LINEARIZABILITY
"How should a data type behave with concurrent accesses?"

- Does not consider failures, losses, etc.
- Why interesting?

Abstract data type

Some object **Queue** Stack ...

With operations Enqueue, Push...
Dequeue Pop

And a **sequential specification**

Behavior when a single process issues one request at a time.

Queues: FIFO
- `p, q.enq(1)`
 - `ok`<

Stack: LIFO
- `p, s.push(1)`
 - `ok`<
Main Takeaway

Tells us behavior when a single process performs one operation at a time.

Consistency in this lecture

Given a partially ordered set of concurrent operations, specify how ADT behaves.
Linearizability

Partial Order \prec_H

Equivalent Seq. History \approx

Correct Seq. Specification

Here lie errors
dragons.
Sela, Hershly, Pentmak
PODC '21

\prec_H Partial order on operations

In whose frame of reference/according to whom?
Might really be a group of processes rather than one.

Some object O is linearizable implementation of ADT

\Rightarrow

Given H, $<_H$ can extend H to H' so

\exists sequential history $S(<_S)$ compliant with ADT

$s.t.

\begin{itemize}
\item complete(H') is equivalent to S
\end{itemize}
Walk through this step by step

1. \text{complete}(H) : Maximal subsequence of \(H \) where every \(\text{req} \) has a response

\[
H : \langle \text{req}, \text{op}_1, p_0 \rangle
\]

\[
\text{complete}(H) =
\]

\[
H : \langle \text{req}, \text{op}_1, p_0 \rangle \langle \text{net}, \text{op}_1, p_0 \rangle
\]

\[
\text{complete}(H) =
\]

2. Extend \(H \) to \(H' \)

\(\rightarrow \) Can add missing responses/\(\text{net} \)'s.

\(\rightarrow \) Necessary to deal with operations that have visible effect before response.

\[
H_0 \quad \langle \text{req}, \text{eq}(2), p_0 \rangle \quad \langle \text{req}, \text{deq}(1), p_1 \rangle \quad \langle \text{net}, \text{ok}(2), p_1 \rangle
\]

\[
H_0 \quad \text{req} \quad \text{eq}_0 \quad \text{req}_0 \quad \text{net} \quad \text{net}^2
\]

3. Find \(S \), \(<_S \)

\[
<_S
\]
Q1: Is S unique given H, $<_H$?

\[\text{inv q.enq}(1) \quad \text{ok}(3) \quad \text{inv q.deq}(1) \quad \text{ok}(2) \]

\[\text{inv q.enq}(2) \quad \text{ok}(3) \]

\[\text{inv q.enq}(3) \quad \text{ok}(1) \]

D, H, $<_H \rightarrow S$

Q2: We produce S, $<_S$ equivalent to $\text{complete}(H')$, but only require $<_H \subseteq<_S$. Is that OK?

One problem: $<_H$ only orders "operations" in H

"Proof by citation ↓"

\[\text{Both invocation (req)} \quad \text{response (net)} \]

As written, some operations can be reordered.
$H_0 \leq \langle \text{neq, deq, lo} \rangle \leq \langle \text{net, ok} \rangle \leq \langle \text{neq, eq, ho} \rangle \leq \langle \text{net, op} \rangle \leq \langle \text{neq, ho} \rangle$

H_0 with $	ext{neq (op), net (op), neq (op), net (op)}$

$\preceq_H : \exists \exists$

$\preceq_{H'} : \exists (\text{op}_1, \text{op}_2) \exists$

Allows locality to be broken

S: $\exists \text{op}_2; \text{op}_1$ \preceq_H \subset_s

Henthys's connection [PODC 2021]

Should be

$\text{complete}(H') \preceq \subset_s$

Locality

If a system has multiple objects o_1, o_2, \ldots, o_n

the system as a whole is linearizable

$\iff o_1, o_2, \ldots, o_n$ linearizable

H linearizable $\iff H|_{o_i}$ linearizable
H linearizable \Rightarrow $\exists l_0$: linearizable

"Easy direction"

- Observation

H, H', complete (H')
U U U U
H l_0: H' l_0: complete (H' l_0)

$\preceq_h l_0 \subseteq \prec_h$

\Rightarrow $\preceq_h l_0 \subseteq \prec_s$ & easy to see $\prec_h l_0 \subseteq \prec s_{l_0}$

Also S equivalent to complete (H') \Rightarrow
S l_0: equivalent to complete (H' l_0)

S compliant with o_1, \ldots on \Rightarrow
S l_0: compliant with o_1

H l_0: linearizable $\forall o_i \Rightarrow$ H linearizable

- More complicated: Why care?

