
As shown in Fig. 1. (in this case ), the two nodes are al-
lowed to communicate repeatedly by exchanging time-stamped
packets. In the -th packet sent by node 1, the transmitting node
includes its current transmission time-stamp, , as measured
by its clock just before the transmission. Upon receiving this
packet, the receiving node records the time (according to its
local clock) just after it receives the packet, . Similarly, when

node is transmitting, we assume that the time-stamps ,
are available. Recall that all time measurements are assumed
noiseless, since showing indeterminacy of the parameters even
for noiseless measurements would imply such indeterminacy for
noisy models, too.

We allow for every packet to contain information about all the
past receipt times of all prior packets as recorded at that node, so
that each node contains a full log of the transmitting/receiving

3Note that the horizontal lines in Fig. 1 represent time displays at different
clocks and are, in general, at different scales, since clocks may run at different
speeds and also have an offset from one another.
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Fig. 1. Message exchanges between two nodes.

times of packets between them. Equivalently, we can suppose
that there is a “genie” that has access to all transmit and receipt
times for all packets, as recorded by their respective clocks.

As shown in [2], [16], it is impossible to estimate all four
unknown parameters, , through any number of
packet exchanges, which is stated and proven next for complete-
ness of presentation:

1) Theorem 1. (Impossibility of pairwise synchronization
[2]): Even under bilateral exchange of an infinite number of
packets between the two nodes and 1, estimation of the entire
four-tuple is impossible.

Proof: Since , , the translation of node ’s
time to the reference clock’s time is given by

(3)

For the -th transmission of node 1 to node , and vice-versa we
have (see also Fig. 1)

(4)

(5)

(6)

(7)

Substituting (4) into (5), and (6) into (7), we get

(8)

(9)

In order to obtain equations that are linear in unknowns, we
consider a nonlinear parametrization, , of
the unknowns

...
...

...
...

...

(10)

Denoting the vector on the LHS above by , the matrix on the
RHS by , and the vector on the RHS by , we have .

We observe that and contain known information based on
the time-stamps, while is the vector of the unknowns.

By the fact that the time-measurements are noiseless, we
know that for the measured there exists a solution
to , since the system of equations is consistent. A
necessary and sufficient condition for this solution to be unique
is that the matrix have full-rank, i.e., rank 4. This is also the
necessary and sufficient condition for the existence of a unique
solution to (10), since the parametrization

is bijective for . However, the
fourth column of is the difference between the second and
the third column, and so has rank at most 3.

Remark 1.1: The first three columns of matrix in (10) are
linearly independent if and only if either not all odd or not all
even entries are the same, that is to say if there are at least two
distinct communication pings in one direction, and at least one
ping in the other direction. In the sequel, we will assume, with no
loss in generality that , and ,
and restrict attention to the 4 4 principal submatrix of , of
rank 3, which yields the system

(11)

For convenience, we denote the finite linear system in (11) as
. The remaining pings contain no additional information

not already contained in these four pings, for the purpose of de-
termining the unknown parameters and estimating the delays.
Note also, that from (11), it suffices that a transmitted packet
contain information about its current transmit time and just the
transmit-receipt time-stamps of two past pings, one in each di-
rection4 since the receipt time of the packet will also be available
to the receiver.

Since the above system does not admit a unique solution, we
study the set of all solutions to (11). We will call this set of
all solutions as the uncertainty set. It is the smallest set within
which the true but unknown parameter vector can be determined
to lie.

4In fact, since� is of rank 3, this system can be equivalently constructed
as a 3 � 4 system, by using only three distinct pings (two in one direction and
one in the other), however we will use, with no loss in generality, a 4� 4 matrix
for ease of presentation.
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In the sequel, we use “ ” to denote any estimate of unknown
quantities, and “ ” to refer to some special quantities that can
be derived from the data.

Theorem 2. (Characterization of the Uncertainty Set in Pair-
wise Synchronization):

1) The skew can be precisely determined, even if there are
only two one-way pings, i.e., the link is unilateral.5

2) The vector of offset and delays can only be
determined up to a translate of a one-dimensional subspace
of . Each point in this one-dimensional translated sub-
space corresponds to a particular estimate of the unknown
offset.

