
Lecture 2: Safety, Liveness, Virtual Clocks
(January 31)

Aurojit Panda

1 Plan for Today

1.1 Safety and Liveness

1.1.1 Traces

1.1.2 Partial traces

1.1.3 Program properties

1.2 Time and our problem with time

1.3 Lamport clocks

1.4 Vector clocks

1.5 [If time permits] Consistent snaphots

2 Safety and liveness

2.1 Some reminders from Lecture 1

• Distributed systems are comprised of many processes, each of which is
isolated from others.

• Processes are connected by an asynchronous network which can arbi-
trarily delay or drop messages.

• We assume the network is fair: doesn’t look at message content when
deciding whether to delay or drop.

• We assume processes can fail.

1



Most of this semester: going to write protocols that processes can run to
achieve some goals in this environment. What we want to make sure is that
the algorithms we write are correct, but what does that even mean.

One way to decide correctness would be to say “the output is correct”,
e.g., a sort algorithm is correct if given a vector it produces a sorted version
of the vector. But many distributed systems run forever, so what even is an
“output”? Going to use a different strategy.

2.2 Traces/Schedules

Traces or schedules are a modeling tool for reasoning about systems in gen-
eral that we will be using a lot throughout this semester.

A trace is a sequence of steps, where at each step exactly one process
gets to do something.

2.2.1 What can a process do?

Depends on what you are modeling and how, but in the class we will normally
this of a step being something where a process:

• Receives one message.

• Does some computation based on its local state and the message.

• Sends out one or more messages.

This should remind you a bit of how your code looks.
Some implications: A process can only take a step if some other process

(or the system) had previously sent a message to the process.
If no process has a message waiting and no external entity ever sends a

message then the system has halted.

This model might explain some of why timers appear the way
they do in the

emulation environment.

2.2.2 Going back to a trace

We can now think of a trace as some function

f : Z+ → (P,M)

where P is the set of processes and M is the set of messages.
Equivalently a trace is just an infinite array or list:

2



0 1 2 . . .
p,m0 q,m1 p,m2 . . .

where p and q are processes, and m1, m2 are messages.
The important thing to remember here is that this is an aid to modeling,

not really saying that a single process is active at any time.

2.2.3 Prefixes and adding traces

Traces are potentially infinite but you often want to consider a portion of a
trace, which we refer to as a prefix. For example the following is a prefix of
the trace above:

0 1
p,m0 q,m1

Sometimes it is helpful to combine traces, i.e., given a prefix add actions
after. This is done by appending to the prefix, for example we can add a
trace consisting of q,m3, p,m2 to the above trace to get another prefix

0 1 2 3
p,m0 q,m1 q,m3 p,m2

Observe that this prefix is not a prefix of the original trace we began
with.

2.2.4 Protocol correctness as trace properties

Given a trace we can now define a protocols correctness as a trace property.
There are two types (and their combinations) that we will consider:

1. Safety This is a requirement that something never happen in a trace.
For example we could require that for correctness process p should
never receive message m2 after process q has received m3. In this case
the prefix above shows that there is a problem. We do not need to
consider the entire trace, reasoning about a prefix is sufficient in this
case.

0 1 2 3
p,m0 q,m1 q,m3 p,m2

2. Liveness This is the requirement that eventually something good hap-
pens. For example, we could require that eventually process p should
receive message m2, and all prefixes of the trace above allow for this.

3



(a) Uniform and Absolute Liveness Uniform liveness says there is
some trace suffix (a part of trace) that can be added to any prefix
to achieve the liveness property. Why might this be useful?
Absolute liveness says that combining a suffix with any prefix
ensures liveness. This is much more powerful than either liveness
or uniform liveness. Why might it be useful in practice?

3. General properties One of the more interesting results here is that any
program property P can be split into a liveness property L and a safety
property S such that P = L

⋃
S. You should try and work through

the proof of this provided in Alpern and Schneider’85.

