FLP+ Partial Synchrony

Where we are

RSMs

\[\Rightarrow \text{Consensus} \]

\[\Rightarrow \text{Hard because FLP Impossibility} \]

\[\Rightarrow \text{Circumvent by assuming Partial Synchrony} \Rightarrow \text{Raft} \]

\[\Rightarrow \text{Circumvent with Randomness} \Rightarrow \text{Rabia} \]

Today 0: FLP, Partial Synchrony.

Defining Consensus

\[i_A \] \[i_B \] \[i_C \]

\[A \] \[B \] \[C \]

\[A \] \[B \] \[C \]

\[\text{decide (D_B)} \]

\[A \] \[B \] \[C \]

\[\text{decide (D_C)} \]

Agreement

\[\Rightarrow \text{Process } p_0 \text{ decides } d_0 \& \text{ process } p_i \text{ decides } d_i \]

\[\Rightarrow d_0 = d_i \]

Validity

\[\Rightarrow \text{Process } p \text{ decides } d \]

\[\Rightarrow \text{some process } q \text{ had input } = d \]
Impossibility Result:

No fault-tolerant, deterministic algorithm in the asynchronous model.

Aside: From an award speech in 2001

- Lynch wanted to prove an asynch consensus protocol (designed by Lamport) correct in '82.
- Kept running into trouble, started working with Fischer & Paterson. No luck
- Led to argument in this paper.

Going to walk through proof a bit

Why? - Ideas are interesting & at the core of how we think of many distributed algorithms
- Origin of the model we have been using.

How? Assume a simple setting
- Binary Consensus
- No message loss (only delays)
- At most 1 failure

System Model

Event \(e^o \) \(\text{recv} (p, m) \)

Can differ in state of process \(p \) \& set of pending messages

Schedule \(\sigma = e_1; e_2; e_3; \ldots; e_n \)

\(? \) Valid \(\sigma \)?
"Partially" Correctness (on safe correctness)
 - Agreement
 - Validity

"Totally" Correct = partial correct + Liveness
 Termination

No fault-tolerant, deterministic algorithm in the asynchronous model.

Some tools

(1) \[C \{ e_1, e_2 \} \]

1. \(e_1, e_2 \) enabled in \(C \)

\[e_1 = \text{recv}(p_1, m) \quad e_2 = \text{recv}(p_2, m') \]

\(p_1 \neq p_2 \)

Diamond Lemma
2. Valence: Assume a partially correct consensus protocol \(\text{P} \) implemented by system.

\[
C \quad \text{\(\emptyset \)-valent iff \(\emptyset \) valid schedules from } C
\]

\[
\begin{array}{c}
\xrightarrow{\sigma} \\
\emptyset \text{-decided} \\
\text{(some process } p \text{ decided } \emptyset) \\
\text{OR} \\
\text{Undecided}
\end{array}
\]

Similarly \(1 \)-valent.

\[
C \quad \text{bivalent } \Rightarrow \quad C \text{ is not } \emptyset \text{-valent } \land \\
C \text{ is not } 1 \text{-valent } \land \\
\text{some configuration reachable from } C \text{ by an enabled schedule decides}
\]

F/P proof \(\Rightarrow \) Proof by contradiction

Assume \(\exists \) totally correct protocol \(\text{P} \) that is \(1 \)-fault tolerant.

\(0 \in \emptyset \)- and \(1 \)-valent initial configurations
2. \exists \text{ Bivalent initial configuration}

3. For any enabled event e in bivalent configuration C, can find valid σ (where at most 1 process is silent) s.t.

\[
\begin{array}{c}
C \\
\sigma \\
e \\
C'
\end{array}
\]

C' is Bivalent.

4. Start from initial bivalent configuration
Schedule of unbounded length going from one Bivalent Config to another
⇒ Unbounded schedule where no process decides
⇒ No termination.

Look at (3)

Given bivalent configuration \(C \), event \(e \) want to show \(\exists \sigma \) s.t. \(C \xrightarrow{\sigma} e \) Bivalent

- If \(C \xrightarrow{e} \) bivalent : Done \(\sigma = [3] \)
- Otherwise,
Observation: Claim is equivalent to claim that \(D \) contains bivalent configuration.

Proof by contradiction:

(i) \(\exists \) reachable \(\phi \) \& 1-valent configuration from \(C \)

[Reachable: \(\exists \) valid \(\sigma \) from \(C \) to config]

- \(\forall \) totally connect \(\Rightarrow \) terminates
- \(C \) bivalent \(\Rightarrow \exists \sigma_0, \sigma_1 \)

\[
C \xrightarrow{\sigma_0} \text{decide } \phi \\
\xrightarrow{\sigma_1} \text{decide } 1
\]
(ii) \(\exists \emptyset \neq \emptyset \)-valent configurations in \(D \)

let \(c_0 \) be \(\emptyset \)valent config reachable from \(C \)
- If \(c_0 \in R_e \), then
 \[e(c_0) \in D \text{ is a } \emptyset \text{-valent config.} \]
- If \(c_0 \notin R_e \), the
 \[e \in \text{ schedule } c_0 \text{ from } c_0 \xrightarrow{\sigma} 6 \]

\[\Rightarrow \exists C_1 \text{ s.t. } \]
\[C \xrightarrow{\sigma_0 \{ \text{before } e \}} C' \xrightarrow{e} C_0 \xrightarrow{\sigma_0 \{ \text{after } e \}} C_0 \]

\[\Delta \ni c_0' \in D \]
But by assumption no bivalent conf in \(D \) \(\Rightarrow \) \(c_0' \) is \(\emptyset \)-valent

By symmetry for 1-valent

(iii) Hand-wavy:

\[\exists c_0', c_1 \in R_e \text{ s.t.} \]
\[\exists e' \quad c_0 \xrightarrow{e'} c_1 \]
\[e \circ \sigma \quad \text{or} \quad \exists \sigma \text{ where } C_0 \xrightarrow{\sigma} \text{ some process decides} \]
\[\sigma \text{ finite or } p \text{ takes no steps in } \sigma \]
[Because F.T.]
Thus D must contain a bivalent config.

Given bivalent configuration \(C \), event \(e \)

\[\exists \sigma \text{ s.t. } C \overset{e}{\rightarrow} \text{Bivalent} \]

\[\rightarrow \text{For any consensus protocol that is } 1\text{-FT, } \exists \text{ unbounded schedule w/o decision} \]

\[\Rightarrow \text{No totally correct protocol.} \]

So where does that leave us

\[\frac{\text{FT- consensus}}{\text{synchronous}} \left(\frac{\text{Real world??}}{} \right) \frac{\text{No consensus}}{\text{asynch}} \]
Partial Synchrony

- Separates out comm. & processing

Talks about two variants

(a) Known

Bounds don't hold

(b) Unknown

Bounds hold

Results are the same, but most people mean (a)

Approach

- Design protocols for a model where communication & processing are synchronous
- Messages can be lost
 ...
 But 3 time (GST) after which message from correct process p to correct process q is received

- Show they are totally correct

→ Design

- Rounds where processes send & receive messages

- Decisions require quorum of \textit{correct} processes to be involved

Why termination

- Each round takes bounded time
 (synchrony assumption)

- After GST, all correct processes can communicate w/ each other

 Assume large enough set of processes to ensure k-failures
 still allow decisions

→ Bounded rounds to reach consensus
→ bounded time to reach consensus.

- Show that synchronous rounds can be emulated in partially synchronous model

 → When Δ is known, use that to decide how long to wait for communication

 → When Δ is unknown, keep increasing until it hits the right value.