3) The round-trip delay can be determined pre-
cisely.6

4) If we further use knowledge of causality, that packets
cannot be received before they are sent, and also that

, then the uncertainty set for the offset reduces to
an interval, whose length is proportional to the round-trip
delay.
Proof: The null space of the matrix in (11) is spanned

by the vector . Define by

(12)

(13)

(14)

for . Note that, since the first entry of the vector spanning
the null space is 0, we have that , is the unique solution
for the skew , i.e., the skew can be determined by a ratio of
differences between received time-stamps and sent time-stamps.
Then the vector fits the transmit and receive
time-stamp data, i.e., satisfies

(and ), if and only if

(15)

Hence, , is arbitrary, and

(16)

This proves 1), 2), and also 3) since

(17)

For 4), we invoke causality, that is to say that packets cannot
be received before they are transmitted, which is equivalent to
imposing the natural nonnegativity constraints on the delay esti-
mates, , . Since , (16) immediately yields

(18)

The indeterminacy for the offset is .

5This was also shown in [14].
6This was also shown in [2], [12].

Remark 2.1: Note that determining the upper bound of the
interval in (18), requires only transmission from node 1 to node

while determining the lower bound only needs node to
transmit to node 1.

Remark 2.2 (Use of Lamport’s Global Ordering [3]): In our
analysis of the consequence of causality, we have actually ex-
ploited all the available information provided by the global or-
dering described by Lamport in [3]. The ordering of events at
a single node can be carried out trivially since all time instants
are measured by the same clock with positive skew. Further-
more, causality simply implies that receipt should follow trans-
mission, which is exactly the same as imposing the constraint

and for all . By the
assumption that the skew is positive, it follows from (4) and (6),
that this is exactly equivalent to the nonnegativity of the link
delays.

Remark 2.3: In [14], an indeterminacy of the offset was
shown for a particular scheme for the case of asymmetric de-
lays. Theorems 1 and 2 give a stronger statement than the result
in [14] in two ways. They fully characterize the uncertainty
set by showing that any point inside the set (18) constitutes a
potential solution and any point outside it does not. In addition,
our analysis does not ignore the contribution of the skew in
determining the uncertainty set.

From the above characterization of the estimates, an inter-
esting result surfaces.

Corollary 3. (Prediction of the Receiving Time by the Trans-
mitter): The sending node can determine precisely the time, as
measured by the receiver’s clock, at which the receiving node
will receive a sent packet.

Proof: When node 1 is transmitting, this is immediately
true from (13) since , where is known
to the transmitter, while all the other quantities are determinable
by estimation. Similarly, when node is transmitting, it follows
from (14) that . An alternative derivation

can be made by solving (12) for (respectively ) since
can be determined correctly, and since the other time-stamps
on the RHS of (12) are causally known to sender (we assume

).
When predicting such receipt times, the indeterminacy of

offset and delays mutually cancel. This is an important property
that can be potentially used to measure the accuracy of clock
synchronization algorithms when noise is present in delays.

Since the determination of the unknowns does not allow a
unique solution for the vector of offset and delays even in the
simple case of pairwise communication, it is of interest to deter-
mine simple additional conditions that will allow precise char-
acterization of offset and delays.

Theorem 4. (Sufficient Conditions for Uniqueness of Solu-
tion): All the parameters can be uniquely de-
termined if any one of the following conditions hold.

1) The offset , or one of the delays or , is known.
2) There is a known affine relationship between the delays

in the two directions, specifically, there exist
known, such that .
Proof: The first part follows directly from the fact that de-

lays are known invertible (since ) affine functions of
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Fig. 2. General graph, star graph, complete graph, and connected graph.

the offset (15), and the sum of the delays is known (17).
To prove the second part of the theorem, we use the condition

in (15) and get the unique solution

(19)

Remark 4.1: The affine characterization of asymmetry in
Theorem 4.2, includes the special case of symmetric delays

, which was established in [2], [12]. It also includes
the case of known asymmetry, , which corre-
sponds to a known processing overhead in one of the nodes.
More generally, studying the asymmetry as in [9] can lead to
a full characterization of the pairwise problem. An analysis
based on a decomposition of delays is given in Section VIII.

Remark 4.2 (Worst Case Error in NTP is Proportional to
Round-Trip Delay): Consider two clocks which are bidirection-
ally connected, that is both can send packets to each other. In
NTP, the offset is estimated based on the assumption that the
delays in the two directions are the same, i.e., . This
corresponds, in the light of (19), to choosing the midpoint of
the uncertainty interval (18), i.e., the point that minimizes the
maximum error. Thus, the worst-case error of NTP is equal to

.

