
Lab 1: Setup and Introduction January 2025

NOTE: Hand-in instructions are at the end of this document. It is very important you follow these
instructions. Failure to do so might result in receiving 0 on this lab.

DUE: Februay 14, 2025 9:00pm ET

Dependencies and Installation

We begin by talking about dependencies required to do the lab, and setting your computer up for
this.

Git

We use Github and Git for this class. Even bootstrapping for this class requires Git. While we assume
you have sufficient exposure to Git, the following links might come in handy:

• Eddie Kohler’s guide to Git Github Guides: Hello World
• Github Guides: Git Handbook

Installing Elixir

We will be using Elixir in this lab. You can set up Elixir on your computer if you desire. To do so please
follow the instructions on the Elixir website. If you go this route, you are responsible for figuring out
how installation works. Please make sure you have Erlang/OTP 23 and Elixir version 1.10.4
installed. In particular, this means that when installing on Debian or Ubuntu you should use the Erlang
solutions repository as suggested on the Elixir webpage. (If that last sentence makes no sense to you,
and you use neither Ubuntu nor Debian nor a derivative, then don’t worry about it. Computers can
be needlessly complicated at times, and this bit is not important for anything we will talk about in
class.)

On Editors

We expect you already have a favorite editor, and recommend you use that. Elixir has plugins for almost
every editor, and you can find them using Google. I (Panda) use a combination of Vim and Emacs
configured to act like vim. I am not sure why I made these choices, and feel people should make their
own choices on this matter.

However, if you are looking for a recommendation, I found that VSCode with the vscode-elixir plu-
gin seems to work well, and given the popularity of VSCode that is what I would recommend for
simplicity.

You do not need to install VSCode within the VM, instead you can install it locally and then follow the
steps in this blog post to connect VSCode to the VM. Remember that you need to explicitly enable
vscode-elixir after you connect to the VM using the SSH plugin.

Distributed System Instructors 1

https://cs61.seas.harvard.edu/site/ref/git/
https://guides.github.com/activities/hello-world/
https://guides.github.com/introduction/git-handbook/
https://elixir-lang.org/install.html
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=mjmcloug.vscode-elixir
https://medium.com/@lopezgand/connect-visual-studio-code-with-vagrant-in-your-local-machine-24903fb4a9de

Lab 1: Setup and Introduction January 2025

Getting started with Elixir

Elixir is a functional, actor based language that runs on the Erlang virtual machine (BEAM). We chose
it for this class since the programming model closely resembles the process based description and
model used in much of the readings in the class. That said, we expect that it will take a bit of effort to
get used to this language, and the first lab is designed to help with this.

To start with, you should work through the first 9 sections of the Elixir Getting Started guide, that is
from Introduction – Recursion. You don’t need to go through any of the rest. You should not using any
of the OTP for this class. What follows assumes you have already read through the first 9 sections of
the getting started guide.

Once you are done, you are ready to work on the lab.

Getting the Lab

We are using Github classroom to distribute labs throughout this semester. To create a repository for
Lab 1 go to the URL https://classroom.github.com/a/8fd82hTz after logging into Github. This will
present a button you can use to accept the assignment, which in turn will create a repository for you
under the nyu-distributed-systems.

For example, my Github username is apanda, and going to that website allowed me to create a repos-
itory at https://github.com/nyu-distributed-systems/sp25-lab1-apanda. Your
repository is private by default, and is only accessible to you, and the teaching staff. Please do not
attempt to change this.

The Lab Itself

The project description that follows, while correct, is better presented in the Markdown README
included with the template code. We suggest switching to that version now.

The links in this instruction are to pages rather than within pages. This is due to some issues with URL
encoding in the Markdown tool (Pandoc) used when generating this document. The README file in the
Lab template is both easier to read and more authoritative. We recommend using that file rather then
the PDF. However at present both have identical content.

• You should work through the first 9 sections of the Elixir Getting Started guide, that is from
Introduction – Recursion. You don’t need to go through any of the rest. You should not using
any of the OTP for this class. What follows assumes you have already read through the first 9
sections of the getting started guide.