3 Time and its problems

Being able to order events in distributed systems is useful for a number of
reasons:

• One, it is a way to produce a trace, which we can then use to reason
about correctness.

• Second it is often a requirement for applications: example, an appli-
cation that gives out 10,000 tickets and wants to ensure first-come
first-serve.

However, ordering events in a distributed system is complicated: it is
hard to get it so all processes agree on the order of events. Why? Funda-
mentally, this is because all information travels at finite speed. In vacuum
this is c (the speed of light), in our networks it is dictated by message delays
and latencies. This in turn means that two processes might receive informa-
tion (messages) in different orders, which in turn complicates the problem.

3.1 Causality

One natural case where ordering should not matter is for events that are
causally linked. We say two events e0 and e1 are causally linked iff: (a)
e0 results in the occurrence of e1. (b) e0 and e1 are two events in the same
process. (b) e0 is causally linked to e2, which is causally linked to e3 and so
on until en which is causally linked to e1. This is the transitive closure of a
and b.

Example: e0 is process P sending a message m to process Q and e1 is
process Q receiving the message.

4



e0 is process P sending a message m to process Q, e2 is Q receiving the
message and sending message m′ to process R, and e1 is R receiving message
m′.

Why do we care about causality: as we develop clocks we want to make
sure that observers do not mutually reorder causally linked events, it would
be weird to reason about traces where a message is received before being
sent.

4 Lamport Clocks

So now we get to the problem of how to get a trace from observing a dis-
tributed system’s execution. We start with Lamport clocks.

4.1 Total order

Consider the set of events E. For any two events e1, e2 ∈ E, such that
e1 ̸= e2, we have either t(e1) < t(e2) or t(e2) < t(e1).

Think back to the trace: the trace also defines a total order.

4.2 On to Lamport clocks

We want to create a total order among events, while making sure that the
order preserves causal order. Why total order? Because it is simple.

How?

• All processes send their current clock value in the message.

• When a process receives a message it sets it clock to the maximum of
the processes current clock and the clock carried in the message.

• When sending a message the process increments clock value, and then
sends a message with update clock value.

How to reconstruct a trace given this?

5 Vector clocks

One problem with Lamport clocks is that in providing a total order it imposes
more constraints than naturally exist. For example, the total order picks an
arbitrary order between events that are causally unrelated, and the ordering
might significantly disagree from what an external observer might have seen.

5



Rather than building a total order, build a partial order to capture this
structure.

5.1 Partial order

Consider the set of events. For any two events e1, e2 ∈ E we can either have
e1 < e2, e2 < e1 or e1 can be incomparable to e2.

5.2 Vector clocks

• Clocks are represented as a vector.

• Each component corresponds to a single process.

• Compare by element. [Explain how to compare.]

• [Explain update process]

6 Consistent snapshots [Only if time permits]

• What is a consistent snapshot? Want to get a consistent view of
the state at all processes. Consistent here implies that we record (a)
state at each process, and (b) ensure that the states are recorded in a
causally consistent way, i.e., the snapshot should be such that if pro-
cess p records its state after sending a message m to process q, then
q should only record its state as it exists after it has received message
m.

• Why useful? Gives us an instantaneous view of the distribtued system.

• How computed? See Chandy Lamport 1985.

6

http://lamport.azurewebsites.net/pubs/chandy.pdf

	Plan for Today
	Safety and Liveness
	Traces
	Partial traces
	Program properties

	Time and our problem with time
	Lamport clocks
	Vector clocks
	[If time permits] Consistent snaphots

	Safety and liveness
	Some reminders from Lecture 1
	Traces/Schedules
	What can a process do?
	Going back to a trace
	Prefixes and adding traces
	Protocol correctness as trace properties


	Time and its problems
	Causality

	Lamport Clocks
	Total order
	On to Lamport clocks

	Vector clocks
	Partial order
	Vector clocks

	Consistent snapshots [Only if time permits]

