
New York University
CSCI-UA.0202: Operating Systems (Undergrad): Spring 2023

Midterm Exam (Token: V0)

• Write your name, NetId, and token on this cover sheet and on the cover of your blue book.

• Put all of your answers in the blue book; we will grade only the blue book. Thus, if the blue
book answer is blank or incorrect, you will not get credit, regardless of the exam print-out.

• At the end, turn in both the blue book and the exam print-out. “Orphaned” blue books with no
corresponding exam print-out will not be graded.

• This exam is 75 minutes. Stop writing when “time” is called. You must turn in your print-out and
blue books; we will not collect them. Do not get up or pack up in the final ten minutes. The instructor
will leave the room 78 minutes after the exam begins and will not accept exams outside the room.

• There are 11 problems in this booklet. Many can be answered quickly. Some may be harder than
others, and some earn more points than others. You may want to skim all questions before starting.

• This exam is closed book and notes. You may not use electronics: phones, tablets, calculators,
laptops, etc. You may refer to ONE two-sided 8.5x11” sheet with 10 point or larger Times New
Roman font, 1 inch or larger margins, and a maximum of 55 lines per side.

• Do not waste time on arithmetic. Write answers in powers of 2 if necessary.

• If you find a question unclear or ambiguous, be sure to write any assumptions you make.

• Follow the instructions: if they ask you to justify something, explain your reasoning and any important
assumptions. Write brief, precise answers. Rambling brain dumps will not work and will waste
time. Think before you start writing so that you can answer crisply. Be neat. If we can’t understand
your answer, we can’t give you credit!

• If the questions impose a sentence limit, we will not read past that limit. In addition, a response that
includes the correct answer, along with irrelevant or incorrect content, will lose points.

Do not write in the boxes below.

I (xx/14) II (xx/15) III (xx/20) IV (xx/23) V (xx/8) VI (xx/10) VII (xx/8) Fb Total (xx/100)

Name: Solutions

NetId:

page 2 of 17

I C and assembly (14 points)

1. [8 points] Below is a buggy excerpt from a C program.

800 int *ptr1, *ptr2; // declare pointers to integers
801
802 void f() {
803 int a = 0;
804 int* b = (int*) malloc(sizeof(int));
805 ptr1 = &a;

806 ptr2 = b;

807 }

950 int main() {
951 f();

952 *ptr1 = 1;

953 *ptr2 = 2;

954 free(ptr2);

955 // ...

956 }

Why is this program excerpt buggy? Explain in 1-2 sentences, pointing to a specific line or lines
by number.

At line 805, the program stores a reference to memory that lives within a stack frame; by the time of
line 952, the stack frame (of function f) has been destroyed. Therefore, the memory pointed to by
pointer ptr1 is invalid.

,

Name: Solutions NYU NetId:

page 3 of 17

2. [6 points] Assume you are writing an x86-64 assembly program. You want (for whatever reason)
to read the value of %rip (the instruction pointer, or program counter) into register %rbx. Conceptually
you want the following:

movq %rip, %rbx # <-- NOT LEGAL in x86-64

But the above is not a legal instruction: in x86-64 assembly, %rip cannot be read directly. So instead
we will build a work-around. You’ll implement a non-traditional function called worker that consists
of only two lines (no prologue or epilogue); the result of calling worker is to get the value of %rip
into %rbx. The first line you will fill in. The second line is ret.

call worker

when control reaches here, %rbx holds %rip

// .. rest of the program ...

function definition

worker:

YOUR CODE BELOW (should be one line)

ret

Fill in the line of code to complete worker.

movq (%rsp), %rbx

Name: Solutions NYU NetId:

page 4 of 17

II Lab 2: ls (15 points)

3. [15 points] In this problem, you will write print owner perms(), which takes as input a file
name and prints to stdout (standard out) the owner’s permissions (not the group permissions or other
permissions), or “error” in case of error. The prototype of stat() and other helpful definitions are
below and on the next page. Note that there is (purposefully) much more information than you need
below.

Write print owner perms() in syntactically valid C.

void print owner perms(const char* pathname)
{

// YOUR CODE HERE

}

/* Return information about the file given by pathname.

Places the returned information in the buffer pointed to by statbuf.

On success, return 0. On error, return -1. */

int stat(const char* pathname, struct stat *statbuf);

/*

* This is the same as the macro that you were given in lab2. Take as

* input ’info’ and prints the given ’ch’ if the permission ’mask’ exists,

* or "-" otherwise.

