(S202
lqaendm
1" FINISH VIRTUHL /&:’l‘loR\/

0. (oNTEXT SwitcdiNg
Virtone /Temor

— Dertand ot
Ls Hecaanism

- ﬁ\GwE REP[A(EMENT f%ucv
~what flae b Evict

- FIFO, N, LRU

- CLOC(<

Ll
ey
-

= VAT

!
@_~

—_—

[=]
0
)
o

a3

]
[T

Bod et potfen
Jot OF odloab}("ﬁ(\/1'77/00/ pem 677>

Bewp's Anorpcy

\ _

&P A G COABE ABCOT piy—
PR ok C
7 C 5 h D
2\ £ 2
¢ 0 o
A (b
8 0 -

(ontere. Swich
Thnend. Q

Teud £

PROCESS IQ DPRESS SP/JCE K ; &[@)

Kﬁi&eﬂ;

°/ n[p&—Ngcf thing

erec
--| % 77}5/).\\

| o/ n[pé——ﬂgf iy

erec

1= 7% 7%p
l% nbp

Oec\

!) % héP 1

T2 \\ /
/ cle
|(§{acf<
/

- Rel=ood
l Rel= ocdlds B
l Rek

|] Rek addas \\? s
\L%

o ¥ - | LWeCn /

ﬁ?&@&
% mfu——vcxf thivy

erec

- | %nsp
1% nbp

aREAL —

-| %6 n5p
| FROCESQK I\ % 77(317

”~
Ki&@&
/éﬁé—— Next thizy

erec

-

N

&df%/hm55
SPACE

el oeod = S TS 2 Teno!

0 fegivtens

ﬁéﬁ@é
%7 94——ch% thing

erec

froc! Appress
Seace

Shﬁ%iﬂy A-f;ﬁahﬁ?rh

fRocesseg

(rRoc 2 Jpppcsc

W&ng(ﬂg

SPaE

(Swifeh
e A)‘?d_&)

Usen
levd. 77\7180&(1“}?

H/owl Hiw 7
Somedl\al' -
/,w.fmf,[i})‘l 40 \/Jeembz 0S
— No changf .

(yorkh fo handowt

Sclied

Core i7 Page Table Translation

9 9 9 9 12 Virtual
VPN 1 VPN 2 VPN 3 VPN 4 VPO
address
L1 PT L2 PT L3 PT L4 PT
Page global Page upper Page middle Page
40 directory a0 directory a0 directory a0 table
CR3 / > > > />
Physical
address Offset into
of L1 PT /12 physical and
—{ L1PTE »/ L2PTE | | L3PTE L L4PTE virtual page
Physical
address
512 GB 1GB 2 MB 4 KB of page
region region region region
per entry per entry per entry per entry
49
l 7
40 12 J Physical
PPN PPO
address

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Level 4 Page Table Entries

63 62 52 51 12 11 9 8 7 6 ,5~4 3 2 1 0
XD | Unused Page physical base address Unused D| A |/CD|WT|U/S|R/W|P=1
Available for OS (for example, if page location on disk) P=0

Each entry references a 4K child page. Significant fields:

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for this page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)

D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page address

(forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

page.

Core i7 Level 1-3 Page Table Entries

63 62 52 51 12 11 9 8 7 6 5 4 3 2 1 0
XD | Unused Page table physical base address Unused G | PS A | CD | WT|U/S|R/W|P=1
Available for OS P=0

Each entry references a 4K child page table. Significant fields:

P: Child page table present in physical memory (1) or not (0).

R/W: Read-only or read-write access access permission for all reachable pages.

U/S: user or supervisor (kernel) mode access permission for all reachable pages.

WT: Write-through or write-back cache policy for the child page table.

A: Reference bit (set by MMU on reads and writes, cleared by software).

PS: Page size: if bit set, we have 2 MB or 1 GB pages (bit can be set in Level 2 and 3 PTEs only).

Page table physical base address: 40 most significant bits of physical page table address (forces
page tables to be 4KB aligned)

XD: Disable or enable instruction fetches from all pages reachable from this PTE.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

—_

5

Ad| o
an|

w
Reserved Q Reserved

W/R

u/s

RSVD

I/D

PK

SGX

—

-0 -

- O

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

A supervisor-mode access caused the fault.
A user-mode access caused the fault.