• Create the repository using Github classroom and clone it either on your computer or the VM
you set up. You need to clone it wherever you installed Elixir.

• You need to first install all the project dependencies. To do so run the following command from
the repository root:

Distributed System Instructors 2

https://elixir-lang.org/getting-started/introduction.html
https://classroom.github.com/a/8fd82hTz
https://github.com/nyu-distributed-systems/fa20-lab1-code
https://elixir-lang.org/getting-started/introduction.html

Lab 1: Setup and Introduction January 2025

1 > mix deps.get
2 > mix

This process might take a bit of time (several seconds) as the code gets built. You should also see
several warnings: as you work on the project these warnings will disappear.

• Test to make sure things look correct. Again from the project root run

1 > mix test

You should get output of the following form:

“‘

==> emulation

Finished in 0.2 seconds 5 tests, 0 failures

Randomized with seed 567507 ==> lab1

LossfreeCounterTests

• test check that repeated gets work work (0.00ms)

1) test check that repeated gets work work (LossfreeCounterTests) apps/lab1/test/lossfree_counter_test.exs:38
(EXIT from #PID<0.325.0>) an exception was raised: (RuntimeError) Not implemented
(lab1 0.1.0) lib/intro_lab.ex:63: IntroLab.lossfree_counter/1

• test Check that decrements work (0.00ms)

2) test Check that decrements work (LossfreeCounterTests) apps/lab1/test/lossfree_counter_test.exs:70
(EXIT from #PID<0.336.0>) an exception was raised: (RuntimeError) Not implemented
(lab1 0.1.0) lib/intro_lab.ex:67: IntroLab.lossfree_counter/1

• test check that increments work (0.00ms) . . .

“‘

Again, you will fix these tests as you work through the lab.

• You are now ready to work on the lab. All of the code you need to edit is in apps/lab1/lib/
intro_lab.ex. Open this in your favorite editor.

Looking through the code

• When you open apps/lab1/lib/intro_lab.ex the first line defines a new module called
IntroLab. In Elixir (and Erlang) modules are a unit of organizing code and can consist of
functions, macros and other things.

• The next line (import Emulation, only: [...]) loads the Emulation layer used by this
class. All of the labs will include such a line, we overwrite the default Elixir implementation of
spawn/2 and send/2 to inject failures and delays.

Distributed System Instructors 3

https://github.com/nyu-distributed-systems/fa20-lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L1
https://github.com/nyu-distributed-systems/fa20-lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L4

Lab 1: Setup and Introduction January 2025

An aside on how functions in Elixir are specified: spawn/2means that we are talking about
a function named spawn that accepts 2 arguments. This might of course be distinct from
spawn/3which is a function of the same name which accepts 3 arguments.

• The next line import Kernel, except... is the next part of emulation setup, it makes
sure that we do not import any of the spawn functions or the send function defined by Elixir
itself.

All of the Labs in this class will include the previous two lines. This is what allows us to emulate
an asynchronous network on a single host.

• You can now skip ahead to the line with @moduledoc. @moduledoc is provided a string that
documents the module you are looking at. You should read through the moduledoc for any
template code we provide since they include instructions on how to work through the lab.

Your First Distributed System: A Counter

Learning Objectives

The main things you need to learn from this part of the lab is

• Recursion and how state works in Elixir.
• Running and testing code.
• Build your first distributed system.

Desired Semantics

You are going to construct an integer counter process which works as follows:

• When the process starts it initialize an integer referred to as the counter from here on with the
value 0.

• When the process receives a message :increment it increases the counter value by 1.
• When the process receives a message :decrement it decreases the counter by 1.
• When the process receives a message:get it sends the sender a response with the current value

of the counter.

