Printed by Aurojit Panda

Aug 31, 2025 12:51 swtch.txt Page 1/2 Aug 31, 2025 12:51 swtch.txt Page 2/2
1 CS 202, Spring 2023 55

2 Handout 10 (Class 17) 56 2. Example use of swtch(): the yield() call.

3 57

4 1. User-level threads and swtch{() 58 A thread is going about its business and decides that it’s executed for
5 59 long enough. So it calls yield(). Conceptually, the overall system needs
6 We’1ll study this in the context of user-level threads. 60 to now choose another thread, and run it:

7 61

8 Per-thread state in thread control block: 62 void yield() {

9 63

10 typedef struct tcb { 64 tcb* next = pick_next_thread(); /* get a runnable thread */
11 unsigned long saved_rsp; /* Stack pointer of thread */ 65 tcb* current = get_current_thread();

12 char *t_stack; /* Bottom of thread’s stack */ 66

13 VA 67 swtch (current, next);

14 }; 68

15 69 /* when ’current’ is later rescheduled, it starts from here */
16 Machine-dependent thread initialization function: 70 }

17 71

18 void thread_init (tcb **t, void (*fn) (void *), void *arg); 72 3. How do context switches interact with I/O calls?

19 73

20 Machine-dependent thread-switch function: 74 This assumes a user-level threading package.

21 75

22 void swtch(tcb *current, tcb *next); 76 The thread calls something like "fake_blocking_read()". This looks
23 77 to the _thread_ as though the call blocks, but in reality, the call
24 Implementation of swtch(current, next): 78 is not blocking:

25 79

26 # gcc x86-64 calling convention: 80 int fake_blocking_read(int fd, char* buf, int num) {

27 # on entering swtch() : 81

28 # register %$rdi holds first argument to the function ("current") 82 int nread = -1;

29 # register %$rsi holds second argument to the function ("next") 83

30 84 while (nread == -1) {

31 # Save call-preserved (aka "callee-saved") regs of ’current’ 85

32 pushg %$rbp 86 /* this is a non-blocking read() syscall */

33 pushg $rbx 87 nread = read(fd, buf, num);

34 pushg %rl2 88

35 pushg %rl3 89 if (nread == -1 && errno == EAGAIN) {

36 pushg %rl4 % /*

37 pushg %rl5 91 * read would block. so let another thread run

38 92 * and try again later (next time through the

39 # store old stack pointer, for when we swtch() back to "current" later 93 * loop) .

40 movqg %$rsp, (%rdi) # %rdi->saved_rsp = %rsp 9% */

41 movqg (%$rsi), S$rsp # $rsp = S$rsi->saved_rsp 95 yield();

42 96 }

43 # Restore call-preserved (aka "callee-saved") regs of ’next’ o7 }

44 popg %rl5 98

45 popg %rléd 99 return nread;

46 popg $rl3 100 }

47 popg %rl2 101

48 popg %rbx 102

49 popg %rbp 103

50 104

51 # Resume execution, from where "next" was when it last entered swtch() 105

52 ret

53

54

Sunday November 02, 2025 swtch.txt 1/1