- Instructive to see what it means when this is not true.
Two examples

1. Broken linearizability definition
 (1) \(\preceq_H \) only defined on operations with request & response
 (2) Require \(\preceq_H \leq \preceq \)

\[H_0: \text{lin} \rightarrow H_{\text{lin}} \times \]

\[\preceq_H: \text{lin} \]

\[H_{\text{lin}} \times \]

\[\text{[Note: Sequential history requires maintaining process order] \(\Rightarrow \) Op3 req must be after Op1 net] \]

\[H_{\text{lin}} \text{ can be linearized} \]

\[\text{Op}_4 \preceq \text{Op}_1 \]

\[H_{\text{lin}} \text{ can be linearized} \]

\[\text{Op}_3 \preceq \text{Op}_2 \]

\[H_{\text{lin}} \text{ cannot be linearized} \]
Why is this not a problem with the fix?

2) Sequential Consistency
 - Different model:
 For processes $P_1, P_2, ..., P_n$, requires finding S, such that:
 \[
 \preceq_p \leq \preceq_s
 \]
 "No real-time ordering required."

\[q_{deq(0)} \text{ OK}(1) \]
\[P_0 \]

\[q_{enq(1)} \text{ OK}(1) \]
\[P_1 \]

Seq Cons ✓

Linearizability ✗
H1q is Seq Cst (see above)

H1p " " " (symmetry)

H is NOT Seq Cst

\[H1o: \text{linearizable} \quad \forall o; \quad \Rightarrow \quad H \text{ linearizable} \]

Sketch

\[\forall o; \quad H1o: \text{linearizable} \]

\[\Rightarrow \quad \text{Given } H1o; \quad \text{an } f \text{ and } H1' = H1o + R; \]

s.t. \[\exists \text{ sequential history } Si \quad \text{where} \]

\[Si \text{ equivalent to } H1' \]

\[\forall \quad \langle \text{complete}(Hi) \rangle \subseteq \langle Si \rangle \]

Proof by construction

\[H' = H + \sum R; \]

\[\langle H' \rangle = \langle H \rangle \cup \left(\bigcup_i \langle H_i \rangle \right) \cup \text{Transitive edges} \]

\[\forall e_1, e_2 \quad \langle H' \rangle \text{ then } e_1 \leq e_2 \]

\[\langle H' \rangle \text{ is a partial order} \]

\[(e_1, e_2) \subseteq S \]

\[\Rightarrow \text{ reflexive \quad by construction} \]

\[\Rightarrow \text{ transitive \quad by construction} \]

\[\Rightarrow \text{ antisymmetric} \]
\((a, b) (b, c) \rightarrow (a, c) \in S \rightarrow \text{Antisymmetric} \)

\(\Rightarrow \) No cycles such that:

\[e_1 \leq e_2 \leq e_3 \ldots \leq e_i \]

Proof by contradiction

Assume Otherwise

\(e_1, e_2, \ldots, e_n \) are not all operations on the same object

\(\preceq \) partial order \(\forall i \)

Pick Smallest Cycle s.t. \(e_1, e_2 \) are ops on \(o_1 \neq o_2 \)

Lemma None of \(e_1, e_2, \ldots, e_n \) are ops on \(o_1 \)

\(\Rightarrow \) Assume otherwise, \(e_i \) is first op after \(e_1 \) on \(o_1 \)

\[e_2 \preceq e_i \Rightarrow \text{Rot}(e_2) \text{ Before Inv}(e_i) \]

\[e_1 \preceq e_2 \Rightarrow \text{Rot}(e_1) \text{ Before Inv}(e_2) \]

\(\Rightarrow \) By construction

\[e_1 \preceq e_i \]

\(\Rightarrow e_1, e_i, e_i, \ldots, e_n \) is a cycle.
Smaller cycle

Contradiction

\[\Rightarrow e_1 \text{ is ops on different objects} \]

\[\Rightarrow e_1 \prec_H e_2 \quad ; \quad e_n \prec_H e_1 \]

But \(\prec_H \) is transitive

\[\Rightarrow e_n \prec_H e_2 \]

\[\Rightarrow e_2, \ldots, e_n \text{ is smaller cycle.} \]

No cycle exists

Claim: Can construct sequential history \(S \) consistent with \(\text{complete}(H) \)

where \(\leq_{\text{complete}(H)} \subseteq \leq_S \)

Non-Blocking

\(\Rightarrow \text{Why useful?} \)

\[\leq_i : \text{op}, \leq_i \text{ op_2} \Rightarrow \text{inv(op_2) before} \]

\[\text{inv(op_2)} \]