CodeWalk Through

In Elixir it is common to use atoms as a way to decide what a message should do. Most Elixir code
explicitly writes out the atoms, and constants are rare. However. pedagogically (and for testing)
assigning simple constants to atoms makes things a bit easier. In our code we will often abuse Elixir’s
macro mechanisms to construct such constants. This section includes three:

• @inc which maps to :increment

Distributed System Instructors 4

https://github.com/nyu-distributed-systems/fa20-lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L15
https://elixir-lang.org/getting-started/basic-types.html
https://github.com/nyu-distributed-systems/fa20-lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L32

Lab 1: Setup and Introduction January 2025

• @dec which maps to :decrement
• @get which maps to :get

The logic executed by the counter process (we will return to the question of how this process is created
shortly) is specified by the lossfree_counter/0 function. Let us look at a few things above this
function:

• First note that this function is exported, i.e., it can be called from outside the module. This is
because we use def lossfree_counter to define this function. See Modules and function
in the Elixir tutorial if this seems strange. You should neither remove nor change the function
signature for any exported functions in this class. Such functions are considered a part of the
interface exposed and should not be changed.

• Since this is a public (exported) function we can provide documentation about it. This is done
using the @doc string above. You should write such documentation for your own code too,
recording anything you would want your future self to remember if you need to change the code
in the future. If you want to read the documentation in a formatted manner do the following:
“‘

Go to the apps/lab1 directory

mix docs # This will build your docs

Now if you go to build/index.html you will have you

1 # code laid out in pretty HTML.

1
2 * We also specify the arguments and return value of the function using

the
3 [`@spec`](https://github.com/nyu-distributed-systems/fa20-lab1-code/

blob/master/apps/lab1/lib/intro_lab.ex#L43) line. Elixir does not
enforce the `@spec` line but there is

4 tooling which can use this for analysis. It is also used by the
documentation

5 tool to determine what your function accepts, etc. In this case the `
@spec`

6 line says that the function takes no arguments, and never returns (`
no_return()`).

7 See the [documentation](https://hexdocs.pm/elixir/typespecs.html) for
other

8 specs.
9 * Observe that all the function does is call [`lossfree_counter/1`](

https://github.com/nyu-distributed-systems/fa20-lab1-code/blob/
master/apps/lab1/lib/intro_lab.ex#L45) with 0

Distributed System Instructors 5

https://github.com/nyu-distributed-systems/fa20-lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L33
https://github.com/nyu-distributed-systems/fa20-lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L34
https://github.com/nyu-distributed-systems/fa20-lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L44
https://elixir-lang.org/getting-started/modules-and-functions.html
https://github.com/nyu-distributed-systems/fa20-lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L36

Lab 1: Setup and Introduction January 2025

10 as an argument. This is a very common pattern in Elixir and other
functional

11 languages, where function arguments and recursion is used to store and
update

12 state.
13
14 > Statements such as `a = 5` or function arguments such as `x` in `def

add(x)`
15 > do not define "variables" in functional languages. The statement `a =

5` just
16 > says that the compiler can replace occurrences of `a` in the next

statements
17 > (within the same scope and until another statement such as `a = 2`

occurs) with
18 > `5`. Similarly, within the body of `def add(x)` occurrences of `x`

can be
19 > replaced by the argument. This is close to, but not the same as,

constants in
20 > other languages. This seems to trip people up when starting. The

technical
21 > difference is that as opposed to many languages, things like `a` and

`x`
22 > in functional languages do not refer to locations in memory but

instead to
23 > values. You should be careful with this difference as you work

through the
24 > labs.
25
26 We will skip `lossfree_counter/1`, which is the function you need to

fill out for
27 the moment, and return to it in a little. Let us instead look at
28 [`test_lossfree_counter/0`](https://github.com/nyu-distributed-systems/

fa20-lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L71) which
shows a case where we use the counter process.

29 Let us look more closely at this function:
30
31 * First, please do not change any functions named `test_*` in the lab

template code.
32 We provide these functions to show you how things are meant to be used.

You are
33 **encouraged** to write additional functions of this form if you want,

just do not
34 modify the ones we provide.
35 * The function [starts](https://github.com/nyu-distributed-systems/fa20

-lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L72) by calling
the `init/0` function in the `Emulation` module.

36 This is the [emulation module](https://cs.nyu.edu/~apanda/classes/fa20/
emdocs/Emulation.html)

37 used by the class. You should read its [documentation](https://cs.nyu.
edu/~apanda/classes/fa20/emdocs/Emulation.html)

38 if you want to learn more about the module.

