
Revisiting Network Support for RDMA
Radhika Mittal1, Alexander Shpiner3, Aurojit Panda4, Eitan Zahavi3,

Arvind Krishnamurthy5, Sylvia Ratnasamy1, Scott Shenker1,2
1UC Berkeley, 2ICSI, 3Mellanox Technologies, 4NYU, 5Univ. of Washington

Abstract
The advent of RoCE (RDMA over Converged Ethernet) has
led to a significant increase in the use of RDMA in datacenter
networks. To achieve good performance, RoCE requires a
lossless network which is in turn achieved by enabling Pri-
ority Flow Control (PFC) within the network. However, PFC
brings with it a host of problems such as head-of-the-line
blocking, congestion spreading, and occasional deadlocks.
Rather than seek to fix these issues, we instead ask: is PFC
fundamentally required to support RDMA over Ethernet?
We show that the need for PFC is an artifact of current

RoCE NIC designs rather than a fundamental requirement.
We propose an improved RoCE NIC (IRN) design that makes
a few simple changes to the RoCE NIC for better handling of
packet losses. We show that IRN (without PFC) outperforms
RoCE (with PFC) by 6-83% for typical network scenarios.
Thus not only does IRN eliminate the need for PFC, it im-
proves performance in the process! We further show that
the changes that IRN introduces can be implemented with
modest overheads of about 3-10% to NIC resources. Based
on our results, we argue that research and industry should
rethink the current trajectory of network support for RDMA.

CCS Concepts
• Networks→ Transport protocols;

Keywords
Datacenter transport, RDMA, RoCE, iWARP, PFC

ACM Reference Format:
Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi,
Arvind Krishnamurthy, Sylvia Ratnasamy, Scott Shenker. 2018. Re-
visiting Network Support for RDMA. In SIGCOMM ’18: ACM SIG-
COMM 2018 Conference, August 20–25, 2018, Budapest, Hungary.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5567-4/18/08. . . $15.00
https://doi.org/10.1145/3230543.3230557

ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3230543.
3230557

1 Introduction
Datacenter networks offer higher bandwidth and lower la-
tency than traditional wide-area networks. However, tradi-
tional endhost networking stacks, with their high latencies
and substantial CPU overhead, have limited the extent to
which applications can make use of these characteristics.
As a result, several large datacenters have recently adopted
RDMA, which bypasses the traditional networking stacks in
favor of direct memory accesses.
RDMA over Converged Ethernet (RoCE) has emerged as

the canonical method for deploying RDMA in Ethernet-based
datacenters [23, 38]. The centerpiece of RoCE is a NIC that
(i) provides mechanisms for accessing host memory with-
out CPU involvement and (ii) supports very basic network
transport functionality. Early experience revealed that RoCE
NICs only achieve good end-to-end performance when run
over a lossless network, so operators turned to Ethernet’s
Priority Flow Control (PFC) mechanism to achieve minimal
packet loss. The combination of RoCE and PFC has enabled
a wave of datacenter RDMA deployments.

However, the current solution is not without problems. In
particular, PFC adds management complexity and can lead to
significant performance problems such as head-of-the-line
blocking, congestion spreading, and occasional deadlocks
[23, 24, 35, 37, 38]. Rather than continue down the current
path and address the various problems with PFC, in this
paper we take a step back and ask whether it was needed
in the first place. To be clear, current RoCE NICs require a
lossless fabric for good performance. However, the question
we raise is: can the RoCE NIC design be altered so that we no
longer need a lossless network fabric?
We answer this question in the affirmative, proposing a

new design called IRN (for Improved RoCE NIC) that makes
two incremental changes to current RoCE NICs (i) more ef-
ficient loss recovery, and (ii) basic end-to-end flow control
to bound the number of in-flight packets (§3). We show, via
extensive simulations on a RoCE simulator obtained from
a commercial NIC vendor, that IRN performs better than
current RoCE NICs, and that IRN does not require PFC to
achieve high performance; in fact, IRN often performs better
without PFC (§4). We detail the extensions to the RDMA pro-
tocol that IRN requires (§5) and use comparative analysis and

https://doi.org/10.1145/3230543.3230557
https://doi.org/10.1145/3230543.3230557
https://doi.org/10.1145/3230543.3230557

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary R. Mittal et al.

FPGA synthesis to evaluate the overhead that IRN introduces
in terms of NIC hardware resources (§6). Our results suggest
that adding IRN functionality to current RoCE NICs would
add as little as 3-10% overhead in resource consumption, with
no deterioration in message rates.
A natural question that arises is how IRN compares to

iWARP? iWARP [33] long ago proposed a similar philosophy
as IRN: handling packet losses efficiently in the NIC rather
than making the network lossless. What we show is that
iWARP’s failing was in its design choices. The differences
between iWARP and IRN designs stem from their starting
points: iWARP aimed for full generalitywhich led them to put
the full TCP/IP stack on the NIC, requiring multiple layers
of translation between RDMA abstractions and traditional
TCP bytestream abstractions. As a result, iWARP NICs are
typically far more complex than RoCE ones, with higher
cost and lower performance (§2). In contrast, IRN starts with
the much simpler design of RoCE and asks what minimal
features can be added to eliminate the need for PFC.

More generally: while the merits of iWARP vs. RoCE has
been a long-running debate in industry, there is no conclu-
sive or rigorous evaluation that compares the two architec-
tures. Instead, RoCE has emerged as the de-facto winner in
the marketplace, and brought with it the implicit (and still
lingering) assumption that a lossless fabric is necessary to
achieve RoCE’s high performance. Our results are the first
to rigorously show that, counter to what market adoption
might suggest, iWARP in fact had the right architectural
philosophy, although a needlessly complex design approach.

Hence, one might view IRN and our results in one of two
ways: (i) a new design for RoCE NICs which, at the cost of a
few incremental modifications, eliminates the need for PFC
and leads to better performance, or, (ii) a new incarnation of
the iWARP philosophy which is simpler in implementation
and faster in performance.

2 Background

We begin with reviewing some relevant background.

2.1 Infiniband RDMA and RoCE

RDMA has long been used by the HPC community in special-
purpose Infiniband clusters that use credit-based flow control
to make the network lossless [4]. Because packet drops are
rare in such clusters, the RDMA Infiniband transport (as
implemented on the NIC) was not designed to efficiently
recover from packet losses. When the receiver receives an
out-of-order packet, it simply discards it and sends a negative
acknowledgement (NACK) to the sender. When the sender
sees a NACK, it retransmits all packets that were sent after
the last acknowledged packet (i.e., it performs a go-back-N
retransmission).

To take advantage of the widespread use of Ethernet in
datacenters, RoCE [5, 9] was introduced to enable the use of
RDMA over Ethernet.1 RoCE adopted the same Infiniband
transport design (including go-back-N loss recovery), and
the network was made lossless using PFC.
2.2 Priority Flow Control

Priority Flow Control (PFC) [6] is Ethernet’s flow control
mechanism, in which a switch sends a pause (or X-OFF)
frame to the upstream entity (a switch or a NIC), when the
queue exceeds a certain configured threshold. When the
queue drains below this threshold, an X-ON frame is sent to
resume transmission. When configured correctly, PFC makes
the network lossless (as long as all network elements remain
functioning). However, this coarse reaction to congestion
is agnostic to which flows are causing it and this results in
various performance issues that have been documented in
numerous papers in recent years [23, 24, 35, 37, 38]. These
issues range from mild (e.g., unfairness and head-of-line
blocking) to severe, such as “pause spreading” as highlighted
in [23] and even network deadlocks [24, 35, 37]. In an attempt
to mitigate these issues, congestion control mechanisms have
been proposed for RoCE (e.g., DCQCN [38] and Timely [29])
which reduce the sending rate on detecting congestion, but
are not enough to eradicate the need for PFC. Hence, there is
now a broad agreement that PFC makes networks harder to
understand and manage, and can lead to myriad performance
problems that need to be dealt with.
2.3 iWARP vs RoCE

iWARP [33] was designed to support RDMA over a fully
general (i.e., not loss-free) network. iWARP implements the
entire TCP stack in hardware along with multiple other lay-
ers that it needs to translate TCP’s byte stream semantics to
RDMA segments. Early in our work, we engaged with mul-
tiple NIC vendors and datacenter operators in an attempt
to understand why iWARP was not more broadly adopted
(since we believed the basic architectural premise underlying
iWARP was correct). The consistent response we heard was
that iWARP is significantly more complex and expensive
than RoCE, with inferior performance [13].
We also looked for empirical datapoints to validate or

refute these claims. We ran RDMA Write benchmarks on
two machines connected to one another, using Chelsio T-
580-CR 40Gbps iWARP NICs on both machines for one set of
experiments, and Mellanox MCX416A-BCAT 56Gbps RoCE
NICs (with link speed set to 40Gbps) for another. Both NICs
had similar specifications, and at the time of purchase, the
iWARP NIC cost $760, while the RoCE NIC cost $420. Raw

1We use the term RoCE for both RoCE [5] and its successor RoCEv2 [9]
that enables running RDMA, not just over Ethernet, but also over IP-routed
networks.

