LINEARIZABILITY

THIS ONE IS IMPORTANT

WHERE WE ARE

- Traces ← What the Paper Called a History
- Safety and Liveness ← Constraints on Correct Traces

TODAY

- One Possible Set of Constraints?

BACKGROUND
Lecture 1: "We will talk about distributed protocols for distributed systems."

What are data types doing here?

Distributed system

Key Value Store

Chord

Everything is really about data and how it evolves.

Linearizability: Order in which events seem to occur.

Two problems:

What orders should we allow (today)?

How to ensure allowed orders?
Partial Order

- $e_1 < e_2$ or $e_1 = e_2$

Total Order

- $e_1 < e_2$ or $e_2 < e_1$

Transitive

- If $e_1 < e_2$ and $e_2 < e_3$, then $e_1 < e_3$

Asymmetry

- If $e_1 < e_2$ and $e_2 < e_1$, then $e_1 = e_2$

Intransitive

- If $e_1 < e_2$ and $e_2 < e_3$, then $e_1 < e_3$

Ordering Relations

- $<$ (strict order)
- \leq (less than or equal to)
- \geq (greater than or equal to)

Example of Total Order

- $(e, e) \notin \mathcal{E}$ and $(e, e) \notin \mathcal{E}$

(Rest of the semester)
Examples of Partial Order

Linearizability

Sequential Specification [FIFO]

Many Concurrent Users
Linearizability: Given \(h \) (and \(<_h \)) we can

- Extend \(h \) to \(h' \) s.t. \(h' \) is complete

- Exists sequential history \(S(<_s) \)

 \[\rightarrow \]

 \[\rightarrow <_h \subseteq <_s \]

 \[\rightarrow \text{meets sequential spec} \]

1. Complete

 Every Invoke Has a Return.
(2) \(\exists \text{ Sequenital History } S, < \)

\[\text{ENC(1)} \quad \text{OK(1)} \]
\[\text{ENC(2)} \quad \text{OK(1)} \quad \text{DEQ(1)} \quad \text{OK(2)} \]

\[S \]

- \(<_H \subseteq <_S \)
- \(<_S \text{ Total ORDER} \)
- \(S \text{ meets SPEC} \)

Is \(S \) UNIQUE?
LINEARIZABLE?

Detour: Sequential Consistency [Need this to talk about locality]

\[\preceq_H \quad \preceq_S \quad \preceq_P : \quad \left\{ \text{event} \right\} \xrightarrow{ \text{H} } \quad \preceq_H \quad \text{when applied only to events from a process} \]

SEQ CST \[\exists \preceq_S \quad \text{such that} \]

\[\forall \preceq_P : \quad \preceq_P \subseteq \preceq_S \]
Linearizability vs Seq Cst

\[
\preceq_s \subseteq \preceq_h
\]

Linearizable

\[
H_p \preceq_p \leq \preceq_s
\]

\[
\preceq_p = \preceq_{H1_p}
\]

Locality

Distributed System History \(H \) Linearizable

\[
\iff
\]

History for all objects are Linearizable
Proof Sketch

\[H \text{ LINEARIZABLE} \iff \forall O. H_0 \text{ LINEARIZABLE} \]

Given

\[H, <_H, H_0, <_{H_0}, \ldots \]

For each \(H_0 \) (\(H_0 \)) can find

\[H'_0 = H_0 + R_0 \]

and \(S_0, <_S, \text{ s.t. } <_S \subseteq <_{H_0} \)