Distributed System Instructors 6

Lab 1: Setup and Introduction January 2025

39 * [Next](https://github.com/nyu-distributed-systems/fa20-lab1-code/blob
/master/apps/lab1/lib/intro_lab.ex#L74) the function [spawns](https
://cs.nyu.edu/~apanda/classes/fa20/emdocs/Emulation.html)

40 a **process** named `:counter`. The `:counter` function executes
41 `lossfree_counter/0`, which we talked about above. The syntax `&

lossfree_counter/0`
42 is used in Elixir to pass the function (rather than its result) as an

argument to
43 the `spawn` call.
44 * [Next](https://github.com/nyu-distributed-systems/fa20-lab1-code/blob

/master/apps/lab1/lib/intro_lab.ex#L75) we use [`send/2`](https://cs
.nyu.edu/~apanda/classes/fa20/emdocs/Emulation.html)

45 to send messages to the `:counter` process started above.
46 * Once we send the `@get` message, we use [`receive`](https://elixir-

lang.org/getting-started/processes.html)
47 to receive a response with the current value of the counter, and

return true or
48 false depending on whether it is 0 or not.
49
50 > *Note 1:* As we will see shortly `receive` works differently

depending on whether
51 > it is executed within the emulation environment or not. Code

executed within the
52 > emulation environment must be called a function running in a `spawn`

ed process.
53 > Anything else is running outside the emulation environment.
54
55 > *Note 2:* As is common in most functional (and even many imperative)

languages,
56 > Elixir functions return the result of the last statement executed by

a function.
57 > As we will discuss next, `after` is a special form, and hence the

last real
58 > statement executed in this case is `v == 0`, which is what is

returned by the
59 > function.
60
61 * Function execution can fail for a variety of reasons in Elixir. The `

after`
62 statement is a way to ensure that some code is always run, regardless

of
63 whether the function completes correctly or not. This is similar to

the `finally`
64 clause in many other languages. In this function we call
65 [`Emulation.terminate/0`](https://cs.nyu.edu/~apanda/classes/fa20/

emdocs/Emulation.html)
66 which clears up emulation state. As we note above statements executed

in the
67 `after` clause act as if they were run **after** the function was done

executing,
68 and do not alter the return value.

Distributed System Instructors 7

Lab 1: Setup and Introduction January 2025

69
70 Now that we have seen this function, let us try running it to see what

happens. To do this, go to `apps/lab1` and:

mix run -e ‘IntroLab.test_lossfree_counter()’

1
2 This should produce output similar to:

(EXIT from #PID<0.94.0>) an exception was raised: (RuntimeError) Not implemented (lab1 0.1.0)
lib/intro_lab.ex:54: IntroLab.lossfree_counter/1

1
2 OK, so we need to implement things to fix this.
3
4 In the above, `mix run -e` takes an Elixir **expression** and executes

it in the
5 current application. For example:

mix run -e ‘IO.puts(1 + 1)’ 2

1
2 In the snippet above we had `mix run -e` compute and then print (using
3 [`IO.puts`](https://hexdocs.pm/elixir/IO.html)) the result of adding 1

and 1.
4
5 Elixir also offers an interactive REPL (read-eval-print-loop) that you
6 can use for running and testing things. To use the REPL run:

iex -S mix Erlang/OTP 23 [erts-11.0.2] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1]
[hipe] [dtrace]

Interactive Elixir (1.10.4) - press Ctrl+C to exit (type h() ENTER for help) iex(1)> IntroLab.test_lossfree_counter()
(EXIT from #PID<0.215.0>) shell process exited with reason: an exception was raised: (Run-
timeError) Not implemented (lab1 0.1.0) lib/intro_lab.ex:54: IntroLab.lossfree_counter/1
Interactive Elixir (1.10.4) - press Ctrl+C to exit (type h() ENTER for help) iex(1)> 13:33:55.816 [error]
Process #PID<0.223.0> raised an exception ** (RuntimeError) Not implemented (lab1 0.1.0) lib/in-
tro_lab.ex:54: IntroLab.lossfree_counter/1
nil iex(2)>

