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Network State Increasingly Common

• 1/3rd of deployed network devices are middleboxes 

• These are typically stateful (e.g., firewalls, caches, etc.) 

• NFV will only make these more common

• Later in this conference: stateful programming for P4 switches. 

• SNAP: Stateful Network-Wide Abstractions for Packet Processing

• Bottomline: Stateful is increasingly relevant.
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Verification Checks Invariants

• We look at Reachability/Isolation invariants (same as stateless verification) 

• Packets from host A cannot reach host B

• But statefulness raises some important issues:

• Invariants include temporal aspects.

• Storing state can result in spooky action at a distance.
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User 1 receives no packets from server 0 unless a connection is initiated. 

Standard Reachability Temporal Property
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deny	user1	server0

User 1 receives no packets from Server 0
User 1 receives no data from Server 0

Secret
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Network Verification Today
• Lots of existing work has looked at network verification.
• Switches: Static forwarding rules in switches. 

HSA, Veriflow, NetKAT, etc.

• SDN Controller: Code generating these rules. 

Vericon, FlowLog, etc

• Testing for stateful networks 

Buzz: Generate packets that are likely to trigger interesting behavior.

• Verification for stateful networks 

SymNet: Uses symbolic execution to verify networks with middleboxes.
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• Why consider stateful networks? 

• The current state of stateful network verification? 

• VMN: Our system for verifying stateful networks. 

• Scaling verification.



VMN: System for scalable 
verification of stateful networks.



VMN Flow
Model each middlebox in the network

Build network forwarding model

Invariant Holds Example of violation

Logical Invariants

SMT Solver (Z3 from MSR)
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Modeling Middleboxes
• One approach: Extract model from code

• Problem: At the wrong level of abstraction.

• Code written to match bit patterns in packet, etc.

• Configuration is in terms of higher level abstractions

• E.g., source and destination addresses, payload matches regex, etc.

• Operators think and configure in terms of these abstractions.

• Verify invariants written in these terms.



Example Middlebox Configuration

• Drop all packets from connections transmitting infected files. 

• How to define infected files: bit pattern for all worms: not really accurate 

• Also not how operators think about this.
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Modeling Middleboxes
• Take a different tack: model specified in terms of classification oracle. 

• Oracle responsible for classifying packet. 

• We are not verifying implementation (nor is anyone else).

• Model specifies forwarding behavior in terms of these abstractions. 

• Need to know forwarding behavior to reason about reachability. 

• Require that any state that affects forwarding behavior also specified.
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Modeling Middleboxes

Classify Packet

Update Classification State

Forward Packet

Determines what application sent a packet, etc. 
Complex, proprietary processing.

Update state required for classification.

Always simple: forward or drop packets.

Oracle: Specify data dependencies and outputs

Forwarding Model: Specify Completely

Update Forwarding State Update forwarding State.
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Modeling Middleboxes

Classify Packet

Forward Packet

Update Forwarding State

Outputs
Is packet infected.

Dependencies
See all packets in connection (flow).

if (packet.flow not in infected_connections) { 
    forward (packet); 
}

if (infected) { 
    infected_connections.add(packet.flow) 
}

Update Classification State



Modeling Middleboxes
infected connection( f low(p))

=) (�rcv(n, p

0)^
f low(p

0) = f low(p)^
infected(p))

snd(n, p) =)
(�rcv(n, p)^
¬infected connection( f low(p)))



VMN Flow
Model each middlebox in the network

Build network forwarding model

Invariant Holds Example of violation

Logical Invariants

SMT Solver (Z3 from MSR)



Network Transfer Functions

• Kazemian 2012 developed the idea of a network transfer function. 

• A single function modeling the behavior of the entire network. 

• VMN models static elements in the network using a transfer function.



Network Transfer Function

Firewall (f) Cache (c)Switch Router Switch
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f(p, port) ⌘

8
>>>>>><

>>>>>>:

(p, f) if port = A ^ (dst(p) = C _ dst(p) = D)

(p, c) if port = f ^ dst(p) = C _ dst(p) = D)

(p, C) if port = c ^ dst(p) = C

(p,D) if port = c ^ dst(p) = D

. . .

Network Transfer Function
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Networks are Large
• Networks are huge in practice 

• For example Google had 900K machines (approximately) in 2011 

• ISPs connect large numbers of machines. 

• Lots of middleboxes in these networks 

• In datacenter each machine might be one or more middlebox. 

• How do we address this?



Scaling Techniques Thus Far

• Abstract middlebox models 

• Simplify what needs to be considered per-middlebox. 

• Abstract network 

• Simplify network forwarding.
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Those Techniques are not Enough

• TACAS 2016: Network verification with state is EXPSPACE-complete.

• Practically for us SMT solvers timeout with large instances.

• Other methods also do not handle such large instances 

• Symbolic execution is exponential in number of branches, not better.

• Our techniques work for small instances, what to do about large instances?
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Scaling Verification

• Challenge: Run verification on a subnetwork of size independent of network. 

• Avoid instability and scale to arbitrary network sizes.

• Goal: Identify subnetwork where verification results translate to whole network.



Network Slices

• Slices: Subnetworks for which a bisimulation with the original network exists. 

• Ensures equivalent step in subnetwork for each step in the original network 

• Slices are selected depending on the invariant being checked.
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Network Slices
ACME Hosting

Willie E Coyote

Road Runner
Firewall

Cache

Sylvester
Tweety

Firewall
predator 6$ prey server

prey 6$ predator server

Invariant: RR cannot access data from Coyote’s server

Willie E CoyoteFirewall

Cache

Establishes a bisimulation between slice and network.
Allows us to prove invariants in the slice.



Cannot always find such a slice.



Finding Slices: Flow Parallel Middleboxes
• To achieve performance, many middleboxes are flow parallel 

• State from one connection cannot affect another connection. 

• Example: Stateful firewall. 

• For networks with only flow parallel NFs 

• Only need to consider paths between hosts. 

• Network slices whose slice is independent of network size.



Finding Slices: Origin Equivalence
• Middleboxes like caches don’t distinguish where a request originates 

• More generally, state is shared, but origin does not matter. 

• In this case, need to ensure that all states in the network can appear in a slice. 

• Pick one member from each policy group. 

• Scalable if increasing network size does not increase number of policy groups



Symmetry: Going Beyond Slices

• Slices merely reduce the size of the problem for each invariant 

• Number of invariants is still a problem. 

• Rely on the observation that lots of hosts in networks are symmetric 

• Policies largely applied to groups of hosts (departments, etc.) 

• Can use this symmetry to reduce number of invariants checked



Evaluation Setup: Datacenter
• Consider AWS like multi-tenant datacenter. 

• Each tenant has policies for private and public hosts. 

• Three verification tasks 

• Private hosts for one tenant cannot reach another 

• Public host for one tenant cannot reach private hosts for another 

• Public hosts are universally reachable.
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Role of Symmetry
• Consider a private datacenter 

• User verification to prevent some bugs from a Microsoft DC (IMC 2013) 

• Bugs include 

• Misconfigured firewalls 

• Misconfigured redundant firewalls 

• Misconfigured redundant routing 

• Measure time to verify as a function of number of symmetric policy groups



Verification Time (With Symmetry)
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Conclusion

• Verifying stateful networks is increasingly more important. 

• The primary challenge is scaling to realistic network. 

• Splitting network into smaller verifiable portions is necessary.


