
Information Processing Letters 21 (1985) 181-185 7 October 1985
North-Holland

DEFINING LIVENESS *

Bowen A L P E R N and Fred B. S C H N E I D E R

Department of Computer Science, Cornell University, 405 Upson Hall, Ithaca, NY 14853, U.S.A.

Communicated by David Gries
Received 5 November 1984
Revised 20 February 1985

A formal definition for liveness properties is proposed. It is argued that this definition captures the intuition that liveness
properties stipulate that 'something good' eventually happens during execution. A topological characterization of safety and
liveness is given. Every property is shown to be the intersection of a safety property and a liveness property.

Keywords: Liveness, absolute liveness, uniform liveness, safety, property, topology, concurrency, semantics

I. Introduction

An execution of a concurrent program can be
viewed as an infinite sequence of states:

O ~-~ S0S 1 . . .

Each state after s o results from executing a single
atomic action in the preceding state. (For a
terminating execution, an infinite sequence is ob-
tained by repeating the final state.) A property is a
set of such sequences. Since a program also defines
a set of sequences of states, we say that a property
holds for a program if the set of sequences defined
by the program is contained in the property.

It is useful to distinguish two classes of proper-
ties, since they are proved using different tech-
niques. A proof that a program satisfies a safety
property rests on an invariance argument [4], while
a proof that a program satisfies a liveness property
depends on a well-foundedness argument [6,7].

* This work was supported, in part, by NSF Grant DCR-
8320274. F.B. Schneider was also supported by an IBM
Faculty Development Award.

Safety and liveness were first described in [2]. The
defining characteristic of safety properties was re-
cently formalized in [3]. This paper gives a formal
characterization of liveness properties and shows
that all properties are the intersection of safety
and liveness properties.

2. Safety properties

Informally, a safety property stipulates that
some 'bad thing' does not happen during execu-
tion [2]. Examples of safety properties include
mutual exclusion, deadlock freedom, partial cor-
rectness, and first-come-first-serve. In mutual ex-
clusion, the proscribed ' bad thing' is two processes
executing in critical sections at the same time. In
deadlock freedom it is deadlock. In partial cor-
rectness, it is terminating in a state not satisfying
the postcondit ion after having been started in a
state that satisfies the precondition. Finally, in
first-come-first-serve, which states that requests are
serviced in the order they are made, the ' bad
thing' is servicing a request that was made after
one not yet serviced.

0020-0190/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland) 181

Volume 21, Number 4 INFORMATION PROCESSING LETTERS 7 October 1985

We now formalize safety.~ Let S be the set of
program states, S '~ the set of infinite sequences of
program states, and S* the set of finite sequences
of program states. An execution of any program
can be modeled as a member of S '°. We call
elements of S '~ executions and elements of S*
partial executions and write o ~ P when execution
a is in proper ty P. Finally, let % denote the partial
execution consisting of the first i states in o.

For P to be a safety property, if P does not hold
for an execution, then at some point some ' bad
thing' must happen. Such a ' b a d thing' must be
i rremediable because a safety proper ty states that
the ' bad thing' never happens dur ing execution.
Thus, P is a safety property if and only if the
following holds.

Safety

(Vo: o ~ S~:

oI~ P ~ (3 i ' 0 ~< i'(V13"13 ~ S~: 0i131¢: P))) .

There are two things to notice about this defini-
tion. First, the definit ion does not restrict a ' bad
thing' except to require that it be discrete--if the
' b a d thing' happens during an execution, then
there is an identifiable point at which it happens.
Second, a safety proper ty can never require that
something happens sometime, as opposed to al-
ways. Thus, the definit ion merely stipulates that a
safety proper ty uncondi t ional ly prohibits a ' b a d
thing' f rom occurring and if it does occur, there is
an identifiable point at which this can be recog-
nized.