Revisiting Network Support for RDMA SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

NIC Throughput Latency
Chelsio T-580-CR (iWARP) 3.24 Mpps 2.89 µs

Mellanox MCX416A-BCAT (RoCE) 14.7 Mpps 0.94 µs

Table 1: An iWARP and a RoCE NIC’s raw perfor-
mance for 64B RDMAWrites on a single queue-pair.

NIC performance values for 64 bytes batched Writes on a
single queue-pair are reported in Table 1.We find that iWARP
has 3× higher latency and 4× lower throughput than RoCE.
These price and performance differences could be attrib-

uted to many factors other than transport design complexity
(such as differences in profit margins, supported features and
engineering effort) and hence should be viewed as anecdotal
evidence as best. Nonetheless, they show that our conjecture
(in favor of implementing loss recovery at the endhost NIC)
was certainly not obvious based on current iWARP NICs.

Our primary contribution is to show that iWARP, some-
what surprisingly, did in fact have the right philosophy: ex-
plicitly handling packet losses in the NIC leads to better
performance than having a lossless network. However, effi-
ciently handling packet loss does not require implementing
the entire TCP stack in hardware as iWARP did. Instead, we
identify the incremental changes to be made to current RoCE
NICs, leading to a design which (i) does not require PFC yet
achieves better network-wide performance than both RoCE
and iWARP (§4), and (ii) is much closer to RoCE’s implemen-
tation with respect to both NIC performance and complexity
(§6) and is thus significantly less complex than iWARP.

3 IRN Design
We begin with describing the transport logic for IRN. For
simplicity, we present it as a general design independent of
the specific RDMA operation types. We go into the details
of handling specific RDMA operations with IRN later in §5.

Changes to the RoCE transport design may introduce over-
heads in the form of new hardware logic or additional per-
flow state. With the goal of keeping such overheads as small
as possible, IRN strives tomakeminimal changes to the RoCE
NIC design in order to eliminate its PFC requirement, as op-
posed to squeezing out the best possible performance with a
more sophisticated design (we evaluate the small overhead
introduced by IRN later in §6).
IRN, therefore, makes two key changes to current RoCE

NICs, as described in the following subsections: (1) improv-
ing the loss recovery mechanism, and (2) basic end-to-end
flow control (termed BDP-FC) which bounds the number
of in-flight packets by the bandwidth-delay product of the
network. We justify these changes by empirically evaluat-
ing their significance, and exploring some alternative design
choices later in §4.3. Note that these changes are orthogonal
to the use of explicit congestion control mechanisms (such
as DCQCN [38] and Timely [29]) that, as with current RoCE
NICs, can be optionally enabled with IRN.

3.1 IRN’s Loss Recovery Mechanism

As discussed in §2, current RoCE NICs use a go-back-N loss
recovery scheme. In the absence of PFC, redundant retrans-
missions caused by go-back-N loss recovery result in signifi-
cant performance penalties (as evaluated in §4). Therefore,
the first change we make with IRN is a more efficient loss re-
covery, based on selective retransmission (inspired by TCP’s
loss recovery), where the receiver does not discard out of
order packets and the sender selectively retransmits the lost
packets, as detailed below.
Upon every out-of-order packet arrival, an IRN receiver

sends a NACK, which carries both the cumulative acknowl-
edgment (indicating its expected sequence number) and the
sequence number of the packet that triggered the NACK (as
a simplified form of selective acknowledgement or SACK).
An IRN sender enters loss recovery mode when a NACK

is received or when a timeout occurs. It also maintains a
bitmap to track which packets have been cumulatively and
selectively acknowledged. When in the loss recovery mode,
the sender selectively retransmits lost packets as indicated by
the bitmap, instead of sending new packets. The first packet
that is retransmitted on entering loss recovery corresponds
to the cumulative acknowledgement value. Any subsequent
packet is considered lost only if another packet with a higher
sequence number has been selectively acked. When there
are no more lost packets to be retransmitted, the sender
continues to transmit new packets (if allowed by BDP-FC).
It exits loss recovery when a cumulative acknowledgement
greater than the recovery sequence is received, where the
recovery sequence corresponds to the last regular packet
that was sent before the retransmission of a lost packet.
SACKs allow efficient loss recovery only when there are

multiple packets in flight. For other cases (e.g., for single
packetmessages), loss recovery gets triggered via timeouts. A
high timeout value can increase the tail latency of such short
messages. However, keeping the timeout value too small can
result in too many spurious retransmissions, affecting the
overall results. An IRN sender, therefore, uses a low timeout
value of RTOlow only when there are a small N number of
packets in flight (such that spurious retransmissions remains
negligibly small), and a higher value of RTOhiдh otherwise.
We discuss how the values of these parameters are set in §4,
and how the timeout feature in current RoCE NICs can be
easily extended to support this in §6.

3.2 IRN’s BDP-FC Mechanism

The second change we make with IRN is introducing the
notion of a basic end-to-end packet level flow control, called
BDP-FC, which bounds the number of outstanding packets
in flight for a flow by the bandwidth-delay product (BDP) of
the network, as suggested in [17]. This is a static cap that

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary R. Mittal et al.

we compute by dividing the BDP of the longest path in the
network (in bytes) 2 with the packet MTU set by the RDMA
queue-pair (typically 1KB in RoCE NICs). An IRN sender
transmits a new packet only if the number of packets in
flight (computed as the difference between current packet’s
sequence number and last acknowledged sequence number)
is less than this BDP cap.

BDP-FC improves the performance by reducing unneces-
sary queuing in the network. Furthermore, by strictly up-
per bounding the number of out-of-order packet arrivals, it
greatly reduces the amount of state required for tracking
packet losses in the NICs (discussed in more details in §6).

As mentioned before, IRN’s loss recovery has been inspired
by TCP’s loss recovery. However, rather than incorporating
the entire TCP stack as is done by iWARP NICs, IRN: (1) de-
couples loss recovery from congestion control and does not
incorporate any notion of TCP congestion window control
involving slow start, AIMD or advanced fast recovery, (2)
operates directly on RDMA segments instead of using TCP’s
byte stream abstraction, which not only avoids the complex-
ity introduced by multiple translation layers (as needed in
iWARP), but also allows IRN to simplify its selective acknowl-
edgement and loss tracking schemes. We discuss how these
changes effect performance towards the end of §4.

4 Evaluating IRN’s Transport Logic
We now confront the central question of this paper: Does
RDMA require a lossless network? If the answer is yes, then
we must address the many difficulties of PFC. If the answer
is no, then we can greatly simplify network management by
letting go of PFC. To answer this question, we evaluate the
network-wide performance of IRN’s transport logic via exten-
sive simulations. Our results show that IRN performs better
than RoCE, without requiring PFC. We test this across a wide
variety of experimental scenarios and across different perfor-
mance metrics. We end this section with a simulation-based
comparison of IRN with Resilient RoCE [34] and iWARP [33].
4.1 Experimental Settings

We begin with describing our experimental settings.
Simulator: Our simulator, obtained from a commercial NIC
vendor, extends INET/OMNET++ [1, 2] to model the Mel-
lanox ConnectX4 RoCE NIC [10]. RDMA queue-pairs (QPs)
are modelled as UDP applications with either RoCE or IRN
transport layer logic, that generate flows (as described later).
We define a flow as a unit of data transfer comprising of
one or more messages between the same source-destination

2As in [17], we expect this information to be available in a datacenter setting
with known topology and routes. IRN does not require a fully precise BDP
computation and over-estimating the BDP value would still provide the
required benefits to a large extent without under-utilizing the network.

pair as in [29, 38]. When the sender QP is ready to trans-
mit data packets, it periodically polls the MAC layer until
the link is available for transmission. The simulator imple-
ments DCQCN as implemented in the Mellanox ConnectX-4
ROCE NIC [34], and we add support for a NIC-based Timely
implementation. All switches in our simulation are input-
queued with virtual output ports, that are scheduled using
round-robin. The switches can be configured to generate
PFC frames by setting appropriate buffer thresholds.
Default Case Scenario: For our default case, we simulate
a 54-server three-tiered fat-tree topology, connected by a
fabric with full bisection-bandwidth constructed from 45 6-
port switches organized into 6 pods [16].We consider 40Gbps
links, each with a propagation delay of 2µs, resulting in a
bandwidth-delay product (BDP) of 120KB along the longest
(6-hop) path. This corresponds to ∼110 MTU-sized packets
(assuming typical RDMA MTU of 1KB).

