Printed by Aurojit Panda

Sep 25, 2023 15:54 handout05.txt

Page 1/4

Sep 25, 2023 15:54

handout05.txt

Page 2/4

CsS 202, Fall 2023
Handout 5 (Class 7)

1
2
3
4 The previous handout demonstrated the use of mutexes and condition

5 variables. This handout demonstrates the use of monitors (which combine
6 mutexes and condition variables).

,

8

9

1. The bounded buffer as a monitor

10 // This is pseudocode that is inspired by C++.
1 // Don’t take it literally.

12

13 class MyBuffer {

14 public:

15 MyBuffer();

16 ~MyBuffer () ;

17 void Enqueue (Item) ;

18 Item = Dequeue();

19 private:

20 int count;

21 int in;

22 int out;

23 Item buffer [BUFFER_SIZE];

24 Mutex* mutex;

25 Cond* nonempty;

26 Cond* nonfull;

27 }

28

29 void

30 MyBuffer: :MyBuffer ()

31 {

32 in = out = count = 0;

33 mutex = new Mutex;

34 nonempty = new Cond;

35 nonfull = new Cond;

36 }

37

38 void

39 MyBuffer: :Enqueue (Item item)

40 {

n mutex.acquire () ;

2 while (count == BUFFER_SIZE)
43 cond_wait (&nonfull, &mutex);
4

45 buffer[in] = item;

46 in = (in + 1) $ BUFFER_SIZE;
47 ++count;

48 cond_signal (&nonempty, &mutex);
49 mutex.release();

50 }

51

52 Item

53 MyBuffer: :Dequeue ()

54 {

55 mutex.acquire () ;

56 while (count == 0)

57 cond_wait (&nonempty, &mutex);
58

59 Item ret = buffer([out];

60 out = (out + 1) % BUFFER_SIZE;
61 ——count;

62 cond_signal (&nonfull, &mutex);
63 mutex.release();

64 return ret;

65 }

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
o1
92
93
94
95
96
97
98
99
100
101
102
103
104
105

int main(int, char*¥*)

MyBuffer buf;

int dummy;

tidl = thread_create (producer, &buf);
tid2 = thread_create (consumer, &buf);

// never reach this point
thread_join(tidl);
thread_join (tid2);

return -1;

}

void producer (void* buf)
{
MyBuffer* sharedbuf = reinterpret_cast<MyBuffer*> (buf);
for (;;)
/* next line produces an item and puts it in nextProduced */
Item nextProduced = means_of_production () ;
sharedbuf->Enqueue (nextProduced) ;

}

void consumer (void* buf)
{
MyBuffer* sharedbuf = reinterpret_cast<MyBuffer*> (buf);
for (;;)
Item nextConsumed = sharedbuf->Dequeue();

/* next line abstractly consumes the item */
consume_item (nextConsumed) ;

}
Key point: *Threads* (the producer and consumer) are separate from

shared object (MyBuffer). The synchronization happens in the
shared object.

Monday September 25, 2023

handout05.txt

1/4

Printed by Aurojit Panda

Sep 25, 2023 15:54

handout05.txt

Page 3/4

Sep 25, 2023 15:54

handout05.txt

Page 4/4

106
107
108
109
110
111
112

2. This monitor is a model of a database with multiple readers and
writers. The high-level goal here is (a) to give a writer exclusive

access (a single active writer means there should be no other writers
and no readers) while (b) allowing multiple readers. Like the previous

example, this one is expressed in pseudocode.