The fault was not caused by reserved bit violation.
The fault was caused by a reserved bit set to 1 in some
paging-structure entry.

0 The fault was not caused by an instruction fetch.

1
0
1

0
1

The fault was caused by an instruction fetch.

The fault was not caused by protection keys.
There was a protection-key violation.

The fault is not related to SGX.
The fault resulted from violation of SGX-specific access-control
requirements.

Figure 4-12. Page-Fault Error Code

End-to-end Core i7 Address Translation

32/64
CPU | Result L2, L3, and
Virtual address (VA) 1 main memory
36 A 4 12 A
_. VPN | VPO, 11 L1
2 I . hit miss
TLBT | TLBI
| L1 d-cache

! ! TLB (64 sets, 8 lines/set)

> hit p

TLB > <

miss 5
——>] | | LT T T T T T T Je—
A A A A A y A A
L1 TLB (16 sets, 4 entries/set)
v? 9 9 9 40 | 12 40 6 6
VPN1 | VPN2 | VPN3 | VPN4 PPN PPO > cT cl lco
T T 4 Physical .
CR3 J[J > > address
> PTE|| L»| PTE PTE PTE (PA)

Page tables

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Cute Trick for Speeding Up L1 Access

Physical
address
(PA)

Virtual
address
(VA)

m Observation

CT
40 . 6 6
CT ¢ Cl |CO
PPN PPO
T A
Address No
Translation Change .-
l Cl
o— .-
VPN VPO +
36 12

Tag Check

A A A A A A A A

L1 Cache

= Bits that determine Cl identical in virtual and physical address

® Can index into cache while address translation taking place

" Cache carefully sized to make this possible: 64 sets, 64-byte cache blocks
" Means 6 bits for cache index, 6 for cache offset

" That’s 12 bits; matches VPO, PPO = One reason pages are 212 bits = 4 KB

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Virtual Address Space of a Linux Process

Identical for
each process

%LSP

brk

0x00400000

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perﬁ: oo

(

Process-specific data
structs (ptables,
task and mm structs,
kernel stack)

Physical memory

Kernel code and data

User stack

\ 4

v

Memory mapped region
for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)

Initialized data (.data)

Program text (.text)

TV C, T T O COTeToTT

\

NG

>

Kernel
virtual
memory

Process
virtual
memory

Kl 8

Return path

File: kernel.c line 26

// schedule
// Pick the next process to run and then run it.
// If there are no runnable processes, spins forever.

void schedule(void) {
pid_t pid = current->p_pid;
while (1) { *
pid = (pid + 1) % NPROC;
if (processes[pid].p_state == P_RUNNABLE) {
~xun(&proce idl);

If Control-C was typed, exit the virtual pefchine.
check_keyboard() ;

3
X
// run(p)
// Run process “p°. This means reloading all the registers from
// “p->p_registers” using the “popal”, “popl’, and “iret” instructioms.
//
// As a side effect, sets “current = p~.

void run(proc* p) {
assert(p->p_state == P_RUNNABLE) ;
current = p;

// Load the process's current pagetable.

w T\ & set_pagetable(p->p_pagetable);
3 /

// This function is defined in k-exception.S. It restores the process's
// registers then jumps back to user mode.

exception_return(&p->p_registers) ;
S——

spinloop: goto spinloop; // should never get here
X

File: k-exception.S line 158

exception_return:

movq %rdi, %rsp

popq %rax
popq hrcx
popq %rdx

popq
popq
popq
popq
popq
popq
popq
popq
popq
popq
popq
popq
popq
popq

addq $16, %rsp

iretq

%rbx
%rbp
Y%rsi
%rdi
%r8

%r9

%r10
Y%rii
%ri2
%r13
Y%rid
%ri5
%fs

hes

b

39

> [ek oeléne

Gy

Entry path

File: k-exception.S line 134

generic_exception handler:

== 2T "

pushq ’%gs

pushg 7T
pushq ’%ri4
pushq %r13
pushq %ri2
pushq %ril
pushqg %r10
pushqg %r9
pushq %r8
pushq Y%rdi
pushq ’rsi
pushqg J%rbp
pushqg ’%rbx
pushq ’rdx
pushq ’rcx
pushq Yrax
movq %rsp, Ardi
call exception
“exception” should never return.

