
1 CS 202, Fall 2025
2 Handout 4
3

4 Handout 3 gave examples of race conditions. The following
5 panels demonstrate the use of concurrency primitives (mutexes, etc.). We are
6 using concurrency primitives to eliminate race conditions (see items 1
7 and 2a) and improve scheduling (see item 2b).
8

9 1. Producer/consumer revisited [also known as bounded buffer]
10

11 2a. Producer/consumer [bounded buffer] with mutexes
12

13 Mutex mutex;
14

15 void producer (void *ignored) {
16 for (;;) {
17 /* next line produces an item and puts it in nextProduced */
18 nextProduced = means_of_production();
19

20 mutex_lock(&mutex);
21 while (count == BUFFER_SIZE) {
22 mutex_unlock(&mutex);
23 yield(); /* or schedule() */
24 mutex_lock(&mutex);
25 }
26

27 buffer [in] = nextProduced;
28 in = (in + 1) % BUFFER_SIZE;
29 count++;
30 mutex_unlock(&mutex);
31 }
32 }
33

34 void consumer (void *ignored) {
35 for (;;) {
36
37 mutex_lock(&mutex);
38 while (count == 0) {
39 mutex_unlock(&mutex);
40 yield(); /* or schedule() */
41 mutex_lock(&mutex);
42 }
43

44 nextConsumed = buffer[out];
45 out = (out + 1) % BUFFER_SIZE;
46 count−−;
47 mutex_unlock(&mutex);
48

49 /* next line abstractly consumes the item */
50 consume_item(nextConsumed);
51 }
52 }
53

Sep 21, 2025 12:13 Page 1/3handout04.txt

54

55 2b. Producer/consumer [bounded buffer] with mutexes and condition variables
56

57 Mutex mutex;
58 Cond nonempty;
59 Cond nonfull;
60

61 void producer (void *ignored) {
62 for (;;) {
63 /* next line produces an item and puts it in nextProduced */
64 nextProduced = means_of_production();
65

66 mutex_lock(&mutex);
67 while (count == BUFFER_SIZE)
68 cond_wait(&nonfull, &mutex);
69

70 buffer [in] = nextProduced;
71 in = (in + 1) % BUFFER_SIZE;
72 count++;
73 cond_signal(&nonempty, &mutex);
74 mutex_unlock(&mutex);
75 }
76 }
77

78 void consumer (void *ignored) {
79 for (;;) {
80

81 mutex_lock(&mutex);
82 while (count == 0)
83 cond_wait(&nonempty, &mutex);
84

85 nextConsumed = buffer[out];
86 out = (out + 1) % BUFFER_SIZE;
87 count−−;
88 cond_signal(&nonfull, &mutex);
89 mutex_unlock(&mutex);
90

91 /* next line abstractly consumes the item */
92 consume_item(nextConsumed);
93 }
94 }
95

96

97 Question: why does cond_wait need to both mutex_unlock the mutex and
98 sleep? Why not:
99

100 while (count == BUFFER_SIZE) {
101 mutex_unlock(&mutex);
102 cond_wait(&nonfull);
103 mutex_lock(&mutex);
104 }
105

Sep 21, 2025 12:13 Page 2/3handout04.txt

Printed by Aurojit Panda

Sunday September 21, 2025 1/2handout04.txt

106 2c. Producer/consumer [bounded buffer] with semaphores
107

108 Semaphore mutex(1); /* mutex initialized to 1 */
109 Semaphore empty(BUFFER_SIZE); /* start with BUFFER_SIZE empty slots */
110 Semaphore full(0); /* 0 full slots */
111

112 void producer (void *ignored) {
113 for (;;) {
114 /* next line produces an item and puts it in nextProduced */
115 nextProduced = means_of_production();
116
117 /*
118 * next line diminishes the count of empty slots and
119 * waits if there are no empty slots
120 */
121 sem_down(&empty);
122 sem_down(&mutex); /* get exclusive access */
123

124 buffer [in] = nextProduced;
125 in = (in + 1) % BUFFER_SIZE;
126

127 sem_up(&mutex);
128 sem_up(&full); /* we just increased the # of full slots */
129 }
130 }
131

132 void consumer (void *ignored) {
133 for (;;) {
134
135 /*
136 * next line diminishes the count of full slots and
137 * waits if there are no full slots
138 */
139 sem_down(&full);
140 sem_down(&mutex);
141

142 nextConsumed = buffer[out];
143 out = (out + 1) % BUFFER_SIZE;
144

145 sem_up(&mutex);
146 sem_up(&empty); /* one further empty slot */
147

148 /* next line abstractly consumes the item */
149 consume_item(nextConsumed);
150 }
151 }
152

153 Semaphores *can* (not always) lead to elegant solutions (notice
154 that the code above is fewer lines than 2b) but they are much
155 harder to use.
156

157 The fundamental issue is that semaphores make implicit (counts,
158 conditions, etc.) what is probably best left explicit. Moreover,
159 they *also* implement mutual exclusion.
160

161 For this reason, you should not use semaphores. This example is
162 here mainly for completeness and so you know what a semaphore
163 is. But do not code with them. Solutions that use semaphores in
164 this course will receive no credit.

Sep 21, 2025 12:13 Page 3/3handout04.txt

Printed by Aurojit Panda

Sunday September 21, 2025 2/2handout04.txt