Each end host generates new flows with Poisson inter-
arrival times [17, 30]. Each flow’s destination is picked ran-
domly and size is drawn from a realistic heavy-tailed distri-
bution derived from [19]. Most flows are small (50% of the
flows are single packet messages with sizes ranging between
32 bytes-1KB representing small RPCs such as those gener-
ated by RDMA based key-value stores [21, 25]), and most of
the bytes are in large flows (15% of the flows are between
200KB-3MB, representing background RDMA traffic such
as storage). The network load is set at 70% utilization for
our default case. We use ECMP for load-balancing [23]. We
vary different aspects from our default scenario (including
topology size, workload pattern and link utilization) in §4.4.
Parameters: RTOhiдh is set to an estimation of the maxi-
mum round trip time with one congested link. We compute
this as the sum of the propagation delay on the longest path
and the maximum queuing delay a packet would see if the
switch buffer on a congested link is completely full. This is
approximately 320µs for our default case. For IRN, we set
RTOlow to 100µs (representing the desirable upper-bound on
tail latency for short messages) with N set to a small value
of 3. When using RoCE without PFC, we use a fixed timeout
value of RTOhiдh . We disable timeouts when PFC is enabled
to prevent spurious retransmissions. We use buffers sized at
twice the BDP of the network (which is 240KB in our default
case) for each input port [17, 18]. The PFC threshold at the
switches is set to the buffer size minus a headroom equal to
the upstream link’s bandwidth-delay product (needed to ab-
sorb all packets in flight along the link). This is 220KB for our
default case. We vary these parameters in §4.4 to show that
our results are not very sensitive to these specific choices.
When using RoCE or IRN with Timely or DCQCN, we use
the same congestion control parameters as specified in [29]
and [38] respectively. For fair comparison with PFC-based
proposals [37, 38], the flow starts at line-rate for all cases.

Revisiting Network Support for RDMA SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

RoCE IRN

0
5

10
15
20
25
30
35

Av
g

Slo
wd

ow
n

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Av
g

FC
T

(m
s)

0
10
20
30
40
50
60

99
%i

le
FC

T (
m

s)

Figure 1: Comparing IRN and RoCE’s performance.

IRN with PFC IRN (without PFC)

0
2
4
6
8

10
12
14
16
18

Av
g

Slo
wd

ow
n

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Av
g

FC
T

(m
s)

0
5

10
15
20
25

99
%i

le
FC

T (
m

s)

Figure 2: Impact of enabling PFC with IRN.

RoCE (with PFC) RoCE without PFC

0
10
20
30
40
50
60
70
80

Av
g.

 S
low

do
wn

0
1
2
3
4
5
6
7
8
9

Av
g.

FC
T (

ms
)

0
10
20
30
40
50
60
70
80
90

99
%i

le
FC

T (
m

s)

Figure 3: Impact of disabling PFC with RoCE.

Metrics:We primarily look at three metrics: (i) average slow-
down, where slowdown for a flow is its completion time di-
vided by the time it would have taken to traverse its path at
line rate in an empty network, (ii) average flow completion
time (FCT), (iii) 99%ile or tail FCT. While the average and
tail FCTs are dominated by the performance of throughput-
sensitive flows, the average slowdown is dominated by the
performance of latency-sensitive short flows.
4.2 Basic Results

We now present our basic results comparing IRN and RoCE
for our default scenario. Unless otherwise specified, IRN is
always used without PFC, while RoCE is always used with
PFC for the results presented here.

4.2.1 IRN performs better than RoCE. We begin
with comparing IRN’s performance with current RoCE NIC’s.
The results are shown in Figure 1. IRN’s performance is upto
2.8-3.7× better than RoCE across the three metrics. This is
due to the combination of two factors: (i) IRN’s BDP-FCmech-
anism reduces unnecessary queuing and (ii) unlike RoCE,
IRN does not experience any congestion spreading issues,
since it does not use PFC. (explained in more details below).

4.2.2 IRN does not require PFC. We next study how
IRN’s performance is impacted by enabling PFC. If enabling
PFC with IRN does not improve performance, we can con-
clude that IRN’s loss recovery is sufficient to eliminate the

RoCE IRN

+Timely +DCQCN0
2
4
6
8

10
12

Av
g

Sl
ow

do
wn

+Timely +DCQCN0.0

0.5

1.0

1.5

2.0

Av
g

FC
T

(m
s)

+Timely +DCQCN0
10
20
30
40
50

99
%

ile
 F

CT
 (m

s)

Figure 4: Comparing IRN and RoCE’s performance
with explicit congestion control (Timely andDCQCN).

IRN with PFC IRN (without PFC)

+Timely +DCQCN0
1
2
3
4
5
6

Av
g

Slo
wd

ow
n

+Timely +DCQCN0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Av
g

FC
T

(m
s)

+Timely +DCQCN0
5

10
15
20
25

99
%

ile
 F

CT
 (m

s)

Figure 5: Impact of enabling PFC with IRN, when ex-
plicit congestion control (Timely andDCQCN) is used.

requirement for PFC. However, if enabling PFC with IRN
significantly improves performance, we would have to con-
clude that PFC continues to be important, even with IRN’s
loss recovery. Figure 2 shows the results of this comparison.
Remarkably, we find that not only is PFC not required, but
it significantly degrades IRN’s performance (increasing the
value of each metric by about 1.5-2×). This is because of the
head-of-the-line blocking and congestion spreading issues
PFC is notorious for: pauses triggered by congestion at one
link, cause queue build up and pauses at other upstream enti-
ties, creating a cascading effect. Note that, without PFC, IRN
experiences significantly high packet drops (8.5%), which
also have a negative impact on performance, since it takes
about one round trip time to detect a packet loss and another
round trip time to recover from it. However, the negative
impact of a packet drop (given efficient loss recovery), is re-
stricted to the flow that faces congestion and does not spread
to other flows, as in the case of PFC. While these PFC issues
have been observed before [23, 29, 38], we believe our work
is the first to show that a well-design loss-recovery mechanism
outweighs a lossless network.

4.2.3 RoCE requires PFC. Given the above results, the
next question one might have is whether RoCE required PFC
in the first place? Figure 3 shows the performance of RoCE
with and without PFC. We find that the use of PFC helps con-
siderably here. Disabling PFC degrades performance by 1.5-
3× across the three metrics. This is because of the go-back-N
loss recovery used by current RoCE NICs, which penalizes
performance due to (i) increased congestion caused by re-
dundant retransmissions and (ii) the time and bandwidth
wasted by flows in sending these redundant packets.

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary R. Mittal et al.

RoCE (with PFC) RoCE without PFC

+Timely +DCQCN0
5

10
15
20
25
30

Av
g.

 S
lo

wd
ow

n

+Timely +DCQCN0
1
2
3
4
5
6

Av
g.

 FC
T

(m
s)

+Timely +DCQCN0
10
20
30
40
50
60
70
80

99
%

ile
 F

CT
 (m

s)

Figure 6: Impact of disabling PFCwith RoCE, when ex-
plicit congestion control (Timely andDCQCN) is used.

4.2.4 Effect of Explicit Congestion Control. The
previous comparisons did not use any explicit congestion
control. However, as mentioned before, RoCE today is typi-
cally deployed in conjunction with some explicit congestion
control mechanism such as Timely or DCQCN. We now eval-
uate whether using such explicit congestion control mecha-
nisms affect the key trends described above.
Figure 4 compares IRN and RoCE’s performance when

Timely or DCQCN is used. IRN continues to perform better
by up to 1.5-2.2× across the three metrics.
Figure 5 evaluates the impact of enabling PFC with IRN,

when Timely or DCQCN is used. We find that, IRN’s perfor-
mance is largely unaffected by PFC, since explicit congestion
control reduces both the packet drop rate as well as the
number of pause frames generated. The largest performance
improvement due to enabling PFC was less than 1%, while
its largest negative impact was about 3.4%.

Finally, Figure 6 compares RoCE’s performance with and
without PFC, when Timely or DCQCN is used.3 We find that,
unlike IRN, RoCE (with its inefficient go-back-N loss recov-
ery) requires PFC, even when explicit congestion control is
used. Enabling PFC improves RoCE’s performance by 1.35×
to 3.5× across the three metrics.

Key Takeaways: The following are, therefore, the three
takeaways from these results: (1) IRN (without PFC) performs
better than RoCE (with PFC), (2) IRN does not require PFC,
and (3) RoCE requires PFC.
4.3 Factor Analysis of IRN

We now perform a factor analaysis of IRN, to individually
study the significance of the two key changes IRN makes to
RoCE, namely (1) efficient loss recovery and (2) BDP-FC. For
this we compare IRN’s performance (as evaluated in §4.2)
with two different variations that highlight the significance
of each change: (1) enabling go-back-N loss recovery instead
of using SACKs, and (2) disabling BDP-FC. Figure 7 shows
the resulting average FCTs (we saw similar trends with other
metrics). We discuss these results in greater details below.