// assume that these variables are initialized in a constructor
state variables:

AR = 0; // # active readers

AW = 0; // # active writers

WR = 0; // # waiting readers

WW = 0; // # waiting writers

Condition okToRead = NIL;
Condition okToWrite = NIL;
Mutex mutex = FREE;

Database::read () {
startRead () ;
Access Data
doneRead () ;

// first, check self into the system

// check self out of system
}

Database: :startRead () {

acquire (&mutex) ;

while ((AW + WW) > 0) {
WR++;
wait (&okToRead, &mutex);
WR——;

}

AR++;

release (&mutex) ;

}

Database: :doneRead() {
acquire (&mutex) ;
AR-—;
if (AR == 0 && WW > 0) { // if no other readers still
signal (&okToWrite, &mutex); // active, wake up writer
}
release (&mutex) ;

}

// symmetrical
startWrite () // check in
Access Data

doneWrite () ;

Database::write () {
i

// check out
}

Database: :startWrite () ({
acquire (&mutex) ;
while ((AW + AR) > 0) { // check if safe to write.
// if any readers or writers, wait
WW++;
wait (&okToWrite, &mutex);
WW——;
}
AW++;
release (&mutex) ;
}

Database: :doneWrite () {
acquire (&mutex) ;
AW-——;
if (Ww > 0) {
signal (&okToWrite, &mutex); // give priority to writers
} else if (WR > 0) {
broadcast (&okToRead, &mutex);
}
release (&mutex) ;

}

NOTE: what is the starvation problem here?

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

3. Shared locks

struct sharedlock {
int i;

Mutex mutex;

Cond c;

}i

void AcquireExclusive (sharedlock *sl) {
acquire (&sl->mutex) ;
while (sl->i) {
wait (&sl->c, &sl->mutex);
}
sl->i = -1;
release (&sl->mutex) ;

}

void AcquireShared (sharedlock *sl) {
acquire (&sl->mutex) ;
while (sl->i < 0) {
wait (&sl->c, &sl->mutex);
}
sl->i++;
release (&sl->mutex) ;

}

void ReleaseShared (sharedlock *sl) {
acquire (&sl->mutex) ;
if (!--sl->i)
signal (&sl->c, &sl->mutex);
release (&sl->mutex) ;

}

void ReleaseExclusive (sharedlock *sl) {
acquire (&sl->mutex) ;
sl->i = 0;
broadcast (&sl->c, &sl->mutex);
release (&sl->mutex) ;

}

QUESTIONS:

A. There is a starvation problem here. What is it? (Readers can keep
writers out if there is a steady stream of readers.)

B. How could you use these shared locks to write a cleaner version
of the code in the prior item? (Though note that the starvation
properties would be different.)

Monday September 25, 2023

handout05.txt

2/4

Printed by Aurojit Panda

Sep 25, 2023 16:07

spinlock-mutex.txt Page 1/3

Sep 25, 2023 16:07

spinlock—-mutex.txt

Page 2/3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Implementation of spinlocks and mutexes

1.

Here is a BROKEN spinlock implementation:

struct Spinlock {
int locked;
}

void acquire (Spinlock *lock) {
while (1) {

if (lock->locked == 0) { // A
lock->locked = 1; // B
break;

}
}

void release (Spinlock *lock) {
lock->locked = 0;
}

What’s the problem? Two acquire()s on the same lock on different
CPUs might both execute line A, and then both execute B. Then
both will think they have acquired the lock. Both will proceed.
That doesn’t provide mutual exclusion.

26
27
28
29
30
31
32
33
34
35
36
a7
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

2. Correct spinlock implementation

Relies on atomic hardware instruction. For example, on the x86-64,
doing
"lock cmpxchg addr, $1, %rax"
does the following:

(1) freeze all CPUs’ memory activity for address addr
(i) if *addr = 1 then *addr = %rax

(iii) return *addr

/* pseudocode */
int cmpxchg(addr, comprand, value) {
if *addr == comprand {
*addr = value;
}
return *addr

}

/* bare-bones version of acquire */
void acquire (Spinlock *lock) {

pushcli () ; /* what does this do? */
while (cmpxchg(&lock->locked, 0, TID) != TID)
// yield

}
}

void release (Spinlock *lock) {
cmpxchg (&lock->locked, TID, 0);
popcli(); /* what does this do? */

The above is called a *spinlock* because acquire() spins. The
bare-bones version is called a "test-and-set (TAS) spinlock"; the
other is called a "test-and-test-and-set spinlock".