1
2 ## Implementing the Code
3
4 Now we can turn to implementing your code, and completing this task. To

do so
5 you will need to add code to [`lossfree_counter/1`](https://github.com/

nyu-distributed-systems/fa20-lab1-code/blob/master/apps/lab1/lib/
intro_lab.ex#L49), which (from above) is called

Distributed System Instructors 8

Lab 1: Setup and Introduction January 2025

6 by `lossfree_counter/0`. In this function observe that:
7
8 * There is no `@doc` string, this is because it is a private (`defp`)
9 function, and Elixir does not allow `@doc` strings.

10 * We begin by waiting to `receive` a message using [`receive do`](https
://github.com/nyu-distributed-systems/fa20-lab1-code/blob/master/
apps/lab1/lib/intro_lab.ex#L50).

11 * We then determine what type of message we have received.
12 > As we noted above, `receive` within an emulated process behaves

differently
13 > from the outside. Inside a process, all messages received are

tuples of the
14 > form `{sender, message}`. This is because in Panda's experience,

you end up
15 > almost always wanting the `sender`, and rather than have each of

you struggle
16 > through this adding it in the framework was easier.
17 * For the `@inc` and `@dec` messages we match on `{_, @inc}` and `{_,

@dec}`. The
18 `_` in this case indicates that the code **does not** use the sender.

From the spec
19 above, we don't send messages for `@inc` and `@dec`.
20 * In the code for `@inc` you can see that we [`raise`](https://elixir-

lang.org/getting-started/try-catch-and-rescue.html)
21 a `Not implemented` error, which is indeed what you ran into above. *

You should
22 replace this `raise` with your code.
23 * To see how this might work look at the `@get` code, which does not

change the
24 counter but sends its current value and [recurses](https://github.com

/nyu-distributed-systems/fa20-lab1-code/blob/master/apps/lab1/lib/
intro_lab.ex#L62) so

25 the function continues running. In the `@inc` and `@dec` case you
should not

26 send a message, but should recurse after changing the value
appropriately.

27
28 ### Print debugging
29
30 We are just briefly going to consider how you might debug a problem.

For example
31 consider the case where you want to print the value sent by `@get` and

its receiver.
32 To do so you can change the `{sender, @get}` branch to add the

following code anywhere
33 **before** the recursive call to `lossfree_counter/1`:

IO.puts(“Sending #{inspect(sender)} value #{current}”)

1
2 There are several things to consider in this line:

Distributed System Instructors 9

Lab 1: Setup and Introduction January 2025

3
4 * `IO.puts`, as we noted above, prints to standard out.
5 * Elixir strings support [interpolation](https://hexdocs.pm/elixir/

String.html).
6 What this means is that anything that appears within `#{}` in a

string is treated
7 as code which is executed and its return value is inserted into that

part of the
8 string. For example, `#{current}` above inserts the value of `current

` at that
9 location in the string.

10 * When performing string interpolation, Elixir needs to convert values
to

11 strings. Some things, e.g., process IDs do not come with a way to do
this.

12 [`inspect/2`](https://hexdocs.pm/elixir/Kernel.html) is a debugging
13 method that works around this. When in doubt you should use **inspect

**.
14
15 You should try using `IO.puts` in your lab, but you should **remove it

** before you
16 hand your code in. In general, you should minimize the amount of

debugging output
17 you send to us.
18
19 ### Testing this part
20
21 We provide you with tests to check the correctness of your labs. You

can run
22 tests for the entire lab by going to `apps/lab1` and running

mix test

1
2 However, this tests all parts of the lab, and it might be hard for you

to discern
3 whether just the counter portion is correct or not. To help with this

we have split
4 the test code so you can test each portion independently. To test just

the counter
5 run:

mix test test/lossfree_counter_test.exs

1
2 At present there are four tests in that file, if you can pass all 4 you

should
3 be in good shape on this part of the lab.
4

Distributed System Instructors 10

Lab 1: Setup and Introduction January 2025

5 > About testing: We will provide you some tests for all of the labs.
However, you

