Distributed Systems II: More Linearizability

Where we are

- Consistency models
 \(\Rightarrow \) What order of operations can be observed on a concurrent data structure
 (given by an AOT with a spec. spec.)

- History: \(\langle \text{inv} \ldots \rangle \langle \text{req} \ldots \rangle \)

- Linearizability:
 An implementation is linearizable

\(\iff \)
any history \(H \) produced by impl.
can be extended to \(H' \) s.t.
we can find a sequential history \(S \) where \(\langle \text{complete}(H') \rangle \leq \langle S \rangle \)

- Linearizability - B

\(\langle H \rangle \leq \langle S \rangle \)
- **Locality**

 \[H \text{ linearizable} \iff H/0 \text{ linearizable} \]

 (on other consistency that provides locality)

 for all objects \(o \) appearing in \(H \)

- **Non-blocking**

 \[H \text{ linearizable} \iff H \text{ contains } \langle \text{inv} \circ o \circ \text{op} \rangle \text{ w/o } \langle \text{res} \circ o \circ v \rangle \Rightarrow \text{ we can find } v \text{ s.t. } H \circ \langle \text{res} \circ o \circ v \rangle \text{ is linearizable.} \]

- **Linearizable-B is not local & not non-blocking**

 \[\Rightarrow \text{ saw two counter examples last class} \]

\[H \]

\[\begin{array}{cc}
I_0.\text{req}(x) & I_0.\text{em}(y) \\
R_y & \\
I_0.\text{del}(s) & I_0.\text{em}(s) \\
\end{array} \]

\[H/0_1: \text{Lin-B} \]

\[H/0_2: \text{Lin-B} \]

\[H: \text{Lin-Bx} \]

\[\text{Not} \]

\[\text{Local} \]
Today
- A couple of other consistency models
 - Seq. Cons.
 - Strict Serializability
 - Comparing the strength of consistency models.
- Building linearizable "things"
- CAP
Sequential Consistency/Seq-Cst

- Often the strongest memory model supported by language specs: C++ std::memory-order::seq-cst
 Rust Ordering::SeqCst

- Guarantees
 - Can find a total order for all processes
 - Total order does not violate process order for any process.

Translating to our terminology

\[H: \text{History}. \quad [\text{But } <_H \text{ is unused}] \]

\[\text{For any process } p \in \mathcal{P}, \quad \leq_p : \text{order of operations.} \]

\[H_p \leq_p \leq_{H_p} \]

[Remember, we assumed processes are sequential]

\[H \rightarrow S \quad \text{s.t.} \quad \leq_p \subseteq \leq_s \cup \{p \in \mathcal{P}\} \]
$q_0\cdot\text{deq}(\cdot)\quad\text{OK}\times$

P_0

P_1

$\text{Seq\ cst? }\checkmark$

$\text{Linearizable? }\times$

$\text{Seq\ cst? }\checkmark$

$\text{Linearizable? }\times$

$q_0\cdot\text{enq}(\cdot)\quad\text{OK}\cdot$

$q_1\cdot\text{enq}(\cdot)\quad\text{OK}$

$q_1\cdot\text{deq}(\cdot)\quad\text{y}$

$q_0\cdot\text{deq}(\cdot)\quad\text{OK}\times$

$q_1\cdot\text{enq}(\cdot)\quad\text{OK}$
Strict Serializability

- Transaction
 - Sequence of operations issued by one process
 - Operations might target different objects
 - Must be **Isolated**

- **Strict** serializable
 - **Linearizable**
 - s.t. in linearization S
 - Cannot find \(o_1, o_2, o_3 \)
 - s.t. \(\text{Tran}(o_1) = \text{Tran}(o_3) \neq \text{Tran}(o_2) \)
 - \(o_1 <_S o_2 \land o_2 <_S o_3 \land o_1 < S o_3 \)
Non-blocking?

Local?

Observe

Linearizable \implies Seq Cons.

Why? Processes are sequential

\implies For any history H, process P

$\prec_P \subseteq \prec_H \subseteq \prec_S$

Linearizability \leq Strict Serializability
Notion of stronger/weaker consistency model

Implications for the readings?

R[FL]

Building Linearizable Systems

Why?

- The main reason we read the Healthy Wing paper.
- Arguments:
 - Linearizability is easier for programmers to reason about
 - When do effects become visible?

Two Ends of the Spectrum

- Assume you are given a linearizable impl. of an ADT

 - Queue
 - Register → get 2
 - set 5
 - get: Returns value of last
 - set (or 1 if no
 - set has been called)

Sequential

\[
\begin{align*}
\text{spec} & \quad \begin{cases}
get() & \rightarrow \top \quad \checkmark \\
gset(5) \ gset(6) \ gset(7) \ gget() & \rightarrow 6 \quad \checkmark \\
gset(5) \ gset(6) \ gset(7) \ gget() & \rightarrow 6 \times
\end{cases}
\end{align*}
\]

Types of systems

- Collection of independent lin. impl. of ADT

 For example, KV Store

 (No txns, only single key operations,
Observe: Sequential spec. does not impose any ordering requirement b/w keys. Just use a set of lin. register

Relation to locality

- Collection of dependent ADTs

 Counter
 - Init value ϕ
 - Inc \rightarrow increment value, return OK
 - Dec \rightarrow decrement value, return OK

- Get \rightarrow current value
 Maybe track value in a lin. register
init:
 val.set(0)
get:
 return val.get()
inc:
 c = val.get()
 val.set(c+1)
dec:
 c = val.get()
 val.set(c-1)

Does this work?

Can we fix?

Practice

- One common approach in distributed system
 - Maintain a totally ordered log of operations
- Apply operations in logical order

- **Why?**
 - Need to replicate data for F.O.T.
 - Need to ensure replicas agree on order even for concurrent ops

 [Failures cannot break abstraction]

Critically analyzing RIF1

- Assumptions
 - RPCs; runtime
 - System - Durable storage & Rel.md

- Client

- Importance of exactly once to linearizability?

Does exactly once delivery \Rightarrow Linearizability?
Does linearizability \Rightarrow exactly once delivery?

- What does RiFL Provide?

CAP:

- Why?
 - Need to replicate data for F.T.
 - Need to ensure replicas agree on order even for concurrent Ops

[Failures cannot break abstraction]
@ Can replicas agree on order of concurrent ops without communicating?

Problem: Remember R_0 cannot distinguish between
- R_1 has failed
- Messages from R_1 are partition delayed (indep.)

In the absence of messages from R_1, R_0 has two options
- Wait "Not available"
 Processing might take unbounded time
- Process, assuming R_1 has failed
Ro & R₁ might disagree on results.

But Ro, R₁ are impl. details

→ Violate linearizabilities

"Not consistent"