
Linearizability

Aurojit Panda

1 Plan

1.1 ADT and reasoning about correctness

1.2 Linearizability

1.3 Seq Consistency

1.4 Locality

1.5 Non-blocking

1.6 Composing linearizable structures

1.7 CAP theorem

1.8 Consequences of CAP

2 Abstract data types and reasoning about correct-
ness under concurrency

Much of this is a repeat of the end of last week, though more formally.

2.1 Abstract data types

Consistency only makes sense w.r.t. operations that apply to something.
How to model this in general? We are going to use ADTs: abstract objects
that come equipped with a set of operations. For example queues with
enqueue and dequeue, or stacks with push and pop.

2.2 Histories

Traces where events are requests and responses from the object. Note this
neatly fits into our model.

1

Why differentiate between requests and responses? Mostly so we can
identify and precisely define concurrent processes.

2.2.1 Sequential

Each request is followed by a response: no concurrent operations.

2.2.2 Well-formed: Sequential at each process

Assume that a single process has a single outstanding request at a time.
Another way to look at this is that the process blocks after making a request,
roughly equivalent to:

send(. . .) # Make request

receive do # Wait for response.
. . .
end

2.2.3 Complete

History H is complete iff all invocations appearing in H have a corresponding
response event in H. Given H can drop invocations without responses to
get a complete history complete(H)

2.2.4 Prefix-closure and sequential specification

What does this look like for a queue?

2.2.5 Operation partial order

Operations in H induce a partial order: for two operations e0 and e1 define
e0 <H e1 if res(e0) precedes inv(e1) in H.

3 Linearizability

History H is linearizable if it can be extended to H ′ so that

• L1: complete(H ′) is equivalent to some legal sequential history S

• L2 <H⊆<S

Digging into L1 and L2:

2

• When is complete(H) insufficient? Why do we need to extend to H ′?

• What does it mean for <H⊆<S?

3.1 Examples and computing possible schedules

Taking histories from the paper. See lecture video.

4 Sequential Consistency

4.1 Why?

Makes it easier to discuss properties like locality if we can discuss what it
means to not meet that property.

4.2 What?

Another consistency level: given history H can extend it to get H ′ such that
complete(H ′) is equivalent to legal sequential history S such that:

• For all processes p, H ′|p = S|p.

Put another way: S provides a total order that preserves process order.
Weaker than linearizability; what does that mean? All linearizable his-

tories are sequentially consistent, but not the other way round. How to see
this?

5 Locality

5.1 Definition

History H is linearizable iff H|x linearizable for all objects x that appear in
x.

Does not hold for sequential consistency.

5.2 Examples

See lecture video/scribble board.

3

5.3 Proof

Steps: Given:

• history H

• set of objects X.

• H|x∀x ∈ X is linearizable, which equivalently gives us <x ∀x ∈ X a
total order over all events in H|x. Why is <x a total order? Well if
H|x is linearizable, it is equivalent to some sequential history S which
provides a total order over operations in H|x, since sequential history
means no concurrent operations. Additionally, by definition (L2) we
know that <H|x⊆<S . We use <x to refer to <S in this case. We also
get some set of additional events Rx that we have to add to H|x to
arrive at S.

• Construct a new extension H ′ = H
⋃

x∈X Rx by combining all

extentions.

• Compute < over complete(H ′) such that <⊆<H and <⊆<x. How?
Take the union of <H and all <x and compute the transitive closure.
Now need to show that < is a partial order: show that there do not
exist e1, e2, . . . , en such that e1 < e2 < e3 < . . . < en and en < e1.
How:

1. Argue that if e1 is an event on object x, then at least one of
e2, . . . , en must be an event for another object x′. Why?
Assume this is not the case. We know that <⊆<x, <⊆<H , and
<x is a total order. This must mean that ei−1 <x ei while ei <H

ei−1. Since both events are for the same object x, this also means
ei <H|x ei−1. This however contradicts the fact that <H|x⊆<x.
Hence, any cycle must involve at least two objects.