V. NETWORK CLOCK SYNCHRONIZATION

Now we turn to the case of networks. We consider a network
of nodes where, again by convention, node 1 is considered to
be the reference node. We will draw a directed edge from node
to node if can send packets to . We will draw an undirected
edge if both and can send packets to each other; see Fig. 2(a).
We will call the resulting graph the communication graph. We
will also occasionally refer to directed edges as unidirectional
or unilateral links, and to undirected edges as bilateral or bidi-
rectional links.

To motivate and set the stage for the general results to follow,
consider the star communication graph shown in Fig. 2(b),
where all nodes are only allowed to bilaterally exchange packets
with the reference node. This is equivalent to having
independent pairwise “synchronizations.” From the results of
the previous section, it follows immediately that determining
all parameters is infeasible. There are exactly degrees
of freedom in the uncertainty set of the -dimensional
unknown parameter vector. These correspond precisely to the
estimates of the unknown offsets of the clocks with

respect to the reference clock. The delay estimates are in turn
characterized as affine functions of these offset estimates.

In the general multinode case, where the graph does not nec-
essarily correspond to a star, our goal is to similarly determine
what is or is not determinable when the nodes are allowed to
collaborate, i.e., when nodes other than the reference node com-
municate with one another. An extreme situation is when all
nodes are allowed to exchange packets bilaterally with one an-
other, i.e., the case of a complete communication graph (see
Fig. 2(c)). We will show that even with such full collaboration
the uncertainty set remains exactly the same as in the star graph,
if causality is not invoked. In fact we will show that the same un-
certainty set results for any directed synchronization graph that
is connected [see Fig. 2(d)]. In the sequel, we will build up to
this general case.

We first consider the problem of synchronization between two
nodes neither of which is the reference node.

Corollary 5. (Pairwise Synchronization Between Two Nodes
Other Than the Reference Node 0: In pairwise synchronization
between two nodes and , neither of which is the reference
node 1, the same impossibility results and structure of the un-
certainty set presented in the previous section hold, with the rel-
ative skew taking the place of the skew , and the relative
offset in place of the offset .

Proof: In order to define a linear system of equations, we
consider the parameters
as unknowns in the estimation problem. This yields exactly the
same system of equations as (10)

...
...

...
...

...

(20)

Therefore the previous results continue to hold for this new
parametrization.

Note that, as earlier, three noiseless alternating communica-
tion pings per link suffice for estimation. We can consider again
a 4 4 system of rank 3, derived from (20) by considering four
distinct alternating communication pings as shown in Fig. 1.
For compactness of representation we denote this system, which
contains all the information for the pair ,

where (21)

Thus, generalizing the earlier result in Theorem 2, the rela-
tive skew can be determined correctly, while there is no
unique solution for the unknown link delays and rela-
tive offset . Moreover, due to the occurrence of
the product in this parametrization, in order to express
the unknown delays as affine functions of the relative offset

, we need to have first determined the skew .
This is a network issue when node does not have a direct link
with the reference node 1, and we now turn to this issue.
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A. Skew Estimation in Networks

In a unilateral communication link , relative skew can be
determined correctly by the exchange of two noiseless pings

(22)

We will consider two cases for the knowledge that nodes
have:

1) Genie. We assume that there is a centralized view of the
entire network, i.e., a genie that is aware of the transmitter
time-stamp and the receiver time-stamp of every packet ex-
change between any pair of nodes. This implies that links
do not have to be bilateral for skew estimation, since com-
munication in one direction suffices for the estimation of
relative skew through (22). The genie scenario serves as an
absolute upper bound on what can be determined.

2) Network. This is the scenario of actual interest where each
node knows only the information that it transmits or that
is transmitted to it by packets. Such packets, as noted in
Section IV, can contain the transmitter’s time-stamp, as
well as information that the transmitter has obtained from
packets it has received. Note that communication along the
unilateral link implies that only the receiving node
can determine correctly the relative skew via (22), but the
transmitter is unaware of the relative skew (unless it is
provided that information by some other path).

Concerning the communication graph of the network, we sup-
pose that there is a directed graph with node set and edge set

. In the sequel, we say that there is an undirected path from to
, if there is a set of nodes such that for

every , either or , or
both. We say that there is a directed path from node to node
if there is a set of nodes , such that each
directed edge belongs in for .