3RoCE + DCQCN without PFC presented in Figure 6 is equivalent to Re-
silient RoCE [34]. We provide a direct comparison of IRN with Resilient
RoCE later in this section.

IRN IRN + Timely IRN + DCQCN0.0
0.5
1.0
1.5
2.0
2.5
3.0

Av
g.

 F
CT

 (m
s) 7.1ms IRN

IRN with Go-Back-N
IRN without BDP-FC

Figure 7: The figure shows the effect of doing go-back-
N loss recovery and disabling BDP-FC with IRN. The
y-axis is capped at 3ms to better highlight the trends.

Need for Efficient Loss Recovery: The first two bars in
Figure 7 compare the average FCT of default SACK-based IRN
and IRN with go-back-N respectively. We find that the latter
results in significantly worse performance. This is because
of the bandwidth wasted by go-back-N due to redundant
retransmissions, as described before.
Before converging to IRN’s current loss recovery mecha-

nism, we experimented with alternative designs. In particular
we explored the following questions:
(1) Can go-back-N be made more efficient? Go-back-N does
have the advantage of simplicity over selective retransmis-
sion, since it allows the receiver to simply discard out-of-
order packets. We, therefore, tried to explore whether we
can mitigate the negative effects of go-back-N. We found
that explicitly backing off on losses improved go-back-N per-
formance for Timely (though, not for DCQCN). Nonetheless,
SACK-based loss recovery continued to perform significantly
better across different scenarios (with the difference in aver-
age FCT for Timely ranging from 20%-50%).
(2) Do we need SACKs? We tried a selective retransmit scheme
without SACKs (where the sender does not maintain a bitmap
to track selective acknowledgements). This performed better
than go-back-N. However, it fared poorly when there were
multiple losses in a window, requiring multiple round-trips
to recover from them. The corresponding degradation in
average FCT ranged from <1% up to 75% across different
scenarios when compared to SACK-based IRN.
(3) Can the timeout value be computed dynamically? As de-
scribed in §3, IRN uses two static (low and high) timeout
values to allow faster recovery for short messages, while
avoiding spurious retransmissions for large ones. We also
experimented with an alternative approach of using dynami-
cally computed timeout values (as with TCP), which not only
complicated the design, but did not help since these effects
were then be dominated by the initial timeout value.
Significance of BDP-FC: The first and the third bars in
Figure 7 compare the average FCT of IRN with and with-
out BDP-FC respectively. We find that BDP-FC significantly
improves performance by reducing unnecessary queuing.
Furthermore, it prevents a flow that is recovering from a

Revisiting Network Support for RDMA SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

0 1 2 3 4 5
Latency (ms)

90
92
94
96
98

100

CD
F

RoCE (with PFC)
IRN with PFC
IRN (without PFC)

0.0 0.2 0.4 0.6 0.8 1.0
Latency (ms)

90
92
94
96
98

100

CD
F

RoCE (with PFC)
IRN with PFC
IRN (without PFC)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Latency (ms)

90
92
94
96
98

100

CD
F

RoCE (with PFC)
IRN with PFC
IRN (without PFC)

(a) No CC (b) Timely (c) DCQCN
Figure 8: The figures compare the tail latency for single-packet messages for IRN, IRN with PFC, and RoCE (with
PFC), across different congestion control algorithms.

packet loss from sending additional new packets and increas-
ing congestion, until the loss has been recovered.
Efficient Loss Recovery vs BDP-FC: Comparing the sec-
ond and third bars in Figure 7 shows that the performance
of IRN with go-back-N loss recovery is generally worse than
the performance of IRN without BDP-FC. This indicates that
of the two changes IRN makes, efficient loss recovery helps
performance more than BDP-FC.

4.4 Robustness of Basic Results

We now evaluate the robustness of the basic results from
§4.2 across different scenarios and performance metrics.

4.4.1 Varying Experimental Scenario. We evaluate
the robustness of our results, as the experimental scenario
is varied from our default case. In particular, we run experi-
ments with (i) link utilization levels varied between 30%-90%,
(ii) link bandwidths varied from the default of 40Gbps to
10Gbps and 100Gbps, (iii) larger fat-tree topologies with 128
and 250 servers, (iv) a different workload with flow sizes
uniformly distributed between 500KB to 5MB, representing
background and storage traffic for RDMA, (v) the per-port
buffer size varied between 60KB-480KB, (vi) varying other
IRN parameters (increasing RTOhiдh value by up to 4 times
the default of 320µs, and increasing the N value for using
RTOlow to 10 and 15). We summarize our key observations
here and provide detailed results for each of these scenarios
in Appendix §A of an extended report [31].
Overall Results: Across all of these experimental scenarios,
we find that:
(a) IRN (without PFC) always performs better than RoCE
(with PFC), with the performance improvement ranging from
6% to 83% across different cases.
(b)When used without any congestion control, enabling PFC
with IRN always degrades performance, with the maximum
degradation across different scenarios being as high as 2.4×.
(c) Even when used with Timely and DCQCN, enabling PFC
with IRN often degrades performance (with the maximum
degradation being 39% for Timely and 20% for DCQCN). Any
improvement in performance due to enabling PFC with IRN
stays within 1.6% for Timely and 5% for DCQCN.

10 15 20 25 30 35 40 45 50
Number of senders (M)

0.92
0.94
0.96
0.98
1.00
1.02

RC
T

Ra
tio

 (I

RN
 /

Ro
CE

)

NoCC DCQCN Timely

Figure 9: The figure shows the ratio of request comple-
tion time of incast with IRN (without PFC) over RoCE
(with PFC) for varying degree of fan-ins across conges-
tion control algorithms.

Some observed trends: The drawbacks of enabling PFC
with IRN:
(a) generally increase with increasing link utilization, as the
negative impact of congestion spreading with PFC increases.
(b) decrease with increasing bandwidths, as the relative cost
of a round trip required to react to packet drops without PFC
also increases.
(c) increase with decreasing buffer sizes due to more pauses
and greater impact of congestion spreading.
We further observe that increasing RTOhiдh or N had a

very small impact on our basic results, showing that IRN is
not very sensitive to the specific parameter values.

4.4.2 Tail latency for small messages. We now look
at the tail latency (or tail FCT) of the single-packet messages
from our default scenario, which is another relevant metric
in datacenters [29]. Figure 8 shows the CDF of this tail la-
tency (from 90%ile to 99.9%ile), across different congestion
control algorithms. Our key trends from §4.2 hold even for
this metric. This is because IRN (without PFC) is able to re-
cover from single-packet message losses quickly due to the
low RTOlow timeout value. With PFC, these messages end
up waiting in the queues for similar (or greater) duration
due to pauses and congestion spreading. For all cases, IRN
performs significantly better than RoCE.

4.4.3 Incast. We now evaluate incast scenarios, both
with and without cross-traffic. The incast workload without
any cross traffic can be identified as the best case for PFC,

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary R. Mittal et al.

since only valid congestion-causing flows are paused without
unnecessary head-of-the-line blocking.
Incast without cross-traffic:We simulate the incast work-
load on our default topology by striping 150MB of data across
M randomly chosen sender nodes that send it to a fixed desti-
nation node [17]. We varyM from 10 to 50. We consider the
request completion time (RCT) as the metric for incast per-
formance, which is when the last flow completes. For eachM ,
we repeat the experiment 100 times and report the average
RCT. Figure 9 shows the results, comparing IRN with RoCE.
We find that the two have comparable performance: any in-
crease in the RCT due to disabling PFC with IRN remained
within 2.5%. The results comparing IRN’s performance with
and without PFC looked very similar. We also varied our
default incast setup by changing the bandwidths to 10Gbps
and 100Gbps, and increasing the number of connections per
machine. Any degradation in performance due to disabling
PFC with IRN stayed within 9%.
Incast with cross traffic: In practice we expect incast to oc-
cur with other cross traffic in the network [23, 29].We started
an incast as described above with M = 30, along with our
default case workload running at 50% link utilization level.
The incast RCT for IRN (without PFC) was always lower
than RoCE (with PFC) by 4%-30% across the three congestion
control schemes. For the background workload, the perfor-
mance of IRN was better than RoCE by 32%-87% across the
three congestion control schemes and the three metrics (i.e.,
the average slowdown, the average FCT and the tail FCT).
Enabling PFC with IRN generally degraded performance for
both the incast and the cross-traffic by 1-75% across the three
schemes and metrics, and improved performance only for
one case (incast workload with DCQCN by 1.13%).

