
Quiz 1 (Sep 9, 2025)
Name: ANSWERS NetID (e.g., ap191):

Please write your answers clearly and keep them brief.

Problem Score

Question 1 / 5
Question 2 / 5

Total / 10

Quiz 1 (Sep 9, 2025) 1 of 5

Quiz 1 (Sep 9, 2025) 2 of 5

1. The listing in handout 1 (which you received last lecture) indicated that there was a bug in
function g. We have reproduced the necessary bit of code below, explain (briefly) the bug.

1 #include <stdio.h>
2 #include <stdint.h>
3
4 uint64_t *q;
5
6 /* ... */
7
8 uint64_t g(uint64_t a) {
9 uint64_t x = 2 * a;

10 q = &x; // <-- THIS IS AN ERROR (AKA BUG)
11 return x;
12 }

The line sets the global pointer q to point to the location of a local variable x which is a bug.

To understand why in our context, observe that x is a local variable and is thus located within
the stack frame for g’s current invocation. The line sets q to the address of this location in
the stack. However, when g returns the space occupied by its stack frame is marked as unused
(remember the epilog resets %rsp and %rbp to the values from before g’s prolog was run). This
means that other functions called after g might reuse the memory location for other values,
including different local variable or even return addresses. Thus *q’s value (i.e., the value
pointed to by q) can change unexpectedly after g returns.

Quiz 1 (Sep 9, 2025) 3 of 5

Quiz 1 (Sep 9, 2025) 4 of 5

2. Write code within the function g (in the place marked your code goes here) so that the register
%rax contains the beginning of its caller’s stack frame. For example, when g is called by f,
your code snipet should result in the beginning of f’s stackframe being stored in %rax.

You should assume that f and g have the standard prolog and epilog we discussed last class.
Drawing g’s stack frame is likely to help you arrive at the answer.

1 void f() {
2 uint64_t frame_begin = fun();
3 }
4
5 uint64_t g() {
6 /* You can use assembly or C.
7 Assembly reminder:
8 movq src, dst
9 Registers: %rbx <- the value of %rbx

10 Pointer deref (%rbx) <- the value at the address in %rbx
11 YOUR LOGIC GOES HERE
12 */
13 }

movq (%rbp), %rax

[Note, we give full credit if the answer is accompanied by a stack frame that has %rbp in a
slightly different location (e.g., one stack slot above).]

Quiz 1 (Sep 9, 2025) 5 of 5