Theorem 6. (Necessary and Sufficient Network Topology for
the Estimation of All Nodal Skews): Consider a network of
nodes.

1) In the genie case, all the skews can be determined
correctly if and only if there is an undirected path from the
reference node to every node in the network graph, i.e., if
the graph is connected.

2) In the network case, every node in the network can deter-
mine its own skew (relative to the reference) if and only
if there is a directed path from the reference node to that
node, i.e., if and only if the graph contains a directed span-
ning tree rooted at the reference.

3) In the network case every node in the network can deter-
mine all nodal skews (and therefore all relative skews) if
and only if there is a directed path from every node to all
nodes, i.e., if the graph is strongly connected.
Proof:

1) Sufficiency is immediate since the skew of any node can be
computed by multiplying the relative skews of the nodes
along a path connecting it to the reference. Necessity fol-
lows because if the graph is disconnected, then there are

connected components, say , such
that there is no packet exchange between any two compo-
nents. Then multiplying the skew of all the clocks in com-

ponent by a positive integer , for ,
would create no inconsistency with any of the time-stamps.

2) For sufficiency, consider a directed path
from the reference node to node

. Then node can determine the
ratio from its incoming packets along link

and communicate that ratio to all nodes
for by including that information in its out-
going packets. Node simply forms the product

. To prove
the necessity, let be the set containing node 1 and the
set of nodes for which there is a directed path from node 1
to every node in the set, and . If is not
empty, we can multiply the skew of all nodes in by ,
in consistency with the transmit time-stamps of packets
sent by nodes in and the receipt time-stamps of packets
received by nodes in .

3) Sufficiency follows, since for any distinct nodes and ,
node can determine its relative skew to node by multi-
plying the relative skews along a directed path to rooted at
node ,as in theproofof sufficiency in2).Theproofofneces-
sity is as in 1), applied to strongly connected components.

We note that an important special case that satisfies all the
conditions of the above theorem is when all the links are bidi-
rectional and the network is connected.

VI. CHARACTERIZATION OF SYNCHRONIZABILITY

IN NETWORKS

Now we are ready to address what is feasible or infeasible
for the problem of synchronizing clocks over networks. First,
we note that in a network with nodes and link set of di-
rected edges, there are a total of unknown pa-
rameters and . If the graph is complete,
i.e., all nodes can bilaterally exchange packets with one another,
then the number of unknowns in the network synchronization
problem is .

The following theorem establishes the fundamental result that
without any further assumptions, clock synchronization is im-
possible in any network.

Theorem 7. (Infeasibility of Clock Synchronization in Net-
works): Consider a network of nodes. It is impossible to de-
termine all unknown parameters { , and
for all and all } even if all pairs of nodes can
exchange any number of time-stamped packets containing any
information that is causally known to the transmitter.

The next theorem characterizes the uncertainty set of the un-
known parameters.

Theorem 8 (Characterization of the Uncertainty Set in Net-
work Clock Synchronization): Consider any network topology

such that in there is a directed path from any
node to any other node, i.e., is strongly connected.

1) All the skews can be determined cor-
rectly.

2) Every vector in the uncertainty set for
the delay vector can be expressed as
a known affine transformation of variables

. Each can be regarded as an estimate
of the unknown offset . Any choice of these estimates
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is consistent with all transmit and receipt
time-stamps of all packets.

3) If causality is invoked, the uncertainty set for the estimates
of the offset parameters can be fully
characterized as a compact polyhedron of .

4) Suppose all links in are bilateral. Then the feasible poly-
hedron in 3) above has a non-empty interior if and only if
there is no bilateral link with zero round-trip delay.

Remark 8.1: An important consequence is that the star graph
and, in general, any spanning tree, results in the same uncer-
tainty set for the parameters as the complete graph, if causality
is not invoked. If causality is additionally taken into account,
then additional communication links do help reduce the size of
the uncertainty set.

Proof of Theorems 7,8: Theorem 8.1 is just a restatement
of Theorem 6.3.

We will first prove Theorem 7 and Theorem 8.2 together,
under the best case scenario of a complete graph, i.e., when all
links are active and . Subsequently we will show
that the conclusion of Theorem 8.2 continues to hold for any
strongly connected graph where there is a directed path from
any node to any other node.

