
Lecture 8: Paxos and Paxos

Aurojit Panda

1 Paxos: Design Protocol so a Leader can learn
about previous decisions

1.1 Contextual Note

When many people (including me) talk about Paxos without context what
we are referring to is the Synod protocol, which was described by Lamport in
1998 in The Part-Time Parliament. The paper you read takes this primitive
and uses it to build a RSM. The presentation here is designed to allow easy
comparison to Raft above, but is not how one would traditionally present
Paxos.

1.2 Plugging in other ways to appoint leaders

Raft depends on leader election preserving certain properties for safety. How-
ever, there are other reasons why a process might be chosen a leader. We
will talk about one alternative next class.

What can we expect when using arbitrary procedures to appoint leaders:

• At any point in time there is at most one leader.

• We can assume access to a quantity similar to terms in Raft that
allows us to totally order proposals for the same index.

What have we lost/what can we no longer assume: anything about the
set of operations replicated at the leader. In particular this means that a
committed operation may not be replicated at the leader.

Since we have no control over leadership, we must rely on the replication
strategy for safety, which remember means preserving the invariant that
commmitted operations remain committed.

1



1.3 Replication Strategy

Previously the leader just incremented and chose an index for each opera-
tion. This was because the leader always knew of all committed operations,
and hence knew that its chosen index cannot conflict with a previously com-
mitted operation. We no longer have this luxury, and hence need to check
before chosing an index. Do this at replication time.

For what follows assume we consider a single index (slot in the RvR
paper) i, and leader p.

• Phase 1a: The leader sends a request to all other processes asking them
about the state of slot i. This is a specialization of the p1a message in
the paper, you can think of it as p1a(p, term, i) where p is the leader,
and i is the slot.

• Phase 1b: On receiving the p1a message each process checks to see
whether (a) the leader term is correct, similar to what Raft is doing;
and (b) whether it already has an operation replicated in slot i. If
process q already has an operation o in slot i which was added in term
t′ it sends p a message of the form p1b(q, index = i, op = o, term = t′)
otherwise (i.e., in the absence of such an operation) it sends p a message
of the form p1b(q, index = i, op = none).

• Phase 1b.5: The leader waits for n
2 responses to its p1a messages.

Using these responses it can now compute a set of operations recorded
at different replicas for index i. There are a few possibilities here:

– The set of operations is empty (i.e. everyone returned p1b(q, index =
i, op = none)). In this case p can deduce that no operation has
been committed for index i and hence it can use i to add a new
operation.

– The set of operations is of size one and looks like {(op, term)}. p
cannot deduce whether or not operation op was committed, and
for safety it needs to assume that op is a committed operation,
and must chose to put op in index i

– The set of operations is of size greater than one, i.e., there are
several {(op1, term1), (op2, term2), . . .} pairs. Again, p cannot
deduce whether or not an operation was committed. However,
recursively it knows that no previous leader would have overwrit-
ten a committed operation. As a result it can safely pick the
operation (let us say op2) with the highest term.

2



• Phase 2a and 2b: In all cases above Phase 2a yields an operation that
should be put in index i, and p can now replicate this operation. Use
the same process as Raft.

1.4 How does this relate to Paxos Made Moderately Com-
plex

The above description might leave you confused about the relation to Paxos
Made Complex. Here we briefly discuss the relationship:

• Ballots serve two purposes: first, they act as terms; second, they pro-
vide a mechanism for leader election. Since we are fine with any mech-
anism for leader election, this one seems fine too.

• In the description above we describe running Phase 1 (a and b) for each
index. However, we can do this in bulk when a process first becomes
a leader. This allows the process to both discover the next index to
assign to a new operation and saves on the numebr of messages. The
Scout is responsible for executing Phase 1a and b in bulk in that paper.

3


	Paxos: Design Protocol so a Leader can learn about previous decisions
	Contextual Note
	Plugging in other ways to appoint leaders
	Replication Strategy
	How does this relate to Paxos Made Moderately Complex