3. Liveness properties

Informally, a liveness proper ty stipulates that a
'good thing' happens during execution [2]. Exam-

This formalization differs slightly from the one proposed in
[3]. Under Lamport's assumption that properties are pre-
served under finite repetition of individual states ('stut-
tering'), both definitions are equivalent [1]. A property that is
not invariant with respect to stuttering is "the value of x
differs in any two successive states". We believe this should
be considered a safety property, and it meets our definition
but not Lamport's.

pies of liveness properties include starvation free-
dom, termination, and guaranteed service. In
starvation freedom, which states that a process
makes progress infinitely often, the 'good thing' is
making progress. In termination, which asserts that
a program does not run forever, the 'good thing' is
complet ion of the final instruction. Finally, in
guaranteed service, 2 which states that every re-
quest for service is satisfied eventually, the 'good
thing' is receiving service.

The thing to observe about a liveness property
is that no partial execution is irremediable: it
always remains possible for the required 'good
thing' to occur in the future.3 We take this to be
the defining characteristic of liveness since if some
partial execution were irremediable, then it would
be a 'bad thing'; liveness properties cannot pro-
scribe a ' bad thing', they can only prescribe a
'good thing'.

We now formalize liveness. A partial execution
ot is live for a proper ty P if and only if there is a
sequence of states 13 such that etl3 ~ P. A liveness
property is one for which every partial execution is
live. Thus, P is a liveness property if and only if
the following holds.

Liveness

(Vtx: a ~ S*: (3113:13 ~ S~: ~xlB ~ P)).

Again, there are two things to notice about this
definition. First, the definition does not restrict
what a 'good thing' can be; it does not even
require that the 'good thing' be discrete. In starva-
tion f reedom the 'good t h ing ' - -p rog re s s - - i s an
infinite collection of discrete events. In this way,
'good things' are fundamenta l ly different from
' bad things'. Second, a liveness proper ty cannot
stipulate that some 'good thing' always happens,
only that it eventually happens.

We believe that no definition of liveness can be
more permissive than the one given above. Sup-
pose, by way of contradiction, that P is a liveness
property that does not satisfy our definition. There

2 This is called responsiveness in [5].
3 ,, While there's life there's hope."--Cicero.

182

Volume 21, Number 4 I N F O R M A T I O N P R O C E S S I N G LETI 'ERS 7 October 1985

must be some partial execution e~ such that

(V13:13 ~ S'°: a13 1:# P).

Clearly, a is a ' b a d thing' proscr ibed by P. Thus,
P is in par t a safety proper ty and not a liveness
proper ty , as was assumed.

Obviously, definit ions for liveness more restric-
tive than ours are possible. One candida te we have
invest igated is the following.

Uniform Liveness

(:113 : 13E S'~ : (Ve~: a ~ S * : a13t= P)).

P is a uniform-liveness p roper ty if and only if
there is a single execution (13) that can be appended
to every partial execution (~x) so that the resulting
sequence is in P. Ano the r def ini t ion has been
p roposed by Sistla [10].

Absolute Liveness

(3 y : "y ~ S'~: ~, ~ P)

A (V13:13 P = (W,: S* : P)).

P is an absolute-liveness p roper ty if and only if
it is n o n e m p t y and any execut ion (13) in P can be
appended to any partial execut ion (a) to obtain a
sequence in P.

It is instructive to contras t these formal defini-
tions. L is a liveness proper ty if any partial execu-
t ion c~ can be extended by some execution 13 so
that a13 is in L - - t h e choice of 13 may depend of c~.
U is a uniform-l iveness p roper ty if there is a single
execut ion 13 that extends all part ial executions a
such that a13 is in U. And, A is an absolute-live-
ness p roper ty if it is n o n e m p t y and any execution
13 in A can be used to extend all part ial executions
a . A ny absolute-liveness p roper ty is a uniform-
liveness proper ty and any uniform-l iveness prop-
erty is a liveness property.

While absolute liveness characterizes an inter-
esting class of propert ies, we do not believe it
includes all propert ies that should be considered
liveness. A n y leads-to proper ty (e.g., guaranteed
service) is not an absolute-l iveness property. Such
proper t ies 4 are characterized as follows.