6 > should not assume that our tests are sufficient. This is for two
reasons: one,

7 > we withhold some tests from you so you cannot overfit your solution
to our tests;

8 > second, the risks for your implementation (and hence what should be
tested) are

9 > something you understand better than we do. As a result you should
think of our

10 > tests as something necessary for correctness, but not **sufficient**.
You can (and

11 > should) add your own tests. You should edit `test/
lossfree_counter_test.exs` to see

12 > how. Please **submit** any additional tests you add.
13
14 ### Code formatting and Linting
15
16 Formatting your code is useful for readability, and might even help you

identify
17 bugs quicker. All labs are set up to provide you tools for automatic

formatting. To
18 do so go to `apps/lab1` and run

mix format

1
2 We also support a linter that can help you both find all TODO's and

find any code
3 problems. **We strongly recommend using the linter periodically** and

fixing all
4 linting bugs before submission. To run the linter go to `apps/lab1` and

run:

mix credo –strict

1
2 # Part 2: Build a Distributed Protocol for Reliable Message Delivery
3
4 The instructions and description are less detailed for this part. We

assume
5 you will use the skills acquired from the previous part to understand

and work on
6 this part of the lab. Reading the code in `intro_lab.ex` is of course

very useful.
7
8 ## Learning Objectives
9

10 The main things you need to learn from this part of the lab is
11

Distributed System Instructors 11

Lab 1: Setup and Introduction January 2025

12 * How to deal with message losses.
13 * How to use timers.
14 * How drop probability impacts the number of times messages have to be

resent.
15
16 ## Desired Semantics
17
18 In this part of the lab you need to build functions for sending
19 ([`reliable_send`](https://github.com/nyu-distributed-systems/fa20-lab1

-code/blob/master/apps/lab1/lib/intro_lab.ex#L106))
20 and receiving ([`reliable_receive`](https://github.com/nyu-distributed-

systems/fa20-lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L120))
21 messages over an asynchronous network, i.e., one that can randomly

delay or drops messages.
22
23 In building this you should try to limit the number of messages you

send, specifically:
24
25 * `reliable_send` should wait between resending messages, in case its

previous attempt
26 to send a message succeeds. We inject delays into messages, and this

can result in
27 situations where signals from the receiver can be delayed.
28 In the code [`@send_timeout`](https://github.com/nyu-distributed-

systems/fa20-lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L88)
29 represents time in milliseconds that we think you should wait between

resends.
30 * `reliable_receive` should signal the sender when a message is

received.
31 * `reliable_send` should **not** resend any messages after the sender

receives the signal from
32 the receiver.
33 * `reliable_send` takes a timeout parameter, and it should stop trying

to send the message
34 once this timeout has expired.
35 * `reliable_receive` should have the same return as `receive`, i.e., it

should return
36 a tuple of the form `{sender, message}`.
37
38 Additional, `reliable_send` should either return the number of resend

attempts it had to make
39 before being signaled by the receiver, or the atom `:notok` if the send

timed out.
40
41 > Some of you might be inclined to build in fancy retry logic. It is

not necessary
42 > in this case, and I recommend going with the simplest possible

strategy.
43
44 ## Setting alarms
45

Distributed System Instructors 12

Lab 1: Setup and Introduction January 2025

46 The semantics above require receiving timeouts. The emulation
environment provides a call for

47 setting timers, [`Emulation.timer/1`](https://cs.nyu.edu/~apanda/
classes/fa20/emdocs/Emulation.html),

48 that can be used to set a timer. You can cancel a previously set timer
using the

49 [`Emulation.cancel_timer/1`](https://cs.nyu.edu/~apanda/classes/fa20/
emdocs/Emulation.html)

50 call. Below we show how you might use both:

defp timer_test do t = Emulation.timer(10) receive do :timer -> # Observe no sender here, because the
message is from inside. IO.puts(“Timer went off”) {sender, m} -> IO.puts(“Sender #{inspect(sender)}
sent message #{inspect(m)} before timer”) case cancel(t) do false -> IO.puts(“Timer has already gone
off, and there is a :timer msg waiting”) n -> IO.puts(“#{n} ms remains on the timer”) end end end

spawn(:timer_proc, timer_test)