*/

#define PRINT_PERM_CHAR(info, mask, ch) printf("%s", (info & mask) ? ch : "-");

/* Get username for uid. Return 1 on failure, 0 otherwise. */

static int uname_for_uid(uid_t uid, char* buf, size_t buflen);

/* Get group name for gid. Return 1 on failure, 0 otherwise. */

static int group_for_gid(gid_t gid, char* buf, size_t buflen);

/* Tests whether the argument refers to a directory */

bool is_dir(char* pathandname);

/* Open a directory */

DIR *opendir(const char *name);

/* Read a directory entry */

struct dirent *readdir(DIR *dirp);

Name: Solutions NYU NetId:

page 5 of 17

struct stat {
dev_t st_dev; /* ID of device containing file */

ino_t st_ino; /* Inode number */

mode_t st_mode; /* File type and mode */

nlink_t st_nlink; /* Number of hard links */

uid_t st_uid; /* User ID of owner */

gid_t st_gid; /* Group ID of owner */

dev_t st_rdev; /* Device ID (if special file) */

off_t st_size; /* Total size, in bytes */

blksize_t st_blksize; /* Block size for filesystem I/O */

blkcnt_t st_blocks; /* Number of 512B blocks allocated */

}

/*

mask values (excerpt from inode(7) man pages)

S_ISUID 04000 set-user-ID bit (see execve(2))

S_ISGID 02000 set-group-ID bit (see below)

S_ISVTX 01000 sticky bit (see below)

S_IRWXU 00700 owner has read, write, and execute permission

S_IRUSR 00400 owner has read permission

S_IWUSR 00200 owner has write permission

S_IXUSR 00100 owner has execute permission

S_IRWXG 00070 group has read, write, and execute permission

S_IRGRP 00040 group has read permission

S_IWGRP 00020 group has write permission

S_IXGRP 00010 group has execute permission

S_IRWXO 00007 others (not in group) have read, write, and

execute permission

S_IROTH 00004 others have read permission

S_IWOTH 00002 others have write permission

S_IXOTH 00001 others have execute permission

*/

Name: Solutions NYU NetId:

page 6 of 17

void print_owner_perms(const char* pathname)

{

struct stat sb;

if (stat(pathname, &sb) < 0) {

printf("error\n");

return;

}

PRINT_PERM_CHAR(sb.st_mode, S_IRUSR, "r");

PRINT_PERM_CHAR(sb.st_mode, S_IWUSR, "w");

PRINT_PERM_CHAR(sb.st_mode, S_IXUSR, "x");

}

Name: Solutions NYU NetId:

page 7 of 17

III Lab 1 and Lab3 (20 points)

4. [20 points] In this problem you will implement a simplified version of the Lab 3 TaskQueue as
a monitor, but instead of implementing this monitor as you did in Lab 3, you will use the linked list
data structure from lab 1.

The relevant data structures and objects are given below. Notice that the TaskQueue contains a pointer
to the head of a linked list. This linked list holds the queue of Tasks; the head is the next item to
dequeue, and items are inserted at the tail.

Follow the concurrency commandments. Also, do not wake threads unnecessarily. When considering
how the TaskQueue will be invoked, assume the setup of Lab 3.

You do not have to exactly follow C and C++ syntax when making synchronization calls, but try to
stick to C and C++ syntax when manipulating the actual state (for example, the linked list pointed-to
by head).

Below, fill in where indicated; there are four places to do so.

struct Task {

handler_t handler;

void* arg;

};

struct list_node {

Task t;

struct list_node *next;

};

// You can and should use these helper functions in your answer.

// However, you do not need to worry about their implementation; that

// is, assume they are defined elsewhere.

struct list_node *alloc_node(void);

void free_node(struct list_node *node);

class TaskQueue {

private:

struct list_node* head;

// (1) FILL IN: MORE REQUIRED HERE

public:

TaskQueue();

˜TaskQueue(); // implemented elsewhere; do not worry about this

void enqueue(Task task);

Task dequeue();

};

Name: Solutions NYU NetId:

page 8 of 17

TaskQueue::TaskQueue()

{

head = NULL;

// (2) FILL THIS IN

}

// Insert the task at the back of the queue (the end of the linked

// list). This may require allocating memory for the linked list node.

void

TaskQueue::enqueue(Task t)

{

// (3) FILL THIS IN

}

// Remove the Task at the front of the queue (the head of the

// linked list) and return it.

// If the queue is empty, block until a Task is inserted.

// Deallocate any memory you allocated when enqueuing.

Task

TaskQueue::dequeue()

{

// (4) FILL THIS IN

}

Name: Solutions NYU NetId:

page 9 of 17

class TaskQueue {

private:

struct list_node* head;

Mutex m;

Cond c;

....

};

TaskQueue::TaskQueue()

{

head = NULL;

smutex_init(&m);

scond_init(&c);

}

void

TaskQueue::enqueue(Task t)

{

smutex_lock(&m);

list_node* newp = alloc_node();

newp->t = t;

newp->next = NULL;

if (head == NULL) {

head = newp;

} else {

for (struct list_node* last = head; last->next; last = last->next) ;

last->next = newp;

}

scond_signal(&c, &m);

smutex_unlock(&m);

}

// Remove the Task at the front of the queue (the head of the

// linked list) and return it.