File kernel.c line

void exception(x86_64_registers* reg)

File x86-64.h line 86

typedef struct x86_64_registers {
uint64_t reg_rax;
uint64_t reg_rcx;
uint64_t reg_rdx;
uint64_t reg_rbx;
uint64_t reg_rbp;
uint64_t reg_rsi;
uint64_t reg_rdi;
uint64_t reg_r8;
uint64_t reg_r9;
uint64_t reg_ri0;
uint64_t reg_riil;
uint64_t reg_ril2;
uint64_t reg_ri3;
uint64_t reg_ri4;
uint64_t reg_ri5;
uint64_t reg_fs;
uint64_t reg_gs;

uint64_t reg_intno; // (3) Interrupt number and error
uint64_t reg_err; // code (optional; supplied by x86
// interrupt mechanism)

uint64_t reg_rip; // (4) Task status: instruction pointer,
uintl6_t reg_cs; // code segment, flags, stack
uint16_t reg_padding2[3]; // in the order required by “iret”
uint64_t reg_rflags;
uint64_t reg_rsp;
uintl6_t reg_ss;
uint16_t reg_padding3[3];
} x86_64_registers;

Printed by Aurojit Panda

Sep 04, 2023 10:32 swtch.txt Page 1/2 Sep 04, 2023 10:32 swtch.txt Page 2/2
1 CS 202, Spring 2023 55
2 Handout 10 (Class 17) 56 2. Example use of swtch(): the yield() call.
3 57
4 1. User-level threads and swtch{() 58 A thread is going about its business and decides that it’s executed for
5 59 long enough. So it calls yield(). Conceptually, the overall system needs
6 We’1ll study this in the context of user-level threads. 60 to now choose another thread, and run it:
7 61
8 Per-thread state in thread control block: 62 void yield() {
9 63
10 typedef struct tcb { 64 tcb* next = pick_next_thread(); /* get a runnable thread */
11 unsigned long saved_rsp; /* Stack pointer of thread */ 65 tcb* current = get_current_thread();
12 char *t_stack; /* Bottom of thread’s stack */ 66
13 VA 67 swtch (current, next);
14 }; 68
15 69 /* when ’current’ is later rescheduled, it starts from here */
16 Machine-dependent thread initialization function: 70 }
17 71
18 void thread_init (tcb **t, void (*fn) (void *), void *arg); 72 3. How do context switches interact with I/O calls?
19 73
20 Machine-dependent thread-switch function: 74 This assumes a user-level threading package.
21 75
22 void swtch(tcb *current, tcb *next); 76 The thread calls something like "fake_blocking_read()". This looks
23 77 to the _thread_ as though the call blocks, but in reality, the call
24 Implementation of swtch(current, next): 78 is not blocking:
25 79
26 # gcc x86-64 calling convention: 80 int fake_blocking_read(int fd, char* buf, int num) {
27 # on entering swtch() : 81
28 # register %$rdi holds first argument to the function ("current") 82 int nread = -1;
29 # register %$rsi holds second argument to the function ("next") 83
30 84 while (nread == -1) {
31 # Save call-preserved (aka "callee-saved") regs of ’current’ 85
32 pushg %$rbp 86 /* this is a non-blocking read() syscall */
33 pushg $rbx 87 nread = read(fd, buf, num);
34 pushg %rl2 88
35 pushg %rl3 89 if (nread == -1 && errno == EAGAIN) {
36 pushg %rl4 % /*
37 pushg %rl5 91 * read would block. so let another thread run
38 92 * and try again later (next time through the
39 # store old stack pointer, for when we swtch() back to "current" later 93 * loop) .
40 movqg %$rsp, (%rdi) # %rdi->saved_rsp = %rsp 9% */
41 movqg (%$rsi), S$rsp # $rsp = S$rsi->saved_rsp 95 yield();
42 96 }
43 # Restore call-preserved (aka "callee-saved") regs of ’next’ o7 }
44 popg %rl5 98
45 popg %rléd 99 return nread;
46 popg $rl3 100 }
47 popg %rl2 101
48 popg %rbx 102
49 popg %rbp 103
50 104
51 # Resume execution, from where "next" was when it last entered swtch() 105
52 ret
53
54
—

Wednesday November 01, 2023 swtch.txt 1/1

