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Abstract
When troubleshooting buggy executions of distributed
systems, developers typically start by manually separat-
ing out events that are responsible for triggering the
bug (signal) from those that are extraneous (noise). We
present DEMi, a tool for automatically performing this
minimization. We apply DEMi to buggy executions of two
very different distributed systems, Raft and Spark, and
find that it produces minimized executions that are be-
tween 1X and 4.6X the size of optimal executions.

1 Introduction
Even simple code can contain bugs (e.g., crashes due
to unexpected input). But the developers of distributed
systems face additional challenges, such as concurrency,
asynchrony, and partial failure, which require them to
consider all possible ways that non-determinism might
manifest itself. Since the number of event orderings a dis-
tributed system may encounter grows exponentially with
the number of events, bugs are commonplace.

Software developers discover bugs in several ways.
Most commonly, they find them through unit and in-
tegration tests. These tests are ubiquitous, but they are
limited to cases that developers anticipate themselves.
To uncover unanticipated cases, semi-automated testing
techniques such as fuzzing (where sequences of message
deliveries, failures, etc. are injected into the system) are
effective. Finally, despite pre-release testing, bugs may
turn up once the code is deployed in production.

The last two means of bug discovery present a signifi-
cant challenge to developers: the system can run for long
periods before problems manifest themselves. The re-
sulting executions can contain a large number of events,
most of which are not relevant to triggering the bug. Un-
derstanding how a trace containing thousands of concur-
rent events lead the system to an unsafe state requires
significant expertise, time,1 and luck.

Faulty execution traces can be made easier to under-
stand if they are first minimized, so that only events that
are relevant to triggering the bug remain. In fact, devel-
opers often start troubleshooting by manually perform-
ing this minimization. Since developer time is typically

1Developers spend a significant portion of their time debugging
(49% of their time according to one study [52]), especially when the
bugs involve concurrency (70% of reported concurrency bugs in [37]
took days to months to fix).

much more costly than machine time, automated mini-
mization tools for sequential test cases [24, 86, 94] have
already proven themselves valuable, and are routinely
applied to bug reports for software projects such as Fire-
fox [1], LLVM [7], and GCC [6].

In this paper we address the problem of automatically
minimizing executions of distributed systems. We focus
on executions generated by fuzz testing, but we also il-
lustrate how one might minimize production traces.

Distributed executions have two distinguishing fea-
tures. Most importantly, input events (e.g., failures) are
interleaved with internal events (e.g., intra-process mes-
sage deliveries) of concurrent processes. Minimization
algorithms must therefore consider both which input
events and which (of the exponentially many) event
schedules are likely to still trigger the bug. Our main con-
tribution (discussed in section 3) is a set of techniques
for searching through the space of event schedules in a
timely manner; these techniques are inspired by our un-
derstanding of how practical systems behave.

Distributed systems also frequently exhibit non-
determinism (e.g., since they make extensive use of
timers to detect failures), complicating replay. We ad-
dress this challenge (as we discuss in section 4) by in-
strumenting the Akka actor system framework [2] to gain
nearly perfect control over when events occur.

With the exception of our prior work [70], we are un-
aware of any other tool that solves this problem with-
out needing to analyze the code. Our prior work targeted
a specific distributed system (SDN controllers), and fo-
cused on minimizing input events given limited control
over the execution [70]. Here we target a broader range
of systems, define the general problem of execution min-
imization, exercise significantly greater control, and sys-
tematically explore the state space. We also articulate
new minimization strategies that quickly reduce input
events, internal events, and message contents.

Our tool, Distributed Execution Minimizer (DEMi), is
implemented in ∼14,000 lines of Scala. We have applied
DEMi to akka-raft [3], an open source Raft consensus
implementation, and Apache Spark [90], a widely used
data analytics framework. Across 10 known and discov-
ered bugs, DEMi produces executions that are within
a factor of 1X to 4.6X (1.6X median) the size of the
smallest possible bug-triggering execution, and between



1X and 16X (4X median) smaller than the executions
produced by the previous state-of-the-art blackbox tech-
nique [70]. The results we find for these two very dif-
ferent systems leave us optimistic that these techniques,
along with adequate visibility into events (either through
a framework like Akka, or through custom monitoring),
can be applied successfully to a wider range of systems.