// If the queue is empty, block until a Task is inserted.

// Deallocate any memory you allocated when enqueuing.

Task

TaskQueue::dequeue()

{

smutex_lock(&m);

while (head == NULL)

wait(&c, &m);

list_node* retnode = head;

Name: Solutions NYU NetId:

page 10 of 17

Task t = retnode->t;

head = head->next;

free_node(retnode);

smutex_unlock(&m);

return t;

}

Name: Solutions NYU NetId:

page 11 of 17

IV Concurrency (23 points)

5. [10 points] Answer the next question with respect to the ChatGPT interaction below. Keep in
mind that ChatGPT is very good at making nonsense sound highly plausible, including citing people,
results, or phenomena that don’t exist.

As context, cli and sti are instructions that disable (clear) and enable (set) interrupts on x86-64.

Prompt: How can an x86-64 bit operating system that runs multiple applications allow a multi-threaded
application to synchronize by turning off interrupts?

ChatGPT: In an x86-64 bit operating system that runs multiple applications, a multi-threaded applica-
tion can synchronize by turning off interrupts using the cli (clear interrupt) instruction, but care must
be taken to ensure that this does not impact other applications or the overall system stability.

To safely turn off interrupts in a multi-application environment, the operating system must first ensure
that interrupts are disabled only for the specific application that requires synchronization. This can be
achieved by using protection mechanisms such as process isolation and privilege levels to prevent one
application from accessing or modifying the resources of another application.

Once interrupts are safely disabled for the target application, the multi-threaded application can use
synchronization primitives such as spinlocks or mutexes to protect critical sections of code from
interruption by other threads or interrupt handlers.

After completing the critical section of code, the multi-threaded application can release the synchro-
nization primitive and re-enable interrupts using the sti (set interrupt) instruction. This allows other
applications and the operating system to resume normal operation.

It’s important to note that turning off interrupts can have serious consequences, such as preventing the
operating system from servicing important interrupts, leading to system instability or data corruption.
Therefore, it’s crucial to use this mechanism judiciously and only in situations where it’s absolutely
necessary.

Additionally, the operating system must ensure that interrupt disabling and re-enabling are coordinated
between applications to avoid potential synchronization issues or data corruption. This may require
the use of higher-level synchronization primitives such as semaphores or condition variables to enable
more complex synchronization between applications.

Identify the problem in ChatpGPT’s first paragraph, and then identify one other major prob-
lem.

The answer is essentially nonsense. Applications on such an OS do not have the ability to turn off
interrupts. Specifically, a cli instruction by an application is an error, because that is a privileged
operation. (As we discussed in class, if applications could disable interrupts, they could monopolize the
processor.) Also, disabling interrupts for a specific application not only does not make sense (given the
preceding point), but also has nothing to do with the typical notion of isolating applications’ resources
from each other. Finally, the concept of using synchronization primitives after interrupts are disabled
doesn’t make sense; synchronization primitives are needed in part because interrupts are enabled.

A correct answer to the question would be something like: “The premise is faulty: applications on
such a system cannot disable interrupts. Second, applications wishing to synchronize using hardware
primitives can either use those primitives directly or get support from the kernel, for example in

Name: Solutions NYU NetId:

page 12 of 17

the form of mutexes. The implementation, within the kernel, of synchronization primitives such as
spinlocks might turn off interrupts.”

Some students said that turning off interrupts isn’t sufficient for synchronization on a multi-CPU system,
because other CPUs could access shared memory. This answer did not get full credit because it does not
correctly identify ChatGPT’s mistake. That is, even if ChatGPT had qualified its answer by restricting
to single CPU systems, it would still be nonsense – again, because applications aren’t permitted to
disable interrupts in the first place. Students who answered this way were likely remembering that we
said in class and in the notes that disabling interrupts is sufficient for synchronization on a single CPU
machine. But that is only for threads running inside the kernel.

Name: Solutions NYU NetId:

page 13 of 17

6. [8 points] Carol and Dave each have an account in a bank. Dave wants to transfer money to
Carol. Assume sequential consistency.

300 // assume all the variables are initialized correctly

301 double carol_balance, dave_balance;
302 smutex_t mtx;

303
304 bool

305 transferDave2Carol(double trans) {
306 if (dave_balance > trans) {
307 smutex_lock(&mtx);

308 dave_balance = dave_balance - trans;

309 carol_balance = carol_balance + trans;

310 smutex_unlock(&mtx);

311 return true;
312 }

313 return false;
314 }

The implementation of function transferDave2Carol is not correct.

(a) Give a problematic interleaving.

(b) State the fix in one sentence.