1
2 You need to use this in your implementation.
3
4 ## Nonce
5
6 Observe that the `reliable_send` function accepts a `nonce` as an

argument. You
7 might wonder about why?
8
9 Observe that a sender might resend a message **after**

10 the receiver has sent its response. In this case, if the sender calls
11 `reliable_send` a second time, it needs to be careful in associating

acknowledgments
12 with particular messages.
13
14 The nonce gives you a way to do this: we guarantee that callers will

supply
15 a unique nonce message. You should use the nonce to handle the case

described above.
16
17 ## Emulating Asynchronous Networks
18
19 The function [`test_reliable_send_and_receive`](https://github.com/nyu-

distributed-systems/fa20-lab1-code/blob/master/apps/lab1/lib/
intro_lab.ex#L152)

20 (which you can execute by calling `mix run -e 'IntroLab.
test_reliable_send_and_receive'` sets up an asynchronous

21 network to test your code. The operative line that does this is:
22 [`Emulation.append_fuzzers([Fuzzers.drop(0.2), Fuzzers.delay(10.0)])`](

https://github.com/nyu-distributed-systems/fa20-lab1-code/blob/
master/apps/lab1/lib/intro_lab.ex#L157).

23
24 Fuzzing is a testing technique that we adopt here for your labs, the

emulation environment is designed to allow different

Distributed System Instructors 13

Lab 1: Setup and Introduction January 2025

25 types of fuzzing (and a few other features we might use later). In this
case we set the environment up so that packets have

26 a 20% chance of being dropped, and experience a mean delay of 10ms. We
use an exponential distribution for delays. This is

27 a pretty bad network to be operating in.
28
29 ## Anonymous functions and closures
30
31 The `test_reliable_send_and_receive` function also shows an
32 [example](https://github.com/nyu-distributed-systems/fa20-lab1-code/

blob/master/apps/lab1/lib/intro_lab.ex#L160)
33 where we use an anonymous function created with `fn`. You are going to

repeatedly
34 use this pattern: `spawn/2` expects a 0-arity function (i.e., one that

takes no
35 arguments). If you want to run a more complex function you need to

create one using
36 `fn`. Anonymous functions in Elixir are closure, specifically this

means that in the
37 `fn` body all names have the bindings they had when the `fn` was

created. You should
38 play around with `fn`'s to understand how they work.
39
40 ## Measuring the impact of drops on performance
41
42 We have also provided a function
43 [`measure_pings_at_drop_rate/2`](https://github.com/nyu-distributed-

systems/fa20-lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L224)
that

44 can be used to measure the number of retries it takes to get a packet
across

45 as you change the probability of dropping a packet. The function
46 [`test_measure_pings/0`](https://github.com/nyu-distributed-systems/

fa20-lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L244)
47 shows you how this can be used.
48
49 **REQUIRED WORK:** As a part of your handin, modify `apps/lab1/README.

md` to report the
50 median number of retries (for 100 trials) when the drop probability is:
51
52 * 0.001 (i.e., 0.1%)
53 * 0.005 (i.e., 0.5%)
54 * 0.01 (i.e, 1%)
55 * 0.05 (i.e., 5%)
56 * 0.1 (i.e., 10%)
57 * 0.2 (i.e., 20%)
58 * 0.5 (i.e., 50%)
59
60 Also report any conclusions you can draw from these observations.
61
62 ## Testing

Distributed System Instructors 14

Lab 1: Setup and Introduction January 2025

63
64 The unit tests for this portion of the lab are contained in `test/

reliable_test.exs` and can be run by calling

mix test test/reliable_test.exs

1
2 # Part 3: Combining the previous two parts to build a Key Value Store
3
4 The final portion of this uses the `reliable_send` and `

reliable_receive` functions
5 you developed previously to create a key-value store. This is a hashmap

(or a
6 dictionary) accessible over a network. Key-value stores such as Redis

and Cassandra
7 are widely used in practice, and here you are going to construct a

relatively simple
8 one.
9

10 ## Learning Goals
11
12 * Use the reliable send and receive protocol to build an application.
13 * Learn how to use maps in Elixir.
14
15 ## Desired Semantics
16
17 Complete the key-value store in
18 [`reliable_kv_server/2`](https://github.com/nyu-distributed-systems/

fa20-lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L259)
19 so that a process spawned with this function:
20
21 * Maintains a hashmap in the `state` argument to `reliable_kv_server

/2`.
22 * Uses the `count` argument as a nonce when using `reliable_send`.