2 Problem Statement
We start by introducing a model of distributed systems
as groundwork for defining our goals. As we discuss fur-
ther in §4.2, we believe this model is general enough to
capture the behavior of many practical systems.

2.1 System Model

Following [33], we model a distributed system as a col-
lection of N single-threaded processes communicating
through messages. Each process p has unbounded mem-
ory, and behaves deterministically according to a transi-
tion function of its current state and the messages it re-
ceives. The overall system S is defined by the transition
function and initial configuration for each process.

Processes communicate by sending messages over a
network. A message is a pair (p,m), where p is the iden-
tity of the destination process, and m is the message
value. The network maintains a buffer of pending mes-
sages that have been sent but not yet delivered. Timers
are modeled as messages a process can request to be de-
livered to itself at a specified later point in the execution.

A configuration of the system consists of the internal
state of each process and the contents of the network’s
buffer. Initially the network buffer is empty.

An event moves the system from one configuration to
another. Events can be one of two kinds. Internal events
take place by removing a message m from the network’s
buffer and delivering it to the destination p. Then, de-
pending on m and p’s internal state, p enters a new in-
ternal state determined by its transition function, and
sends a finite set of messages to other processes. Since
processes are deterministic, internal transitions are com-
pletely determined by the contents of m and p’s state.

Events can also be external. The three external events
we consider are: process starts, which create a new pro-
cess; forced restarts (crash-recoveries), which force a
process to its initial state (though it may maintain non-
volatile state); and external message sends (p,m), which
insert a message sent from outside the system into the
network buffer (which may be delivered later as an inter-
nal event). We do not need to explicitly model fail-stop
failures, since these are equivalent to permanently parti-
tioning a process from all other processes.

A schedule is a finite sequence τ of events (both ex-
ternal and internal) that can be applied, in turn, start-
ing from an initial configuration. Applying each event

in the schedule results in an execution. We say that a
schedule ‘contains’ a sequence of external events E =
[e1,e2, . . . ,en] if it includes only those external events
(and no other external events) in the given order.

2.2 Testing

An invariant is a predicate P (a safety condition) over the
internal state of all processes at a particular configuration
C. We say that configuration C violates the invariant if
P(C) is false, denoted P(C).

A test orchestrator generates sequences of external
events E = [e1,e2, . . . ,en], executes them along with
some (arbitrary) schedule of internal events, and checks
whether any invariants were violated during the execu-
tion. The test orchestrator records the external events it
injected, the violation it found, and the interleavings of
internal events that appeared during the execution.

2.3 Problem Definition

We are given a schedule τ injected by a test orchestrator,2

along with a specific invariant violation P observed at the
end of the test orchestrator’s execution.

Our main goal is to find a schedule containing a small
sequence of external (input) events that reproduces the
violation P. Formally, we define a minimal causal se-
quence (MCS) to be a subsequence of external events
E ′ v E such that there exists a schedule containing E ′

that produces P, but if we were to remove any single ex-
ternal event e from E ′, there would not exist any sched-
ules shorter3 than τ containing E ′− e that produce P.4

We start by minimizing external (input) events because
they are the first level of abstraction that developers rea-
son about. Occasionally, developers can understand the
root cause simply by examining the external events.

For more difficult bugs, developers typically step
through the internal events of the execution to understand
more precisely how the system arrived at the unsafe state.
To help with these cases, we turn to minimizing inter-
nal events after the external events have been minimized.
At this stage we fix the external events and search for
smaller schedules that still triggers the invariant viola-
tion, for example, by keeping some messages pending
rather than delivering them. Lastly, we seek to minimize
the contents (e.g. data payloads) of external messages.

Note that we do not focus on bugs involving only se-
quential computation (e.g. incorrect handling of unex-

2We explain how we obtain these schedules in §4.
3We limit the number of internal events to ensure that the search

space is finite; any asynchronous distributed system that requires de-
livery acknowledgment is not guaranteed to stop sending messages [8],
essentially because nodes cannot distinguish between crashes of their
peers and indefinite message delays.