Leads-to. Any occurrence of an event of type E 1 is
eventually followed by an occurrence of an event of
type E 2.

When E 2 is satisfiable, such propert ies are live-
ness p r o p e r t i e s - - E 2 is the prescribed 'good thing'
[2]. To see that a leads-to proper ty is not an
absolute-liveness proper ty , consider an execution
13 in which no event of type E~ or E 2 happens.
Leads- to holds on 13. However, append ing 13 to a
part ial execution consis t ing of a single event of
type E~ yields an execut ion that does not satisfy
the property.

We also believe that un i fo rm liveness does not
correctly capture the intui t ion for liveness. An
example of a liveness proper ty that is not a uni-
form-liveness p roper ty is characterized as follows.

Predictive. I f A initially holds, then after some
partial execution B always holds; otherwise, after
some partial execution B never holds.

We believe this to be a liveness property, be-
cause it requires some ' good thing' (either 'a lways
B' or 'always ~B ') to happen eventually. It is not a
uniform-l iveness p roper ty since there is no single
sequence that can succesfully extend all partial
executions.

4. Other properties

Many proper t ies are nei ther safety nor liveness.
Fo r example, any proper ty characterized as fol-
lows: 5

Until . Eventually an event of type E 2 will happen
and all preceding events are of type E 1.

is the intersect ion of a safety proper ty and a
liveness property . The safety proper ty is " ~ E ~
before E 2' does no t happen ' and the liveness prop-
er ty is 'E 2 eventual ly happens ' . Total correctness is
also the intersect ion of a safety proper ty (partial
correctness) and a liveness proper ty (termination).
In fact, every p roper ty is the intersection of a

4 T h e s e are the eventuafityproperties of Manna and Pnueli [5]. 5 In temporal logic this property is denoted by E 1 11 E 2.

183

Volume 21, N u m b e r 4 I N F O R M A T I O N PROCESSING LETTERS 7 October 1985

safety property and a liveness property. The proof
of this (below) depends on a topological char-
acterization of safety and liveness proposed by
Plotkin 6 [9], who was motivated by Smyth [11].

There is a natural topology of S '~ in which
safety properties are exactly the closed sets, and
liveness properties (as defined above) are exactly
the dense sets. The basic open sets of this topology
are the sets of all executions that,, share a common
prefix. As usual, an open set is the union of basic
open sets, a closed set is the complement of an
open set, and a dense set is one that intersects
every nonempty open set. It is now possible to
prove the following.

Thus, in order to establish that every property P
expressible in a temporal logic can be given as the
conjunction of a safety property and a liveness
property expressed in the logic, is suffices to show
that the smallest safety property containing P is
also expressible in the logic.

Plotkin has shown that any property that can
be expressed in temporal logic can be written as
the conjunction of two temporal logic expressible
liveness properties [8]. In fact, a more general
result can be proven.

Theorem 2. / f I SI > 1, then any property P is the
intersection of two liveness properties.

Theorem 1. Every property P is the intersection of a
safety property and a liveness property.

Proof. Let P be the smallest safety property con-
taining P and let L be ~ (P - P) . Then,

L N P = ~ (F ' - P) A P

- p) n P

= (--,PAP) U (P A P)

= P N F ' = P .

Proof. By hypothesis, there are two states a and b
in S. Let L.~ (respectively Lb) be the set of all
executions with tails that are an infinite sequence
of a's (respectively b's). Both L a and L b are live-
ness properties and L a N L b = ~. Now,

(P U La) n (P u Lb)

= (P n P) u (P n La) U(P n Lb) U(L a n Lb)

= P .

It remains to show that L is dense, and hence a
liveness property. By way of contradiction, sup-
pose there is a nonempty open set O contained in
~ L and thus L is not dense. Then, O ___ (P - P) .
Consequently, P c (P - O). The intersection of two
closed sets is closed, so P - O is closed and thus a
safety property. This contradicts the hypothesis
that P is the smallest safety property containing P.
[]

An obvious corollary of this is the following.