The spinlock above is great for some things, not so great for
others. The main problem is that it *busy waits*: it spins,
chewing up CPU cycles. Sometimes this is what we want (e.g., if
the cost of going to sleep is greater than the cost of spinning
for a few cycles waiting for another thread or process to
relinquish the spinlock). But sometimes this is not at all what we
want (e.g., if the lock would be held for a while: in those

cases, the CPU waiting for the lock would waste cycles spinning
instead of running some other thread or process).

NOTE: the spinlocks presented here can introduce performance issues
when there is a lot of contention. (This happens even if the
programmer is using spinlocks correctly.) The performance issues
result from cross-talk among CPUs (which undermines caching and
generates traffic on the memory bus). If we have time later, we will
study a remediation of this issue (search the Web for "MCS locks").

ANOTHER NOTE: In everyday application-level programming, spinlocks
will not be something you use (use mutexes instead). But you should
know what these are for technical literacy, and to see where the
mutual exclusion is truly enforced on modern hardware.

Monday September 25, 2023

spinlock—mutex.txt

3/4

Printed by Aurojit Panda

Sep 25, 2023 16:07

spinlock-mutex.txt

Page 3/3

Sep 04, 2023 10:32

fair-mutex.c Page 1/1

86
87
88
89
920
91
92

3. Mutex implementation

The intent of a mutex is to avoid busy waiting:
available, the locking thread is put to sleep, and tracked by a
queue in the mutex. The next page has an implementation.

if the lock is not

55

#include <sys/queue.h>

typedef struct thread ({

// ... Entries elided.
STAILQ_ ENTRY (thread_t)
} thread_t;

glink; // Tail queue entry.

struct Mutex {
// Current owner,
thread_t *owner;

or 0 when mutex is not held.

// List of threads waiting on mutex
STAILQ (thread_t) waiters;

// A lock protecting the internals of the mutex.
Spinlock splock; // as in item 1, above
bi

void mutex_acquire (struct Mutex *m) {
acquire (&m->splock) ;

// Check if the mutex is held;
if (m—->owner == 0) {
m->owner = id_of_this_thread;
release (&m—>splock) ;
} else {
// Add thread to waiters.
STAILQ_INSERT_TAIL(&m->waiters,

if not, current thread gets mutex and returns

id_of_this_thread, glink);

// Tell the scheduler to add current thread to the list
// of blocked threads. The scheduler needs to be careful
// when a corresponding sched _wakeup call is executed to
// make sure that it treats running threads correctly.
sched_mark_blocked(&id_of_this_thread);

// Unlock spinlock.
release (&m—>splock) ;

// Stop executing until woken.
sched_swtch () ;

When we get to this line, we are guaranteed to hold the mutex. This
is because we can get here only if context-switched-TO, which itself
can happen only if this thread is removed from the waiting queue,

// marked "unblocked", and set to be the owner (in mutex_release()
// below). However, we might have held the mutex in lines 39-42
// (if we were context-switched out after the spinlock release(),

followed by being run as a result of another thread’s release of the
mutex). But 1if that happens, it just means that we are
context-switched out an "extra" time before proceeding.

}
void mutex_release (struct Mutex *m) {
// Acquire the spinlock in order to make changes.

acquire (&m—->splock) ;

// Assert that the
assert (m—>owner

current thread actually owns the mutex
id_of_this_thread);

// Check if anyone is waiting.
m->owner = STAILQ_ GET_HEAD (&m->waiters);

// If so, wake them up.

if (m->owner) {
sched_wakeone (&m->owner) ;
STAILQ_REMOVE_HEAD (&m->waiters, glink);

}

// Release the internal spinlock
release (&m->splock) ;
}

Monday September 25, 2023

spinlock—mutex.txt, fair-mutex.c

4/4