The complete graph contains the star graph for which we al-
ready know that the conclusions of Theorem 7 and Theorem 8.2
hold. Thus, to show Theorem 7 and Theorem 8.2 for the com-
plete graph, it suffices to show that any estimate in the uncertainty
set for the star graph will also satisfy the data from all bilateral
packet exchanges, and to further express the link delays for

as affine functions of the offset estimates .
In order to tackle the difficulties of a nonlinear parametriza-

tion, we introduce a redundant parametrization with respect to
which the system of equations to be solved becomes linear. A
natural selection, as in Corollary 5, is to choose the parame-
ters for ,
and , and for

, since , . From the fact that there
are communicating pairs of nodes and with ,
this parametrization involves pa-
rameters. It is redundant, for , since the number of the pa-
rameters is more than the unknowns. Hence, we
have introduced an additional redundant param-
eters, but this over-parametrization has the advantage that not
only does the system become linear as before in the two-node
system, but also fully decoupled in the communicating pairs.
Using (21) and taking four alternating pings, the whole system
can be put in block diagonal matrix form as follows:

...

...

...
. . .

...
...

...

...
...

...
. . .

...

...

...

(23)

The blocks are 4 4 matrices as given by (11) and the
first four rows of (20), while is the 4 4 zero matrix.7 We
denote this system, by slight abuse of notation, by .

The dimension of the square matrix is
. This matrix however has rank only since all

the blocks in the diagonal have rank three and four columns.
We cannot yet conclude nonuniqueness of solution since the
parametrization itself is redundant.

By the result in (15) of Theorem 2 which, as we
showed in Corollary 5, carries over for the parameters

, we have

(24)

(25)

(26)

(27)

The vector in the LHS of (24) denotes estimates, parametrized
by a selection of the one degree of freedom . The quantities
in the first vector on the RHS of (24) can be determined by two
time-stamped packets and sent from node to node , and
one packet sent from node to node , or vice-versa. In fact, if
we further define

(28)

(29)

then and . We will denote
the system in (24) by , where

and .
Since the estimation of all the unknown parameters in the

network has been decoupled in (23) into estimations for separate
links, we have

...

...

...

...

...

...

...

...

(30)

7The matrices � are considered to be 4 � 4 without loss in generality.
However, any one of them can be constructed as a 3 � 4 matrix as shown in
Remark 1.1.
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where . All solutions for consistent with the
data of transmit and receipt time-stamps of all packets are of the
form (30).

Now we need to determine what is the freedom in the values
of the parameters , so that one can choose

to satisfy , , and
. It is plain to check that these

constraints give a set of equations, and also no
other constraints exist, hence the redundancy in the system will
be eliminated.

First, from Theorem 6.3, we see that for all since the
skews can be correctly determined, hence the
equations (for the case of a complete graph)
will provide no additional constraints on .

Next,
, which yields independent equations,

so that the “free” parameters are linear functions of the
offset estimates . Hence, there are only
independent parameters that determine the
values of all the for .

Next, from the equations defined by the second and third row
in (24), since and we obtain, in
both cases as well as , that

(31)

Hence, we see that all delay vectors in the uncertainty set can
be affinely characterized by exactly remaining degrees
of freedom , which are the estimates for the offsets. In
consequence, the estimation problem does not yield a unique
solution, proving Theorem 7. Moreover, the uncertainty set of
the parameter vectors in the network is an affine transformation
of an -dimensional subspace. This proves Theorem 8.2
for the case of a complete graph. However, a perusal shows that
this proof also generalizes to the case where the link set al-
lows all skews to be determined, and the latter is guaranteed by
Theorem 6.3.

Now we turn to Theorem 8.3. As in Theorem 2, we use the
property that for causality is equivalent to , to
obtain from (31) that

(32)

which characterizes the uncertainty set for offsets.
We now show that the uncertainty set is compact. Starting

from node , there is a directed path to the reference node 1. So
applying (32) repeatedly, and using , gives

(33)

Similarly, starting from the reference node and considering a
directed path to node one gets an upper bound

(34)

To prove Theorem 8.4, we note that when all links in are
bilateral the inequality constraints in (32) are

(35)

A necessary and sufficient condition for the polyhedron to be
full-dimensional is that the upper bound in (35) strictly
exceeds the lower bound, i.e., . Since we know that
this is equal to the round-trip delay , the result follows.