2. Now pick the smallest cycle e1, e2, . . . en such that e1 and e2 are
events for different objects.
First, we will show for this cycle that e1 and en are events
on different objects, Do so by showing a stronger thing: if
e1 is an event on object x then none of e2, . . . en are events on
object x. How? Assume that event ei is the first event after
e1 on object x. By construction i ̸= 2. We know ei−1 and
ei act on different objects (since otherwise both act on x, and

4

we should be thinking about ei−1). This means they are or-
dered by <H , which in turn means response(ei−1) happens be-
fore inv(ei). Furthermore, since e2 < ei−1 we know that at least
inv(e2) happens before response(ei−1) otherwise e2, . . . ei−1 is a
smaller cycle (this is regardless of what objects e2 and ei refer
to, and is comparing <H with all of the $<x$s). By construc-
tion e1 <H e2 which means response(e1) < inv(e2). This in turn
means response(e1) < response(ei−1) < inv(ei), which means
e1 <H ei. But then the cycle e1, ei, . . . en is a shorter cycle, which
contradicts our assumption that e1, ldotsen is the smallest cycle.
Thus we now know that e1 and en are on different objects, and
are only related by <H .
Second, we show that this cycle is not smallest We have
assumed that en <H e1. But <H is transitive, and e1 <H e2
which means en <H e2. This in turn means e2, . . . en is a shorter
cycle. This finally means no such cycle can exist.

6 Non-blocking

6.1 Definition

An operation never has to wait for any other operation to finish (in order to
meet the demands of linearizability.)

6.2 Importance

Enables interesting choices in system design. For example, consider a differ-
ent consistency model, INV , where operations must appear to be executed
in invocation order. Is INV non-blocking?

Now consider implementing an ADT with operations of different time
complexity, and providing INV vs linearizability. What might be some
tradeoffs?

7 Composing linearizable data structures

How to build more complex data structures.

5

7.1 Why?

Just another way to talk about the verification portions of the paper, but
this one is more likely to be useful to the average attendee.

7.2 Problem

Despite locality, combining two linearizable data structure to produce a third
more complex one is non-trivial. Consider the stack you all got to build while
thinking about this lecture.

8 CAP Theorem

8.1 Why?

Two reasons:

• Interesting constraint when building real-world systems, and the re-
sponse to this constraint has led to many different systems, each of
which has presented interesting tradeoffs that developers need to con-
sider. For example, Dynamo, Cassandra, etc.

• Perennial source of internet arguments: knowing this proves you took
one of these courses.

8.2 What?

Cannot achieve all three of linearizability, availability and partition tolerance.

8.2.1 Linearizability

Topic of this lecture. Why? Easy to reason about the system.

8.2.2 Availability

Service should eventually generate a response as long as the request can
reach a live process.

8.2.3 Parition tolerance

System is correct even when the network is partitioned so that only some of
the processes can talk to each other.

6

8.3 Proof

Proof by indistinguishability, please see the lecture video or scribble board.
It is important you understand this proof, we will use the same tech-

nique again and again.

9 CAP consequences

Services are often unwilling to give up availability, has led to a whole slew
of weaker consistency guarantees, and mechanisms to tune them.

9.1 Eventual consistency

Eventually updates are known to all.

9.2 Causal consistency

Causally linked updates appear together.

9.3 Trading off consistency model

Some systems, e.g., Amazon’s Dynamo, provide a way to tradeoff between
these extremes. Briefly look at how Amazon is doing this: see lecture video
or scribble.

7

	Plan
	ADT and reasoning about correctness
	Linearizability
	Seq Consistency
	Locality
	Non-blocking
	Composing linearizable structures
	CAP theorem
	Consequences of CAP

	Abstract data types and reasoning about correctness under concurrency
	Abstract data types
	Histories
	Sequential
	Well-formed: Sequential at each process
	Complete
	Prefix-closure and sequential specification
	Operation partial order

	Linearizability
	Examples and computing possible schedules

	Sequential Consistency
	Why?
	What?

	Locality
	Definition
	Examples
	Proof

	Non-blocking
	Definition
	Importance

	Composing linearizable data structures
	Why?
	Problem

	CAP Theorem
	Why?
	What?
	Linearizability
	Availability
	Parition tolerance

	Proof

	CAP consequences
	Eventual consistency
	Causal consistency
	Trading off consistency model