4.4.4 Window-based congestion control. We also
implemented conventional window-based congestion con-
trol schemes such as TCP’s AIMD and DCTCP [15] with
IRN and observed similar trends as discussed in §4.2. In fact,
when IRN is used with TCP’s AIMD, the benefits of disabling
PFC were even stronger, because it exploits packet drops as
a congestion signal, which is lost when PFC is enabled.

Summary: Our key results i.e., (1) IRN (without PFC) per-
forms better than RoCE (with PFC), and (2) IRN does not
require PFC, hold across varying realistic scenarios, conges-
tion control schemes and performance metrics.

4.5 Comparison with Resilient RoCE.

A recent proposal on Resilient RoCE [34] explores the use of
DCQCN to avoid packet losses in specific scenarios, and thus
eliminate the requirement for PFC. However, as observed
previously in Figure 6, DCQCNmay not always be successful
in avoiding packet losses across all realistic scenarios with

Resilient RoCE IRN

0
2
4
6
8

10
12
14
16

Av
g

Slo
wd

ow
n

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Av
g

FC
T

(m
s)

0
10
20
30
40
50
60
70

99
%i

le
FC

T (
m

s)

Figure 10: The figures compares resilient RoCE
(RoCE+DCQCN without PFC) with IRN.

iWARP IRN

0
2
4
6
8

10
12

Av
g

Slo
wd

ow
n

0.0
0.2
0.4
0.6
0.8
1.0

Av
g

FC
T

(m
s)

0
2
4
6
8

10
12
14
16

99
%i

le
FC

T (
m

s)

Figure 11: The figures compares iWARP’s transport
(TCP stack) with IRN.

more dynamic traffic patterns and hence PFC (with its accom-
panying problems) remains necessary. Figure 10 provides a
direct comparison of IRN with Resilient RoCE. We find that
IRN, even without any explicit congestion control, performs
significantly better than Resilient RoCE, due to better loss
recovery and BDP-FC.

4.6 Comparison with iWARP.

We finally explore whether IRN’s simplicity over the TCP
stack implemented in iWARP impacts performance. We com-
pare IRN’s performance (without any explicit congestion
control) with full-blown TCP stack’s, using INET simulator’s
in-built TCP implementation for the latter. Figure 11 shows
the results for our default scenario. We find that absence of
slow-start (with use of BDP-FC instead) results in 21% smaller
slowdowns with IRN and comparable average and tail FCTs.
These results show that in spite of a simpler design, IRN’s per-
formance is better than full-blown TCP stack’s, even without
any explicit congestion control. Augmenting IRN with TCP’s
AIMD logic further improves its performance, resulting in
44% smaller average slowdown and 11% smaller average FCT
as compared to iWARP. Furthermore, IRN’s simple design
allows it to achieve message rates comparable to current
RoCE NICs with very little overheads (as evaluated in §6).
An iWARP NIC, on the other hand, can have up to 4× smaller
message rate than a RoCE NIC (§2). Therefore, IRN provides
a simpler and more performant solution than iWARP for
eliminating RDMA’s requirement for a lossless network.

5 Implementation Considerations
We now discuss how one can incrementally update RoCE
NICs to support IRN’s transport logic, while maintaining

Revisiting Network Support for RDMA SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

the correctness of RDMA semantics as defined by the Infini-
band RDMA specification [4]. Our implementation relies on
extensions to RDMA’s packet format, e.g., introducing new
fields and packet types. These extensions are encapsulated
within IP and UDP headers (as in RoCEv2) so they only effect
the endhost behavior and not the network behavior (i.e. no
changes are required at the switches). We begin with provid-
ing some relevant context about different RDMA operations
before describing how IRN supports them.

5.1 Relevant Context

The two remote endpoints associated with an RDMA mes-
sage transfer are called a requester and a responder. The in-
terface between the user application and the RDMA NIC is
provided by Work Queue Elements or WQEs (pronounced
as wookies). The application posts a WQE for each RDMA
message transfer, which contains the application-specified
metadata for the transfer. It gets stored in the NIC while the
message is being processed, and is expired upon message
completion. The WQEs posted at the requester and at the
responder NIC are called Request WQEs and Receive WQEs
respectively. Expiration of a WQE upon message completion
is followed by the creation of a Completion Queue Element
or a CQE (pronounced as cookie), which signals the message
completion to the user application. There are four types of
message transfers supported by RDMA NICs:
Write: The requester writes data to responder’s memory.
The data length, source and sink locations are specified in
the Request WQE, and typically, no Receive WQE is required.
However, Write-with-immediate operation requires the user
application to post a Receive WQE that expires upon com-
pletion to generate a CQE (thus signaling Write completion
at the responder as well).
Read: The requester reads data from responder’s memory.
The data length, source and sink locations are specified in
the Request WQE, and no Receive WQE is required.
Send: The requester sends data to the responder. The data
length and source location is specified in the Request WQE,
while the sink location is specified in the Receive WQE.
Atomic: The requester reads and atomically updates the data
at a location in the responder’s memory, which is specified
in the Request WQE. No Receive WQE is required. Atomic
operations are restricted to single-packet messages.

5.2 Supporting RDMA Reads and Atomics

IRN relies on per-packet ACKs for BDP-FC and loss recovery.
RoCE NICs already support per-packet ACKs for Writes and
Sends. However, when doing Reads, the requester (which
is the data sink) does not explicitly acknowledge the Read
response packets. IRN, therefore, introduces packets for read
(N)ACKs that are sent by a requester for each Read response
packet. RoCE currently has eight unused opcode values

available for the reliable connected QPs, and we use one
of these for read (N)ACKs. IRN also requires the Read respon-
der (which is the data source) to implement timeouts. New
timer-driven actions have been added to the NIC hardware
implementation in the past [34]. Hence, this is not an issue.
RDMA Atomic operations are treated similar to a single-

packet RDMA Read messages.
Our simulations from §4 did not use ACKs for the RoCE

(with PFC) baseline, modelling the extreme case of all Reads.
Therefore, our results take into account the overhead of per-
packet ACKs in IRN.
5.3 Supporting Out-of-order Packet Delivery

One of the key challenges for implementing IRN is support-
ing out-of-order (OOO) packet delivery at the receiver –
current RoCE NICs simply discard OOO packets. A naive
approach for handling OOO packet would be to store all of
them in the NIC memory. The total number of OOO packets
with IRN is bounded by the BDP cap (which is about 110
MTU-sized packets for our default scenario as described in
§4.1) 4. Therefore to support a thousand flows, a NIC would
need to buffer 110MB of packets, which exceeds the memory
capacity on most commodity RDMA NICs.
We therefore explore an alternate implementation strat-

egy, where the NIC DMAs OOO packets directly to the final
address in the application memory and keeps track of them
using bitmaps (which are sized at BDP cap). This reduces NIC
memory requirements from 1KB per OOO packet to only
a couple of bits, but introduces some additional challenges
that we address here. Note that partial support for OOO
packet delivery was introduced in the Mellanox ConnectX-5
NICs to enable adaptive routing [11]. However, it is restricted
to Write and Read operations. We improve and extend this
design to support all RDMA operations with IRN.

We classify the issues due to out-of-order packet delivery
into four categories.

5.3.1 First packet issues. For some RDMA operations,
critical information is carried in the first packet of a message,
which is required to process other packets in the message.
Enabling OOO delivery, therefore, requires that some of the
information in the first packet be carried by all packets.
In particular, the RETH header (containing the remote

memory location) is carried only by the first packet of a
Write message. IRN requires adding it to every packet.

5.3.2 WQEmatching issues. Some operations require
every packet that arrives to be matched with its correspond-
ingWQE at the responder. This is done implicitly for in-order
packet arrivals. However, this implicit matching breaks with

4For QPs that only send single packet messages less than one MTU in size,
the number of outstanding packets is limited to the maximum number of
outstanding requests, which is typically smaller than the BDP cap [25, 26].

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary R. Mittal et al.

OOO packet arrivals. A work-around for this is assigning ex-
plicit WQE sequence numbers, that get carried in the packet
headers and can be used to identify the corresponding WQE
for each packet. IRN uses this workaround for the following
RDMA operations:
Send and Write-with-immediate: It is required that Receive
WQEs be consumed by Send and Write-with-immediate re-
quests in the same order in which they are posted. Therefore,
with IRN every Receive WQE, and every Request WQE for
these operations, maintains a recv_WQE_SN that indicates
the order in which they are posted. This value is carried in all
Send packets and in the last Write-with-Immediate packet, 5
and is used to identify the appropriate Receive WQE. IRN
also requires the Send packets to carry the relative offset in
the packet sequence number, which is used to identify the
precise address when placing data.
Read/Atomic: The responder cannot begin processing a Read-
/Atomic request R, until all packets expected to arrive before
R have been received. Therefore, an OOO Read/Atomic Re-
quest packet needs to be placed in a Read WQE buffer at the
responder (which is already maintained by current RoCE
NICs). With IRN, every Read/Atomic Request WQE main-
tains a read_WQE_SN, that is carried by all Read/Atomic
request packets and allows identification of the correct index
in this Read WQE buffer.