Remark 8.2: There are only free parameters that
one can choose if one wants the estimate to be consistent with
all transmit and receipt time-stamp data. This shows that while
in pairwise synchronization unknown delay asymmetry is the
unique reason for indeterminacy (that is to say assuming that
delays are symmetric there is no indeterminacy left), in the net-
work case , this is not the case any more. To illustrate
this effect, suppose that all communication links are bilateral,
and hence the network topology is modeled by an undirected
graph , and link delays are not symmetric, but yet we
assume they are. Then the assumption results in additional
constraints which may exceed the number of the free parame-
ters , and one will be unable to choose symmetric delay
estimates that are consistent with the data. This has also been
observed in [12].

Remark 8.3: In [12], the special case where all clocks run at
the same speed, all links are bilateral, and there exists a span-
ning tree, is examined. If we denote the set of all directed cyclic
paths of the graph by , then by invoking causality, it is
shown in [12] that the delay vector lies in the intersection of
the positive orthant and the hyperplanes

(36)

The latter also follows immediately from (31). It is also shown
in [12] that all link delays can be expressed as known affine
functions of the delays of the links of a directed spanning
tree rooted at the reference node. This arises also as a plain
corollary of our analysis, since the affine mapping relating the
delays of the links of a directed spanning tree and the nodal
offsets is invertible. The latter, in conjunction with the sharp
characterization of the uncertainty set in Theorem 8, imply that
the uncertainty set for link delays is completely characterized
as the intersection of and the set in (36). However our
analysis does not require all links to be bidirectional, nor all
skews to be identical, nor does it depend on finding a spanning
tree. Most importantly, we have shown that the number of de-
grees of freedom is exactly equal to , thus fully charac-
terizing the uncertainty set for both offsets and delays, whereas
in [12] the set in (36) is only shown to be necessary but not suf-
ficient. Additionally, no constraints on the offsets are provided
in [12].

Remark 8.4 (Choosing an estimate in the offset feasible set):
Since the offsets cannot be exactly determined, one may be in-
terested in a min-max estimate. We pose the problem as one of
finding the smallest hyper-rectangle that contains the polyhe-
dron that characterizes the offset uncertainty set, with the esti-
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Fig. 3. Receiver-receiver synchronization.

mate then chosen as the center of the hyper-rectangle. This can
be obtained by solving the Linear Program

(37)

and estimating the offsets by for
, where denotes the -th component of the vector

, and denotes the -th component of the vector
. It would be of interest to obtain a distributed algorithm

to determine such .
Remark 8.5: The derivation of the uncertainty set naturally

generalizes to the case that multiple nodes are assumed to be
“synchronized” by letting , for all such clocks.
The case that a node has a “known” offset can be treated
analogously.

VII. RECEIVER-RECEIVER CLOCK SYNCHRONIZATION

In [8], a scheme called Reference Broadcast Synchronization
(RBS) is proposed where nodes broadcast packets that are re-
ceived by several receivers who then compare the times, ac-
cording to their own clocks, at which they received common
packets, in order to synchronize their clocks (see Fig. 3). In this
scheme, senders never time-stamp a packet, but they include a
packet identifier which receivers use to refer to packets when
comparing the receipt times. We will allow a sending node to
include in any packet, causal knowledge of all packet reception
times by any node, that it knows. We call this scheme as re-
ceiver-receiver synchronization.

Since less information is available, the estimation of all
unknown parameters skews, offsets, and delays remains im-
possible. However, it remains to check how ignorance of the
transmit times will alter the uncertainty set.

Theorem 9. (Skew Estimation in Receiver-Receiver Synchro-
nization): Consider a network topology and de-
fine an undirected “comparison” graph , where

is in if for some both and are
in . If is strongly connected and is connected then via
receiver-receiver communication, all skews can be determined
correctly.

Proof: Consider two nodes and which receive common
transmissions from some node, say (see Fig. 3). Then we get

(38)

(39)

where the transmit time is also an unknown, in addition to
, , , , , and . By considering two distinct sent times

and using these equations, the relative skew can
be computed as the ratio of the intervals of the corresponding
receipt times in the two receiving nodes as (see also Fig. 3),

(40)

Since provides a directed path for to send the denominator
of the RHS in (40) to , and for to send the numerator to ,
they can both determine the ratio. The rest of the proof follows
as in the sufficiency proof of Theorem 6.2.