Corollary 1.1. l f a notation Y. for expressing proper-
ties is closed under complement, intersection, and
topological closure, then any]~-expressible property
is the intersection of a Y.-expressible safety property
and a Y~-expressible liveness property.

6 Plotkin nevertheless is unhappy with our definition of live-
ness because it is not closed under intersection.

The union of any set and a dense set is dense, so
P w L a and P U L b are liveness properties and the
theorem is proven. []

As before, there is an obvious corollary.

Corollary 2.1. I f a notation Y for expressing proper-
ties is closed under intersection and there exist E-ex-
pressible liveness properties with empty intersection,
then any E-expressible property is the intersection of
two E-expressible liveness properties.

Topology also provides a convenient framework
for investigating the closure of safety and liveness
under boolean operations. Safety properties (closed
sets) are closed under union and intersection. Live-
ness properties (dense sets) are closed only under
union. Neither is closed under complement. Fi-
nally, the only property that is both safety and
liveness is S '~ itself.

184

Volume 21, Number 4 INFORMATION PROCESSING LETTERS 7 October 1985

5. Conclusion References

A formal definition of liveness should be as
general as possible without doing violence to the
intuition. We have argued that no definition that is
less restrictive than ours corresponds to this intui-
tion. Any argument for a more restrictive formal
definition should include an example of a property
that meets our definition, but that does not seem
to be a liveness property. It appears to us that any
such definition will unduly restrict what a 'good
thing' can be, but we cannot prove this.

It seems naive to hope for a proof that a formal
definition for liveness (or safety) is correct, be-
cause 'good things' and 'bad things' are not
well-defined concepts. However, the simple topo-
logical characterization of the definitions suggests
that they'do indeed capturefundamenta l distinc-
tions.

Acknowledgment

We wish to thank A. Demers, D. Gries, M.
Krentel and E. Mallison for comments on an early
draft of this paper. Comments from G. Plotkin on
two separate occasions forced us to understand the
consequences of our liveness definition and are
gratefully acknowledged. Thanks are also due to J.
Hook, L. Lamport, A. Pnueli, and A.P. Sistla for
helpful discussions and encouragement concerning
this work.

[1] B. Alpern, F.B. Schneider and A.J. Demers, A note on
safety without stuttering, In preparation, 1985.

[2] L. Lamport, Proving the correctness of muhiprocess pro-
grams, IEEE Trans. Software Engineering SE-3 (2) (1977)
125-143.

[3] L. Lamport, Basic concepts, in: Advanced Course on
Distributed Systems--Methods and Tools for Specifica-
tion, Lecture Notes in Computer Science 190 (Springer,
Berlin-Heidelberg, 1984).

[4] L. Lamport and F.B. Schneider, The 'Hoare Logic' of CSP
and all that, ACM Trans. Programming Languages and
Systems 6 (2) (1984) 281-296.

[5] Z. Manna and A. Pnueli, Temporal verification of concur-
rent programs: The temporal framework for concurrent
programs, in: R.S. Boyer and J.S. Moore, eds., The Cor-
rectness Problem in Computer Science (Academic Press,
London, 1981).

[6] Z. Manna and A. Pnueli, Verification of concurrent pro-
grams: Proving eventualities by well-founded ranking,
Tech. Rept. STAN-CS-82-915, Dept. of Computer Sci-
ence, Stanford Univ., 1982.

[7] S. Owicki and L. Lamport, Proving liveness properties of
concurrent programs, ACM Trans. Programming Lan-
guages and Systems 4 (3) (1982) 455-495.

[8] G. Plotkin, Private communication, 1983.
[9] G. Plotkin, Private communication, 1984.

[10] A.P. Sistla, Characterization of safety and liveness proper-
ties in temporal logic, Extended abstract, Univ. of Mas-
sachusetts at Amherst, MA, 1984.

[11] M.B. Smyth, Power domains and predicate transformers:
A topological view, in: Proc. ICALP "83, Lecture Notes in
Computer Science 154 (Springer, Berlin-New York, 1983)
662-675.

185