5.3.3 Last packet issues. For many RDMA operations,
critical information is carried in last packet, which is required
to complete message processing. Enabling OOO delivery,
therefore, requires keeping track of such last packet arrivals
and storing this information at the endpoint (either on NIC
or main memory), until all other packets of that message
have arrived. We explain this in more details below.

A RoCE responder maintains a message sequence number
(MSN) which gets incremented when the last packet of a
Write/Send message is received or when a Read/Atomic re-
quest is received. ThisMSN value is sent back to the requester
in the ACK packets and is used to expire the corresponding
Request WQEs. The responder also expires its Receive WQE
when the last packet of a Send or a Write-With-Immediate
message is received and generates a CQE. The CQE is pop-
ulated with certain meta-data about the transfer, which is
carried by the last packet. IRN, therefore, needs to ensure
that the completion signalling mechanism works correctly
even when the last packet of a message arrives before others.
For this, an IRN responder maintains a 2-bitmap, which in
addition to tracking whether or not a packet p has arrived,
also tracks whether it is the last packet of a message that will
trigger (1) an MSN update and (2) in certain cases, a Receive

5A Receive WQE is consumed only by the last packet of a Write-with-
immediate message, and is required to process all packets for a Send
message.

WQE expiration that is followed by a CQE generation. These
actions are triggered only after all packets up to p have been
received. For the second case, the recv_WQE_SN carried by
p (as discussed in §5.3.2) can identify the Receive WQE with
which the meta-data in p needs to be associated, thus en-
abling a premature CQE creation. The premature CQE can
be stored in the main memory, until it gets delivered to the
application after all packets up to p have arrived.
5.3.4 Application-level Issues. Certain applications

(for example FaRM [21]) rely on polling the last packet of a
Write message to detect completion, which is incompatible
with OOO data placement. This polling based approach vi-
olates the RDMA specification (Sec o9-20 [4]) and is more
expensive than officially supportedmethods (FaRM [21] men-
tions moving on to using the officially supported Write-with-
Immediate method in the future for better scalability). IRN’s
design provides all of the Write completion guarantees as
per the RDMA specification. This is discussed in more details
in Appendix §B of the extended report [31].
OOO data placement can also result in a situation where

data written to a particular memory location is overwritten
by a restransmitted packet from an older message. Typically,
applications using distributed memory frameworks assume
relaxed memory ordering and use application layer fences
whenever strong memory consistency is required [14, 36].
Therefore, both iWARP and Mellanox ConnectX-5, in sup-
porting OOO data placement, expect the application to deal
with the potential memory over-writing issue and do not
handle it in the NIC or the driver. IRN can adopt the same
strategy. Another alternative is to deal with this issue in the
driver, by enabling the fence indicator for a newly posted
request that could potentially overwrite an older one.
5.4 Other Considerations

Currently, the packets that are sent and received by a re-
quester use the same packet sequence number (PSN) space.
This interferes with loss tracking and BDP-FC. IRN, there-
fore, splits the PSN space into two different ones (1) sPSN
to track the request packets sent by the requester, and (2)
rPSN to track the response packets received by the requester.
This decoupling remains transparent to the application and
is compatible with the current RoCE packet format. IRN can
also support shared receive queues and send with invalidate
operations and is compatible with use of end-to-end credit.
We provide more details about these in Appendix §B of the
extended report [31].

6 Evaluating Implementation Overheads
We now evaluate IRN’s implementation overheads over cur-
rent RoCE NICs along the following three dimensions: in
§6.1, we do a comparative analysis of IRN’s memory require-
ments; in §6.2, we evaluate the overhead for implementing

Revisiting Network Support for RDMA SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

IRN’s packet processing logic by synthesizing it on an FPGA;
and in §6.3, we evaluate, via simulations, how IRN’s imple-
mentation choices impact end-to-end performance.

6.1 NIC State overhead due to IRN

Mellanox RoCE NICs support several MBs of cache to store
various metadata including per-QP and per-WQE contexts.
The additional state that IRN introduces consumes a total
of only 3-10% of the current NIC cache for a couple of thou-
sands of QPs and tens of thousands of WQEs, even when
considering large 100Gbps links. We present a breakdown
this additional state below.
Additional Per-QP Context:
State variables: IRN needs 52 bits of additional state for its
transport logic: 24 bits each to track the packet sequence
to be retransmitted and the recovery sequence, and 4 bits
for various flags. Other per-flow state variables needed for
IRN’s transport logic (e.g., expected sequence number) are
already maintained by current RoCE NICs. Hence, the per-
QP overhead is 104 bits (52 bits each at the requester and the
responder). Maintaining a timer at the responder for Read
timeouts and a variable to track in-progress Read requests
in the Read WQE buffer adds another 56 bits to the respon-
der leading to a total of 160 bits of additional per-QP state
with IRN. For context, RoCE NICs currently maintain a few
thousands of bits per QP for various state variables.
Bitmaps: IRN requires five BDP-sized bitmaps: two at the
responder for the 2-bitmap to track received packets, one
at the requester to track the Read responses, one each at
the requester and responder for tracking selective acks. As-
suming each bitmap to be 128 bits (i.e., sized to fit the BDP
cap for a network with bandwidth 40Gbps and a two-way
propagation delay of up to 24µs, typical in today’s datacen-
ter topologies [29]), IRN would require a total of 640 bits
per QP for bitmaps. This is much less than the total size of
bitmaps maintained by a QP for the OOO support in Mel-
lanox ConnectX-5 NICs.
Others: Other per-QP meta-data that is needed by an IRN
driver when a WQE is posted (e.g counters for assigning
WQE sequence numbers) or expired (e.g. premature CQEs)
can be stored directly in the main memory and do not add
to the NIC memory overhead.
Additional Per-WQE Context: As described in §5, IRN
maintains sequence numbers for certain types of WQEs. This
adds 3 bytes to the per-WQE context which is currently sized
at 64 bytes.
Additional Shared State: IRN also maintains some addi-
tional variables (or parameters) that are shared across QPs.
This includes the BDP cap value, the RTOlow value, and N
for RTOlow , which adds up to a total of only 10 bytes.

6.2 IRN’s packet processing overhead

We evaluate the implementation overhead due to IRN’s per-
packet processing logic, which requires various bitmap ma-
nipulations. The logic for other changes that IRN makes –
e.g., adding header extensions to packets, premature CQE
generation, etc. – are already implemented in RoCE NICs
and can be easily extended for IRN.

We use Xilinx Vivado Design Suite 2017.2 [3] to do a high-
level synthesis of the four key packet processing modules (as
described below), targeting the Kintex Ultrascale XCKU060
FPGA which is supported as a bump-on-the-wire on the
Mellanox Innova Flex 4 10/40Gbps NICs [12].

6.2.1 Synthesis Process. To focus on the additional
packet processing complexity due to IRN, our implementa-
tion for the four modules is stripped-down. More specifically,
each module receives the relevant packet metadata and the
QP context as streamed inputs, relying on a RoCE NIC’s
existing implementation to parse the packet headers and
retrieve the QP context from the NIC cache (or the system
memory, in case of a cache miss). The updated QP context
is passed as streamed output from the module, along with
other relevant module-specific outputs as described below.
(1) receiveData: Triggered on a packet arrival, it outputs the
relevant information required to generate an ACK/NACK
packet and the number of Receive WQEs to be expired, along
with the updated QP context (e.g. bitmaps, expected sequence
number, MSN).
(2) txFree: Triggered when the link’s Tx is free for the QP
to transmit, it outputs the sequence number of the packet
to be (re-)transmitted and the updated QP context (e.g. next
sequence to transmit). During loss-recovery, it also performs
a look ahead by searching the SACK bitmap for the next
packet sequence to be retransmitted.
(3) receiveAck: Triggered when an ACK/NACK packet arrives,
it outputs the updated QP context (e.g. SACK bitmap, last
acknowledged sequence).
(4) timeout: If triggered when the timer expires using RTOlow
value (indicated by a flag in the QP context), it checks if the
condition for using RTOlow holds. If not, it does not take
any action and sets an output flag to extend the timeout
to RTOhiдh . In other cases, it executes the timeout action
and returns the updated QP context. Our implementation
relies on existing RoCE NIC’s support for setting timers, with
the RTOlow value being used by default, unless explicitly
extended.
The bitmap manipulations in the first three modules ac-

count for most of the complexity in our synthesis. Each
bitmap was implemented as a ring buffer, using an arbitrary
precision variable of 128 bits, with the head corresponding
to the expected sequence number at the receiver (or the cu-
mulative acknowledgement number at the sender). The key

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary R. Mittal et al.