It remains to examine the structure of the uncertainty set. The
following theorem shows the fundamental fact that receiver-re-
ceiver communication yields a strictly larger uncertainty set
than when transmit time-stamping is used, in that the uncertainty
set is the translate of a -dimensional subspace, rather
than the translate of an -dimensional subspace. Moreover,
causality does not help reduce the uncertainty set to a compact
subset.

Theorem 10. (Characterization of Uncertainty Set in Re-
ceiver-Receiver Synchronization): Consider a network of
nodes where all links are bidirectional and the network topology
satisfies the conditions of Theorem 9. Suppose receiver-receiver
synchronization is used. Then,

1) The uncertainty set is the translation of a -dimen-
sional subspace.

2) Causality does not help reduce the uncertainty set.
3) Round-trip delays cannot be estimated.

Proof: By Theorem 9 all skews can be determined
correctly. Also, since all links are bidirectional, it follows that all
nodes are transmitting packets. For a given transmitting node ,
all sent times are unknown. At each sending node,
fix one of the transmit times, say arbitrarily. Then the rest
(for ) can be uniquely determined by solving for in

(41)

This gives degrees of freedom, one for each node, in making
choices for estimates of transmit times. Once these degrees
of freedom are fixed, all sent times are known and the results
of Theorem 8 apply, and provide additional degrees of
freedom. Therefore 1) follows. To determine the affine transfor-
mation, define

(42)

and exploiting (38) we get

(43)
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This constitutes a solution for every choice of .
This is the set of all solutions, since the true solution does indeed
originate from a particular choice of transmit times. In fact, for
nodes, , and , receiving common packets, (38), (39) give

(44)

i.e., we have eliminated all unknown sent times. These equa-
tions, for all links , completely characterize the un-
certainty set, since for any solution they admit, a network solu-
tion can be obtained by properly determining the degrees of
freedom corresponding to sent times, through (42) and (38).

2) This is immediate from the fact that causality is equivalent
to the nonnegativity of delays. However, in (44) the delays ap-
pear in differences (44), so no sign constraint can be imposed
on these differences. Even though we have

(45)

can be made arbitrarily large by choosing in (42).8

3) This follows since the round-trip delay is equal
to , but the latter cannot be uniquely chosen.

Remark 10.1: Suppose all receiver delays are equal, i.e.,
for all for which node transmits to nodes

. Then from (44)

(46)

So the relative skew can be determined since
the quantities on the RHS are known. Schemes such as RBS
implicitly assume equality of delays. However, such equality
might not provide a network-wide consistent solution, since the
number of constraints to be enforced might be more than the
number of free parameters.

VIII. ANALYSIS OF STRUCTURED MODELS OF LINK DELAYS

We now study the case where link delay has additional struc-
ture. We obtain a sufficient condition for correctness of esti-
mates. We also provide an example where a correct estimate is
attainable, and one where it is not. Moreover, we demonstrate
a model where the uncertainty set of the delays is characterized
by only one or two degrees of freedom, in contradistinction to
the degrees of freedom in the general case. This is im-
portant since the number of the remaining degrees of freedom
is then constant, independent of the network size.

A decomposition of the packet delivery delays was first in-
troduced in [10]. We will suppose that the delay in the directed
communication pair , , consists of the sum of three
terms.

1) A transmission delay which accounts for the processing
time in the transmitter after time-stamping. This is assumed
to be fixed and transmitter-dependent. This includes, in the
terminology of [10], the “Send Time,” the time used to con-
struct the message at the application layer and transfer it
to the MAC layer on the transmitter side, as well as the

8Not all such bounds can be arbitrarily made large simultaneously, since the
number of links might be larger than the total degrees of freedom.

“Access Time,” the delay incurred waiting for access to
the transmit channel up to the point when transmission be-
gins, and the “Transmission Time,” the time it takes for the
sender to transmit the message bit by bit at the physical
layer.

2) An electromagnetic propagation delay which can be es-
timated correctly, say by GPS, or other position informa-
tion, since it only involves the distance between the nodes,
and is hence assumed known.

3) A receiving delay which accounts for the processing
time in the receiver before time-stamping. This is also as-
sumed to be fixed and receiver-dependent. This includes,
in the terminology of [10], the “Reception Time,” the time
taken in receiving the bits and at the physical layer, and
may include an overlap with Transmission Time, as well
as the “Receive Time,” the time it takes to reconstruct the
incoming bits into a packet and pass it to the application
layer where it is decoded.