4It might be possible to reproduce P by removing multiple events
from E ′, but checking all combinations is tantamount to enumerating
its powerset. Following [94], we only require a 1-minimal subsequence
E ′ instead of a globally minimal subsequence.
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pected input), performance, or human misconfiguration.
Those three bug types are more common than our focus:
concurrency bugs. We target concurrency bugs because
they are the most complex (correspondingly, they take
considerably more time to debug [37]), and because ma-
ture debugging tools already exist for sequential code.

With a minimized execution in hand, the developer be-
gins debugging. Echoing the benefits of sequential test
case minimization, we claim that the greatly reduced size
of the trace makes it easier to understand which code path
contains the underlying bug, allowing the developer to
focus on fixing the problematic code itself.

3 Approach
Conceptually, one could find MCSes by enumerating and
executing every possible (valid, bounded) schedule con-
taining the given external events. The globally minimal
MCS would then be the shortest sequence containing the
fewest external events that causes the safety violation.
Unfortunately, the space of all schedules is exponentially
large, so executing all possible schedules is not feasible.
This leads us to our key challenge:

How can we maximize reduction of trace size
within bounded time?

To find MCSes in reasonable time, we split schedule
exploration into two parts. We start by using delta de-
bugging [94] (shown in Appendix A), a minimization
algorithm similar to binary search, to prune extraneous
external events. Delta debugging works by picking sub-
sequences of external events, and checking whether it is
possible to trigger the violation with just those external
events starting from the initial configuration. We assume
the user gives us a time budget, and we spread this budget
evenly across each subsequence’s exploration.

To check whether a particular subsequence of exter-
nal events results in the safety violation, we need to
explore the space of possible interleavings of internal
events and external events. We use Dynamic Partial Or-
der Reduction (‘DPOR’, shown in Appendix B) to prune
this schedule space by eliminating equivalent schedules
(i.e. schedules that differ only in the ordering of commu-
tative events [34]). DPOR alone is insufficient though,
since there are still exponentially many non-commutative
schedules to explore. We therefore prioritize the order in
which we explore the schedule space.

For any prioritization function we choose, an adver-
sary could construct the program under test to behave in
a way that prevents our prioritization from making any
progress. In practice though, programmers do not con-
struct adversarial programs, and test orchestrators do not
construct adversarial inputs. We choose our prioritization
order according to observations about how the programs
we care about behave in practice.

Our central observation is that if one schedule trig-
gers a violation, schedules that are similar in their causal
structure should have a high probability of also triggering
the violation. Translating this intuition into a prioritiza-
tion function requires us to address our second challenge:

How can we reason about the similarity or dis-
similarity of two different executions?

We implement a hierarchy of match functions that tell
us whether messages from the original execution corre-
spond to the same logical message from the current exe-
cution. We start our exploration with a single, uniquely-
defined schedule that closely resembles the original exe-
cution. If this schedule does not reproduce the violation,
we begin exploring nearby schedules. We stop explo-
ration once we have either successfully found a schedule
resulting in the desired violation, or we have exhausted
the time allocated for checking that subsequence.

External event minimization ends once the system
has successfully explored all subsequences generated by
delta debugging. Limiting schedule exploration to a fixed
time budget allows minimization to finish in bounded
time, albeit at the expense of completeness (i.e., we may
not return a perfectly minimal event sequence).

To further minimize execution length, we continue to
use the same schedule exploration procedure to mini-
mize internal events once external event minimization
has completed. Internal event minimization continues
until no more events can be removed, or until the time
budget for minimization as a whole is exhausted.

Thus, our strategy is to (i) pick subsequences with
delta debugging, (ii) explore the execution of that subse-
quence with a modified version of DPOR, starting with
a schedule that closely matches the original, and then by
exploring nearby schedules, and (iii) once we have found
a near-minimal MCS, we attempt to minimize the num-
ber of internal events. With this road map in mind, below
we describe our minimization approach in greater detail.