Module
Name

Resource Usage Max Min
FF LUT Latency Throughput

receiveData 0.62% 1.93% 16.5 ns 45.45 Mpps
txFree 0.32% 0.95% 15.9 ns 47.17 Mpps

receiveAck 0.4% 1.05% 15.96 ns 46.99 Mpps
timeout 0.01% 0.08% <6.3 ns 318.47 Mpps

Total Resource Usage: 1.35% FF and 4.01% LUTs
Min Bottleneck Tpt: 45.45Mpps

Table 2: Performance and resource usage for differ-
ent packet processingmodules onXilinx Kintex Ultra-
scale KU060 FPGA.

bitmap manipulations required by IRN can be reduced to
the following three categories of known operations: (i) find-
ing first zero, to find the next expected sequence number in
receiveData and the next packet to retransmit in txFree (ii)
popcount to compute the increment in MSN and the num-
ber of Receive WQEs to be expired in receiveData, (iii) bit
shifts to advance the bitmap heads in receiveData and re-
ceiveAck. We optimized the first two operations by dividing
the bitmap variables into chunks of 32 bits and operating on
these chunks in parallel.
We validated the correctness of our implementation by

generating input event traces for each synthesized module
from the simulations described in §4 and passing them as
input in the test bench used for RTL verification by the
Vivado Design Suite. The output traces, thus, generated were
then matched with the corresponding output traces obtained
from the simulator. We also used the Vivado HLS tool to
export our RTL design to create IP blocks for our modules.

6.2.2 Synthesis Results. Our FPGA synthesis report
has been summarized in Table 2 and discussed below.
Resource Usage: The second and third columns in Table 2
report the percentage of flip-flops (FF) and look-up tables
(LUT) used for the four modules (no BRAM or DSP48E units
were consumed). We find that each of IRN’s packet process-
ing modules consume less than 1% FFs and 2% LUTs (with a
total of 1.35% FFs and 4% LUTs consumed). Increasing the
bitmap size to support 100Gbps links consumed a total of
2.66% of FFs and 9.5% of LUTs on the same device (though
we expect the relative resource usage to be smaller on a
higher-scale device designed for 100Gbps links).
Performance: The third and fourth column in Table 2 report
the worst-case latency and throughput respectively for each
module. 6 The latency added by each module is at most only
16.5ns. The receiveData module (requiring more complex
bitmap operations) had the lowest throughput of 45.45Mpps.
This is high enough to sustain a rate of 372Gbps for MTU-
sized packets. It is also higher than the maximum rate of

6The worst-case throughput was computed by dividing the clock frequency
with the maximum initiation interval, as reported by the Vivado HLS syn-
thesis tool [7].

39.5Mpps that we observed on Mellanox MCX416A-BCAT
RoCE NIC across different message sizes (2 bytes - 1KB), after
applying various optimizations such as batching and using
multiple queue-pairs. A similar message rate was observed in
prior work [25]. Note that we did not use pipelining within
our modules, which can further improve throughput.
While we expect IRN to be implemented on the ASIC in-

tegrated with the existing RoCE implementation, we believe
that the modest resources used on an FPGA board supported
as an add-on in recent RDMA-enabled NICs, provides some
intuition about the feasibility of the changes required by IRN.
Also, note that the results reported here are far from the opti-
mal results that can be achieved on an ASIC implementation
due to two sources of sub-optimality: (i) using HLS for FPGA
synthesis has been found to be up to 2× less optimal than
directly using Verilog [27] and (ii) FPGAs, in general, are
known to be less optimal than ASICs.

6.3 Impact on end-to-end performance

We now evaluate how IRN’s implementation overheads im-
pact the end-to-end performance. We identify the following
two implementation aspects that could potentially impact
end-to-end performance and model these in our simulations.
Delay in Fetching Retransmissions: While the regular
packets sent by a RoCE NIC are typically pre-fetched, we
assume that the DMA request for retransmissions is sent only
after the packet is identified as lost (i.e. when loss recovery
is triggered or when a look-ahead is performed). The time
taken to fetch a packet over PCIe is typically between a few
hundred nanoseconds to <2µs [8, 32]. We set a worst-case
retransmission delay of 2µs for every retransmitted packet
i.e. the sender QP is allowed to retransmit a packet only after
2µs have elapsed since the packet was detected as lost.
Additional Headers: As discussed in §5, some additional
headers are needed in order to DMA the packets directly to
the application memory, of which, the most extreme case is
the 16 bytes of RETH header added to every Write packet.
Send data packets have an extra header of 6 bytes, while Read
responses do not require additional headers. We simulate the
worst-case scenario of all Writes with every packet carrying
16 bytes additional header.
Results: Figure 12 shows the results for our default scenario
after modeling these two sources of worst-case overheads.
We find that they make little difference to the end-to-end
performance (degrading the performance by 4-7% when com-
pared to IRN without overheads). The performance remains
35%-63% better than our baseline of RoCE (with PFC). We
also verified that the retransmission delay of 2µs had a much
smaller impact on end-to-end performance (2µs is very small
compared to the network round-trip time taken to detect a
packet loss and to recover from it, which could be of the order
of a few hundred microseconds). The slight degradation in

Revisiting Network Support for RDMA SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

RoCE (with PFC) IRN (no overheads) IRN (worst-case overheads)

RoCE or IRN +Timely +DCQCN0
5

10
15
20
25
30
35

Av
g.

 S
lo

wd
ow

n

RoCE or IRN +Timely +DCQCN0.0
0.5
1.0
1.5
2.0
2.5
3.0

Av
g.

 F
CT

 (m
s)

RoCE or IRN +Timely +DCQCN0
10
20
30
40
50
60

99
%

ile
 F

CT
 (m

s)

Figure 12: The figures show the performance of IRN with worse case overheads, comparing it with IRN without
any overheads and with RoCE for our default case scenario.

performance observed here can almost entirely by attributed
to the additional 16 bytes header in every packet. Therefore,
we would expect the performance impact to be even smaller
when there is a mix of Write and Read workloads.

6.4 Summary

Our analysis shows that IRN is well within the limits of fea-
sibility, with small chip area and NIC memory requirements
and minor bandwidth overhead. We also validated our analy-
sis through extensive discussions with two commercial NIC
vendors (including Mellanox); both vendors confirmed that
the IRN design can be easily implemented on their hardware
NICs. Inspired by the results presented in this paper, Mel-
lanox is considering implementing a version of IRN in their
next release.

7 Discussion and Related Work

Backwards Compatibility:We briefly sketch one possible
path to incrementally deploying IRN. We envision that NIC
vendors will manufacture NICs that support dual RoCE/IRN
modes. The use of IRN can be negotiated between two end-
points via the RDMA connection manager, with the NIC
falling back to RoCE mode if the remote endpoint does not
support IRN. (This is similar to what was used in moving
from RoCEv1 to RoCEv2.) Network operators can continue
to run PFC until all their endpoints have been upgraded to
support IRN at which point PFC can be permanently dis-
abled. During the interim period, hosts can communicate
using either RoCE or IRN, with no loss in performance.
Reordering due to load-balancing:Datacenters today use
ECMP for load balancing [23], that maintains orderingwithin
a flow. IRN’s OOO packet delivery support also allows for
other load balancing schemes that may cause packet reorder-
ing within a flow [20, 22]. IRN’s loss recovery mechanism
can be made more robust to reordering by triggering loss re-
covery only after a certain threshold of NACKs are received.
Other hardware-based loss recovery: MELO [28], a re-
cent scheme developed in parallel to IRN, proposes an alter-
native design for hardware-based selective retransmission,
where out-of-order packets are buffered in an off-chip mem-
ory. Unlike IRN, MELO only targets PFC-enabled environ-
ments with the aim of greater robustness to random losses

caused by failures. As such, MELO is orthogonal to our main
focus which is showing that PFC is unnecessary. Nonetheless,
the existence of alternate designs such asMELO’s further cor-
roborates the feasibility of implementing better loss recovery
on NICs.
HPC workloads: The HPC community has long been a
strong supporter of losslessness. This is primarily because
HPC clusters are smaller with more controlled traffic pat-
terns, and hence the negative effects of providing loss-
lessness (such as congestion spreading and deadlocks) are
rarer. PFC’s issues are exacerbated on larger scale clus-
ters [23, 24, 29, 35, 38].
Credit-based Flow Control: Since the focus of our work
was RDMA deployment over Ethernet, our experiments used
PFC. Another approach to losslessness, used by Infiniband, is
credit-based flow control, where the downlink sends credits
to the uplink when it has sufficient buffer capacity. Credit-
based flow control suffers from the same performance issues
as PFC: head-of-the-line blocking, congestion spreading, the
potential for deadlocks, etc. We, therefore, believe that our
observations from §4 can be applied to credit-based flow
control as well.