To sum up, the model for the delay is

(47)

The important point is that by exploiting such a decomposition,
the number of unknowns for the delays reduces from

to in the case of a complete graph, since we need only
estimate the variables . Let us denote
their estimates by .

From (31), we see that the delay vector can be
expressed as an affine function of the offset vector ,
as follows:

(48)

(49)

where is used to denote the directed link for notational
convenience in the matrix representation, and is the vector
containing the values as given by (13), (14), (29).

However, from the structured model assumption for the de-
lays (47), we have

(50)
if or

(51)

(52)

The vector is a known vector with entries being the elec-
tromagnetic propagation delays . Notice
that the matrix is of full column rank . This is easy to
see by observing that the rows corresponding to the delays

form a
set of linearly independent vectors.

Substituting (50) into (48), we get

(53)

where is a known vector.
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Lemma 11. (Non-Uniqueness of Solution in the Structured
Delay Model): The solution for in (53) is not unique. Hence,
in general, the structured delay case is still unsolvable.

Proof: Adding small enough to all ’s and simul-
taneously subtracting the same value from all ’s leaves (53)
invariant.

More generally one may have other specific models for the
delay.

Lemma 12. (Necessary and Sufficient Condition for Unique-
ness of Solution in Structured Delay Models): Suppose all links
are bidirectional and all round-trip delays are strictly positive.
Suppose the delay vector satisfies an affine relationship

where are known, and has full rank. Then, there
exists a unique that satisfies both for some , as
well as , if and only if .

Proof: Substituting into (48) we have

(54)

where is a known vector.
Since has full rank, the matrix is square and non-

singular. Hence the pseudo-inverse of , defined by
exists, and satisfies , where denotes

the identity matrix. We then get

(55)

Now is known, and also has full rank. To verify the
latter, one can check that the rows corresponding to the delays

form a diagonal matrix with
strictly negative values .
Hence, is also of full rank. A unique solution exists
if and only if . The feasible set of the vector
of offset estimates, , is or, if causality is invoked, a
polyhedron. In both cases, these sets have nonempty interior,
i.e., full dimension . Thus, the condition
for all “feasible” vectors , reduces to , which is
equivalent to .

Example: Consider the case where there is an unknown affine
relation between the transmit and receive delay, i.e.,

for all nodes, where the parameters are unknown and
. For each fixed pair , we obtain a known affine

characterization of the asymmetry. Hence there exists a unique
solution by Theorem 4. As one ranges9 over various and
, one obtains an uncertainty set parametrized by two degrees

of freedom, namely .
An interesting special case is when . This corresponds

to the case where nodes run at a constant but unknown speed,
and transmitting and receiving delays are simply inversely
proportional to the speed of the processor at the node. In this
case, the uncertainty set is parametrized by a single degree of
freedom, .

IX. CONCLUSION

We have characterized what is fundamentally feasible and
infeasible in synchronizing clocks over wired or wireless net-

9Note that all values of � � � are feasible, but for given � , � is bounded above
by the fact that round-trip delays in bilateral links are known by estimation.

works. The main result is that the determination of the unknown
clock offsets, and the link delays is, in general, impossible,
though the skews can be determined correctly. We have also
characterized the uncertainty set. The delays can be estimated
up to one unknown offset for each node except the reference
node, with these nodal offsets being indeterminable parame-
ters. Invoking causality, the offset vector lies in a completely
characterized polyhedron. We also have provided necessary
and sufficient conditions on the network topology for this poly-
hedron to be compact and have a nonempty interior. If there
is a known asymmetry in the delays that can be affinely char-
acterized, a unique solution exists. Despite the uncertainty in
offset and delay, a sender can predict exactly the time its packet
will be received, as measured by the receiver’s clock. For the
problem of receiver-receiver synchronization, the nodal skews
can still be determined correctly but only delay differences
between neighboring communication links with a common
sender can be expressed affinely with respect to the
unknown offsets. Causality does not reduce the uncertainty set
which remains unbounded. Last, we have studied the special
case where the link delays have structure in terms of transmit
and receipt delays plus known electromagnetic propagation
times, and provided sufficient conditions for uniqueness of
solution.
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