3.1 Choosing Subsequences of External Events

We model the task of minimizing a sequence of external
events E that causes an invariant violation as a function
ExtMin that repeatedly removes parts of E and invokes
an oracle (defined in §3.2.1) to check whether the result-
ing subsequence, E ′, still triggers the violation. If E ′ trig-
gers the violation, then we can assume that the parts of
E removed to produce E ′ are not required for producing
the violation and are thus not a part of the MCS.

ExtMin can be trivially implemented by removing
events one at a time from E, invoking the oracle at each
iteration. However, this would require that we check
O(|E|) subsequences to determine whether each trig-
gers the violation. Checking a subsequence is expensive,
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since it may require exploring a large set of event sched-
ules. We therefore apply delta debugging [93, 94], an al-
gorithm similar to binary search, to achieve O(log(|E|))
average case runtime (worst case O(|E|)). The delta de-
bugging algorithm we use is shown in Appendix A.

Efficient implementations of ExtMin should not waste
time trying to execute invalid (non-sensical) external
event subsequences. We maintain validity by ensuring
that forced restarts are always preceded by a start event
for that process, and by assuming that external messages
are independent of each other, i.e., we do not currently
support external messages that, when removed, cause
some other external event to become invalid. One could
support minimization of dependent external messages by
either requiring the user to provide a grammar, or by em-
ploying the O(|E|2) version of delta debugging that con-
siders complements [94].

3.2 Checking External Event Subsequences

Whenever delta debugging selects an external event se-
quence E ′, we need to check whether E ′ can result in
the invariant violation. This requires that we enumerate
and check all schedules that contain E ′ as a subsequence.
Since the number of possible schedules is exponential in
the number of events, pruning this schedule space is es-
sential to finishing in a timely manner.

As others have observed [38], many events occurring
in a schedule are commutative, i.e., the system arrives
at the same configuration regardless of the order events
are applied. For example, consider two events e1 and e2,
where e1 is a message from process a being delivered
to process c, and e2 is a message from process b being
delivered to process d. Assume that both e1 and e2 are
co-enabled, meaning they are both pending at the same
time and can be executed in either order. Since the events
affect a disjoint set of nodes (e1 changes the state at c,
while e2 changes the state at d), executing e1 before e2
causes the system to arrive at the same state it would ar-
rive at if we had instead executed e2 before e1. e1 and
e2 are therefore commutative. This example illustrates a
form of commutativity captured by the happens-before
relation [51]: two message delivery events a and b are
commutative if they are concurrent, i.e. a 6→ b and b 6→ a,
and they affect a disjoint set of nodes.

Partial order reduction (POR) [34,38] is a well-studied
technique for pruning commutative schedules from the
search space. In the above example, given two sched-
ules that only differ in the order in which e1 and e2 ap-
pear, POR would only explore one schedule. Dynamic
POR (DPOR) [34] is a refinement of POR (shown in Ap-
pendix B): at each step, it picks a pending message to de-
liver, dynamically computes which other pending events
are not concurrent with the message it just delivered, and
sets backtrack points for each of these, which it will later

use (when exploring other non-equivalent schedules) to
try delivering the pending messages in place of the mes-
sage that was just delivered.

Even when using DPOR, the task of enumerating
all possible schedules containing E as a subsequence
remains intractable. Moreover, others have found that
naı̈ve DPOR gets stuck exploring a small portion of the
schedule space because of its depth-first exploration or-
der [57]. We address this problem in two ways: first, as
mentioned before, we limit ExtMin so it spreads its fixed
time budget roughly evenly across checking whether
each particular subsequence of external events repro-
duces the invariant violation. It does this by restricting
DPOR to exploring a fixed number of schedules before
giving up and declaring that an external event sequence
does not produce the violation. Second, to maximize
the probability that invariant violations are discovered
quickly while exploring a fixed number of schedules, we
employ a set of schedule exploration strategies to guide
DPOR’s exploration, which we describe next.