Remember that in
23 order to do so you must increment `count` every time you use `

reliable_send`.
24 * When it receives a `{@set, key, value}` message, it updates the `

state` hashmap
25 so that `key` is associated with `value`.
26 * Responds to `{@get, key}` messages by sending the sender a tuple of

the form
27 `{key, value}` where `value` is the current value associated with key

`key`. If
28 no such value exists, return `{key, nil}`.
29
30 You should reuse `reliable_send` and `reliable_receive` when working on

this part.
31
32 ## Maps in Elixir
33

Distributed System Instructors 15

Lab 1: Setup and Introduction January 2025

34 Completing this part of the project requires that you use Elixir's
35 [Map](https://hexdocs.pm/elixir/Map.html). We are going to end up using

this
36 in future projects, so it is good to gain some familiarity.
37
38 The stencil code already constructs new Map for you in
39 [reliable_kv_server/0](https://github.com/nyu-distributed-systems/fa20-

lab1-code/blob/master/apps/lab1/lib/intro_lab.ex#L255)
40 where `%{}` is used to create a new map.
41
42 For this project you only need to use two functions from Map:
43
44 * [`Map.put`](https://hexdocs.pm/elixir/Map.html) which take a map,
45 a key, and a value; and returns a map which is identical to the input

except
46 that the supplied `key` is associated with the value.
47 * [`Map.get`](https://hexdocs.pm/elixir/Map.html) which takes a map and
48 a key, and returns either the value associated with the key or `nil`

if no such
49 key is in the map.
50
51 > Now is a good time to talk about arguments that look like `default

\\ nil`
52 > which appears in the documentation for `Map.get/3`. The `\\ nil`

bit here
53 > means that this argument is optional, and if it is not supplied the

runtime uses
54 > `nil` instead.
55
56 You should read through the documentation. Knowing more about maps will

be useful in
57 the future.
58
59 ## Testing
60
61 If you want to test just this portion of the lab use

mix test test/kv_store_test.exs

1
2 If you have been doing things in order, at this point you can use:

mix test

“‘

Which will run all tests. You should ensure that all tests pass before handing in your work.

Distributed System Instructors 16

Lab 1: Setup and Introduction January 2025

Handing In

WARNING PLEASE READ THESE INSTRUCTIONS CAREFULLY. YOU MAY RECEIVE A 0 (ZERO) IF YOU DO
NOT, EVEN IF YOU COMPLETE EVERYTHING THUS FAR.

To handin this assignment:

• First make sure mix test shows that you pass all tests. If not be aware that you will loose
points.

• Second, make sure you have updated apps/lab1/README.md. This requires entering re-
sults from Part 2 of the assignment, filling in identifying information, agreeing to the course
collaboration policy, and citing your sources.

• Commit and push all your changes.
• Use git rev-parse --short HEAD to get a commit hash for your changes.
• Fill out the submission form with all of the information requested.

We will be using information in the submission form to grade your lab, determine late days, etc. It is
therefore crucial that you fill this out correctly.

Distributed System Instructors 17

https://forms.gle/XE7b6v8SHv6iG1CJ6

	Dependencies and Installation
	Git
	Installing Elixir
	On Editors
	Getting started with Elixir

	Getting the Lab
	The Lab Itself
	Looking through the code
	Your First Distributed System: A Counter
	Learning Objectives
	Desired Semantics
	Code Walk Through

	Go to the apps/lab1 directory
	Now if you go to build/index.html you will have you
	Handing In