Construct

\[H' = H + \sum R_0 \]

\[<_{H'} = \text{Closure}(<_H \cup (U, <_{H_0})) \]

\[\text{L} \rightarrow \text{Add Transitive Edges} \]
CLAIMS

1. < is a partial order

2. Any S constructed by ordering complete (H') st. < ≤ ≤s is a linearization of H

1. <h' is a partial order

 ⇒ Irreflexive ∙ by construction

 ⇒ Transitive ∙ by construction

 ⇒ Antisymmetric ← there are no cycles

Show not the case by contradiction

Assume \(e_1, e_2, \ldots, e_n \) st. \(e_1 < e_2 < e_3 < e_4 < \ldots < e_n \) and \(e_n < e_1 \)

i. \(e_1, e_2, \ldots, e_n \) cannot all be ops on the same object

\[<_{h'} < < \]

\[\Rightarrow \text{partial order by assumption} \]

2. Pick the smallest cycle \(e_1, e_2, \ldots, e_n \) st. \(e_1, e_2 \) are ops on different objects

 a. If \(e_1 \) is an operation on \(O \) no other \(e_2, \ldots, e_n \) is an operation on \(O \)

Assume otherwise so \(e_1, e_i \) are both on \(O \)

\[e_{i-1} < e_i \text{ ReI}(e_{i-1}) \text{ before} \text{ Inv}(e_i) \]
$e_2 \prec e_{i-1}$ \hspace{1cm} Inv(e_2) Before Ret(e_{i-1})

$e_i \prec e_2$ \hspace{1cm} Ret(e_i) Before Inv(e_2)

\Rightarrow Ret(e_i) Before Ret(e_{i-1}) Before Inv(e_i)

\Rightarrow $e_i \ prec_h e_i \Rightarrow e_i \prec e_i$

\Rightarrow $e_i, e_i, e_{i+1}, \ldots, e_n$ Is A Smaller Cycle

CONTRADICTION

If e_i is an op on 0 then e_2, \ldots, e_n are not an op on 0

\Rightarrow $e_n \prec_h e_i$

But $e_i \prec_h e_2$ & \prec_h is TRANSITIVE

\Rightarrow $e_n \prec_h e_2$

\Rightarrow e_2, \ldots, e_n Is A Smaller Cycle

CONTRADICTION

SEQ Consistency IS NOT LOCAL

A

\[\text{p.enq}(x) \quad q.enq(y) \quad \text{p.deq}()\]

\[\text{ok} \quad \text{ok} \quad \text{OK} \quad \text{OKCY}\]

B

\[\text{q.enq}(y) \quad \text{p.enq}(y) \quad \text{q.deq}()\]

\[\text{OK} \quad \text{OK} \quad \text{OKG}\]

\[\text{q.enq}(x)\]

\[\text{q.enq}(y)\]

\[\text{q.deq}()\]

A

\[\text{p.enq}(x) \quad q.enq(y) \quad \text{p.deq}()\]

\[\text{ok} \quad \text{ok} \quad \text{OK} \quad \text{OKCY}\]

B

\[\text{q.enq}(y) \quad \text{p.enq}(y) \quad \text{q.deq}()\]

\[\text{OK} \quad \text{OK} \quad \text{OKG}\]

\[\text{p.enq}(x)\]

\[\text{q.enq}(y)\]

\[\text{q.deq}()\]
Non-Blocking

- Linearizability does not require ops to wait

Alternate: \(I : o_1 < I o_2 \iff \text{Inv}(o_1) \text{ before } \text{Inv}(o_2) \)

Composing linearizable types
- Locality?
- Why hard?
CAP Theorem

Context

Statement

Consistency (Linearizability) ← Network Partitions → Availability

Inktony/Now
Proof by Indistinguishability

Alice \(\xrightarrow{\text{eng}(1)} \) BETH \(\xrightarrow{\text{def} \circ 0 \mid <(1)} \) \(\text{eng}(3) \)

A \(\xrightarrow{\text{eng}(3)} \) B \(\xrightarrow{\text{eng}(1) \circ \text{OK}} \) \(\text{eng}(3) \)

Alice \(\xrightarrow{\text{eng}(1)} \) BETH \(\xrightarrow{\text{OK}} \) \(\text{deq} \)

\(e_1, e_2, d_1 \) \(\times \)