3.2.1 Schedule Exploration Strategies

We guide schedule exploration by manipulating two de-
grees of freedom within DPOR: (i) we prescribe which
pending events DPOR initially executes, and (ii) we pri-
oritize the order backtrack points are explored in. In its
original form, DPOR only performs depth-first search
starting from an arbitrary initial schedule, because it was
designed to be stateless so that it can run indefinitely in
order to find as many bugs as possible. Unlike the tra-
ditional use case, our goal is to minimize a known bug
in a timely manner. By keeping some state tracking the
schedules we have already explored, we can pick back-
track points in a prioritized (rather than depth-first) order
without exploring redundant schedules.

A scheduling strategy implements a backtrack pri-
oritization order. Scheduling strategies return the first
violation-reproducing schedule they find (if any) within
their time budget. We design our key strategy (shown in
Algorithm 1) with the following observations in mind:
Observation #1: Stay close to the original execution.
The original schedule provides us with a ‘guide’ for
how we can lead the program down a code path that
makes progress towards entering the same unsafe state.
By choosing modified schedules that have causal struc-
tures that are close to the original schedule, we should
have high probability of retriggering the violation.

We realize this observation by starting our exploration
with a single, uniquely defined schedule for each external
event subsequence: deliver only messages whose source,
destination, and contents ‘match’ (described in detail be-
low) those in the original execution, in the exact same
order that they appeared in the original execution. If an
internal message from the original execution is not pend-
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Figure 1: Example schedules. External message deliveries are shown
in red, internal message deliveries in green. Pending messages, source
addresses, and destination addresses are not shown. The ‘B’ mes-
sage becomes absent when exploring the first subsequence of external
events. We choose an initial schedule that is close to the original, ex-
cept for the masked ‘seq’ field. The violation is not triggered after the
initial schedule (depicted as 4), so we next match messages by type,
allowing us to deliver pending messages with smaller ‘Term’ numbers.

ing (i.e. sent previously by some actor) at the point that
internal message should be delivered, we skip over it and
move to the next message from the original execution.
Similarly, we ignore any pending messages that do not
match any events delivered in the original execution. In
the case where multiple pending messages match, it does
not matter which we choose (see Observation #2).
Matching Messages. A function match determines
whether a pending message from a modified execution
logically corresponds to a message delivered in the orig-
inal execution. The simplest way to implement match is
to check equality of the source, the destination, and all
bytes of the message contents. Recall though that we are
executing a subsequence of the original external events.
In the modified execution the contents of many of the
internal messages will likely change relative to message
contents from the original execution. Consider, for ex-
ample, sequence numbers that increment once for every
message a process receives (shown as the ‘seq‘ field in
Figure 1). These differences in message contents prevent
simple bitwise equality from finding many matches.
Observation #2: Data independence. Often, altered
message contents such as differing sequence numbers do
not affect the behavior of the program, at least with re-
spect to whether the program will reach the unsafe state.
Formally, this property is known as ‘data-independence’,
meaning that the values of some message contents do not
affect the system’s control-flow [71, 82].

To leverage data independence, application developers
can (optionally) supply us with a ‘message fingerprint’
function,5 which given a message returns a string that
depends on the relevant parts of the message, without

5It may be possible to extract message fingerprints automatically
using program analysis or experimentation [77]. Nonetheless, manu-
ally defining fingerprints does not require much effort (see Table 4).
Without a fingerprint function, we default to matching on message type
(Observation #3).

considering fields that should be ignored when check-
ing if two message instances from different executions
refer to the same logical message. An example finger-
print function might ignore sequence numbers and au-
thentication cookies, but concatenate the other fields of
messages. Message fingerprints are useful both as a way
of mitigating non-determinism, and as a way of reducing
the number of schedules the scheduling strategy needs
to explore (by drawing an equivalence relation between
all schedules that only differ in their masked fields). We
do not require strict data-independence in the formal
sense [71]; the fields the user-defined fingerprint func-
tion masks over may in practice affect the control flow of
the program, which is generally acceptable because we
simply use this as a strategy to guide the choice of sched-
ules, and can later fall back to exploring all schedules if
we have enough remaining time budget.