8 Acknowledgement
We would like to thank Amin Tootoonchian, Anirudh Sivara-
man, Emmanuel Amaro and Ming Liu for the helpful discus-
sions on some of the implementation specific aspects of this
work, and Brian Hausauer for his detailed feedback on an
earlier version of this paper. We are also thankful to Nandita
Dukkipati and Amin Vahdat for the useful discussions in the
early stages of this work. We would finally like to thank our
anonymous reviewers for their feedback which helped us in
improving the paper, and our shepherd Srinivasan Seshan
who helped shape the final version of this paper. This work
was supported in parts by a Google PhD Fellowship and by
Mellanox, Intel and the National Science Foundation under
Grant No. 1704941, 1619377 and 1714508.

References
[1] http://omnetpp.org/.
[2] https://inet.omnetpp.org.
[3] Xilinx Vivado Design Suite. https://www.xilinx.com/products/

design-tools/vivado.html.

http://omnetpp.org/
https://inet.omnetpp.org
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary R. Mittal et al.

[4] InfiniBand architecture volume 1, general specifications, release 1.2.1.
www.infinibandta.org/specs, 2008.

[5] Supplement to InfiniBand architecture specification volume 1 release
1.2.2 annex A16: RDMA over Converged Ethernet (RoCE). www.
infinibandta.org/specs, 2010.

[6] IEEE. 802.11Qbb. Priority based flow control, 2011.
[7] Vivado Design Suite User Guide. https://goo.gl/akRdXC, 2013.
[8] http://www.xilinx.com/support/documentation/white_papers/

wp350.pdf, 2014.
[9] Supplement to InfiniBand architecture specification volume 1 release

1.2.2 annex A17: RoCEv2 (IP routable RoCE),. www.infinibandta.org/
specs, 2014.

[10] Mellanox ConnectX-4 Product Brief. https://goo.gl/HBw9f9, 2016.
[11] Mellanox ConnectX-5 Product Brief. https://goo.gl/ODlqMl, 2016.
[12] Mellanox Innova Flex 4 Product Brief. http://goo.gl/Lh7VN4, 2016.
[13] RoCE vs. iWARP Competitive Analysis. http://www.mellanox.com/

related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf, 2017.
[14] Sarita V Adve and Hans-J Boehm. Memory models: a case for rethink-

ing parallel languages and hardware. Communications of the ACM,
2010.

[15] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra
Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari
Sridharan. Data Center TCP (DCTCP). In Proc. ACM SIGCOMM, 2010.

[16] Mohammad Alizadeh, Shuang Yang, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. Deconstructing Datacenter Packet
Transport. In Proc. ACMWorkshop on Hot Topics in Networks (HotNets),
2012.

[17] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. pFabric: Minimal
Near-optimal Datacenter Transport. In Proc. ACM SIGCOMM, 2013.

[18] Appenzeller, Guido and Keslassy, Isaac and McKeown, Nick. Sizing
router buffers. In Proc. ACM SIGCOMM, 2004.

[19] Theophilus Benson, Aditya Akella, and David Maltz. Network Traffic
Characteristics of Data Centers in the Wild. In Proc. ACM Internet
Measurement Conference (IMC), 2012.

[20] Advait Dixit, Pawan Prakash, Y Charlie Hu, and Ramana Rao Kompella.
On the impact of packet spraying in data center networks. In Proc.
IEEE INFOCOM, 2013.

[21] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. FaRM: Fast Remote Memory. In Proc. USENIX NSDI,
2014.

[22] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey, Yashar Ganjali, and
Amin Firoozshahian. DRILL: Micro Load Balancing for Low-latency
Data Center Networks. In Proc. ACM SIGCOMM, 2017.

[23] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,
Jitu Padhye, and Marina Lipshteyn. RDMA over commodity ethernet
at scale. In Proc. ACM SIGCOMM, 2016.

[24] Shuihai Hu, Yibo Zhu, Peng Cheng, Chuanxiong Guo, Kun Tan, Jiten-
dra Padhye, and Kai Chen. Deadlocks in Datacenter Networks: Why
Do They Form, and How to Avoid Them. In Proc. ACM Workshop on
Hot Topics in Networks (HotNets), 2016.

[25] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using RDMA
Efficiently for Key-value Services. In Proc. ACM SIGCOMM, 2014.

[26] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design Guide-
lines for High Performance RDMA Systems. In Proc. USENIX ATC,
2016.

[27] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo,
Ningyi Xu, Yongqiang Xiong, Peng Cheng, and Enhong Chen. ClickNP:
Highly Flexible and High Performance Network Processing with Re-
configurable Hardware. In Proc. ACM SIGCOMM, 2016.

[28] Yuanwei Lu, Guo Chen, Zhenyuan Ruan, Wencong Xiao, Bojie Li,
Jiansong Zhang, Yongqiang Xiong, Peng Cheng, and Enhong Chen.

Memory Efficient Loss Recovery for Hardware-based Transport in
Datacenter. In Proc. First Asia-Pacific Workshop on Networking (APNet),
2017.

[29] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan
Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wether-
all, and David Zats. TIMELY: RTT-based Congestion Control for the
Datacenter. In Proc. ACM SIGCOMM, 2015.

[30] Radhika Mittal, Justine Sherry, Sylvia Ratnasamy, and Scott Shenker.
Recursively Cautious Congestion Control. In Proc. USENIX NSDI, 2014.

[31] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker. Revisit-
ing Network Support for RDMA (Extended Version). arXiv:1806.08159,
2018.

[32] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar, Ab-
dul Kabbani, George Porter, and Amin Vahdat. SENIC: Scalable NIC
for End-host Rate Limiting. In Proc. USENIX NSDI, 2014.

[33] Renato Recio, Bernard Metzler, Paul Culley, Jeff Hilland, and Dave
Garcia. A Remote Direct Memory Access Protocol Specification. RFC
5040, 2007.

[34] Alexander Shpiner, Eitan Zahavi, Omar Dahley, Aviv Barnea, Rotem
Damsker, Gennady Yekelis, Michael Zus, Eitan Kuta, and Dean Baram.
RoCE RocksWithout PFC: Detailed Evaluation. In Proc. ACMWorkshop
on Kernel-Bypass Networks (KBNets), 2017.

[35] Alexander Shpiner, Eitan Zahavi, Vladimir Zdornov, Tal Anker, and
Matty Kadosh. Unlocking Credit Loop Deadlocks. In Proc. ACM
Workshop on Hot Topics in Networks (HotNets), 2016.

[36] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory
Consistency and Cache Coherence. Morgan & Claypool Publishers, 1st
edition, 2011.

[37] Brent Stephens, Alan L Cox, Ankit Singla, John Carter, Colin Dixon,
and Wesley Felter. Practical DCB for improved data center networks.
In Proc. IEEE INFOCOM, 2014.

[38] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina
Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-
hamadHaj Yahia, andMing Zhang. Congestion Control for Large-Scale
RDMA Deployments. In Proc. ACM SIGCOMM, 2015.

www.infinibandta.org/specs
www.infinibandta.org/specs
www.infinibandta.org/specs
https://goo.gl/akRdXC
http://www.xilinx.com/support/documentation/white_papers/wp350.pdf
http://www.xilinx.com/support/documentation/white_papers/wp350.pdf
www.infinibandta.org/specs
www.infinibandta.org/specs
https://goo.gl/HBw9f9
https://goo.gl/ODlqMl
http://goo.gl/Lh7VN4
http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf
http://www.mellanox.com/related-docs/whitepapers/WP_RoCE_vs_iWARP.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Infiniband RDMA and RoCE
	2.2 Priority Flow Control
	2.3 iWARP vs RoCE

	3 IRN Design
	3.1 IRN's Loss Recovery Mechanism
	3.2 IRN's BDP-FC Mechanism

	4 Evaluating IRN's Transport Logic
	4.1 Experimental Settings
	4.2 Basic Results
	4.3 Factor Analysis of IRN
	4.4 Robustness of Basic Results
	4.5 Comparison with Resilient RoCE.
	4.6 Comparison with iWARP.

	5 Implementation Considerations
	5.1 Relevant Context
	5.2 Supporting RDMA Reads and Atomics
	5.3 Supporting Out-of-order Packet Delivery
	5.4 Other Considerations

	6 Evaluating Implementation Overheads
	6.1 NIC State overhead due to IRN
	6.2 IRN's packet processing overhead
	6.3 Impact on end-to-end performance
	6.4 Summary

	7 Discussion and Related Work
	8 Acknowledgement
	References