(a) The outer “if” is not protected by a mutex. So the interleaving can be:

T2: ...
T1: check Dave’s balance
T2: decrease Dave’s balance
T1: acquire mutex
T1: cause balance to be negative...

(b) Place the lock() around the if check. Depending on the implementation, there may need to be two
instances of unlock() in the code.

7. [5 points] Below, assume that the compiler does not reorder the instructions of a program.

Write True for False for each item below:

a If a machine has a single CPU, then the memory model is sequential consistency.

True. Sequential consistency ensures that the executions that appear on a processor are equivalent
to those that could have happened on a single CPU.

b The mutex implementation that we covered in class uses a semaphore.

False.

Name: Solutions NYU NetId:

page 14 of 17

c The mutex implementation that we covered in class uses a spinlock.

True.

d The spinlock implementations that we covered in class use a mutex.

False.

e The spinlock implementations that we covered in class use atomic hardware instructions.
True.

Name: Solutions NYU NetId:

page 15 of 17

V Scheduling (8 points)

8. [8 points] Bitcoin mining is completely compute-bound, meaning that it relies exclusively on the
CPU, with no need for any I/O or other resources. Bitcoin mining requires repeatedly computing a
mathematical function, specifically a (cryptographic) hash, on different input values until you find one
input value whose corresponding output satisfies some mathematical condition.

Define mining throughput as hashes computed per second. Imagine that each process gets an input set:
that is, a list of new input values to hash. While every individual hash computation requires the same
computational time, processes get differently-sized input sets.

Suppose that in 2010 (before the advent of special-purpose Bitcoin mining hardware), you dedicated a
general-purpose computer to Bitcoin mining. Assume mining is highly predictable, so that previous
CPU bursts perfectly predict future ones. Further, assume that the cost of a context switch (and the
computation of a scheduling decision) is negligible. Which of the following scheduling algorithms
would lead to the highest mining throughput?

State the BEST choice below, and justify your answer briefly (1-2 sentences):

A First-come first-served (FCFS / FIFO)

B STCF (preemptive shortest job first)

C Round-robin

D Linux CFS

E They would all be approximately the same

Justify your answer:

E. Since Bitcoin mining is 100% CPU-bound, any work conserving scheduler (meaning a scheduler
that doesn’t leave the CPU idle when there is work to do) should get approximately the same mining
throughput. Scheduling only improves (the relevant notion of) throughput when there are resources
whose utilization can be improved.

Some students answered in terms of process throughput, by saying that if we schedule the shorter jobs
first, that would mean more jobs completing per unit time. But the question did not ask about process
throughput, so credit was not given for that answer.

Name: Solutions NYU NetId:

page 16 of 17

VI Therac-25 (10 points)

9. [10 points] Which of the following factors contributed to the Therac-25 disasters, as reported in
the assigned paper?

Write down ALL that apply:

A A software issue of deadlock.

B The absence of hardware interlocks to guard against inconsistent state.

C A buggy call to fork(), creating an extra process.

D Incomprehensible error messages.

E The company that made and sold the Therac-25 lied when asked if there had been problems.

F A software issue of priority inversion.

G A software issue of overflow/wrap-around.

H A buggy call to exec(), replacing the memory image with a previous version of the software.

I A beam flattener (the tungsten inverted ice cream cone) with a loose screw, causing radiation to
get through.

J The operator sometimes miscalculated the appropriate dosage.

B, D, E, G

Name: Solutions NYU NetId:

page 17 of 17

VII Virtual memory (8 points)

10. [8 points] For each of the instructions below, prefixed by the location of the instruction, state
how many virtual memory translations happen, and which address or addresses are translated. You
should assume that these instructions are executed one after the other.

(a)

0x900 movq $0x4, %rax # move the number 4 into %rax

(b)

0x908 addq %rax, 1, %rcx # add 1 to %rax, put result in %rcx

(c)

0x910 movq %rcx, 0x400000 # no comment

(d)

0x918 pushq $0x5 # push the number 5 on the stack

(a) 1 translation: code address 0x900.
(b) 1 translation: code address 0x908.
(c) 2 translations: code address 0x910 and 0x400000.
(d) 2 translations: code address 0x918 and the address %rsp - 8.

VIII Feedback (2 points)

11. [2 points] This is to gather feedback. Any answer, except a blank one, will get full credit.

Please state the topic or topics in this class that have been least clear to you.

Please state the topic or topics in this class that have been most clear to you.

End of Midterm
Enjoy Spring Break!!

Name: Solutions NYU NetId:

	I C and assembly (14 points)
	II Lab 2: ls (15 points)
	III Lab 1 and Lab3 (20 points)
	IV Concurrency (23 points)
	V Scheduling (8 points)
	VI Therac-25 (10 points)
	VII Virtual memory (8 points)
	VIII Feedback (2 points)