We combine observations #1 and #2 to pick a sin-
gle, unique schedule as the initial execution, defined by
selecting pending events in the modified execution that
match the original execution. This stage corresponds to
the first two lines of TEST in Algorithm 1. We show an
example initial schedule in Figure 1.
Challenge: history-dependent message contents. This
initial schedule can be remarkably effective, as demon-
strated by the fact that minimization often produces sig-
nificant reduction even when we limit it to exploring this
single schedule per external event subsequence. How-
ever, we find that without exploring additional schedules,
the MCSes we find still contain extraneous events: when
message contents depend on previous events, and the
messages delivered in the original execution contained
contents that depended on a large number of prior events,
the initial schedule will remain inflated because it never
includes “unexpected” pending messages that were not
delivered in the original execution yet have contents that
depend on fewer prior events.

To illustrate, let us consider two example faulty ex-
ecutions of the Raft consensus protocol. The first exe-
cution was problematic because all Raft messages con-
tain logical clocks (“Term numbers”) that indicate which
epoch the messages belong to. The logical clocks are in-
cremented every time there is a new leader election cy-
cle. These logical clocks cannot be masked over by the
message fingerprint, since they play an important role in
determining the control flow of the program.

In the original faulty execution, the safety violation
happened to occur at a point where logical clocks had
high values, i.e. many leader election cycles had already
taken place. We knew however that most of the leader
election cycles in the beginning of the execution were
not necessary to trigger the safety violation. Minimiza-
tion restricted to only the initial schedule was not able
to remove the earlier leader election cycles, though we
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Algorithm 1 Pseudocode for schedule exploration. TEST is invoked
once per external event subsequence E ′. We elide the details of DPOR
for clarity (see Appendix B for a complete description). τ denotes the
original schedule; b.counterpart denotes the message delivery that was
delivered instead of b (variable m in the elif branch of STSSCHED);
b.predecessors and b.successors denote the events occuring before and
after b when b was set (τ ′′[0..i] and τ ′′[i+1...τ ′′.length] in STSSCHED).

backtracks← {}
procedure TEST(E ′)

STSSCHED(E ′,τ)
if execution reproduced 8: return 8

while ∃b∈backtracks.b.type=b.counterpart.type ∧
b.fingerprint 6= b.counterpart.fingerprint ∧
time budget for E ′ not yet expired do

reinitialize system, remove b from backtracks
prefix← b.predecessors + [ b ]
if prefix (or superstring) already executed:

continue
STSSCHED(E ′,prefix + b.successors)
if execution reproduced 8: return 8

return 4

procedure STSSCHED(E ′,τ ′)
τ ′′← τ ′.remove {e | e is external and e 6∈ E ′}
for i from 0 to τ ′′.length do

if τ ′′[i] is external:
inject τ ′′[i]

elif ∃m∈pending. m.fingerprint = τ ′′[i].fingerprint:
deliver m, remove m from pending
for m′ ∈ pending do

if ¬commute(m,m′):
backtracks← backtracks ∪ {m′}

would have been able to if we had instead delivered other
pending messages with small term numbers.

The second execution was problematic because of
batching. In Raft, the leader receives client commands,
and after receiving each command, it replicates it to
the other cluster members by sending them ‘AppendEn-
tries’ messages. When the leader receives multiple client
commands before it has successfully replicated them all,
it batches them into a single AppendEntries message.
Again, client commands cannot be masked over by the
fingerprint function, and because AppendEntries are in-
ternal messages, we cannot shrink their contents.

We knew that the safety violation could be triggered
with only one client command. Yet minimization re-
stricted to only the initial schedule was unable to prune
many client commands, because in the original faulty ex-
ecution AppendEntries messages with large batch con-
tents were delivered before pending AppendEntries mes-
sages with small batch contents.

These examples motivated our next observations:
Observation #3: Coarsen message matching. We
would like to stay close to the original execution (per
observation #1), yet the previous examples show that we

should not restrict ourselves to schedules that only match
according to the user-defined message fingerprints from
the original execution. We can achieve both these goals
by considering a more coarse-grained match function:
the type of pending messages. By ‘type’, we mean the
language-level type tag of the message object, which is
available to the RPC layer at runtime.

We choose the next schedules to explore by looking
for pending messages whose types (not contents) match
those in the original execution, in the exact same order
that they appeared in the original execution. We show an
example in Figure 1, where any pending message of type
‘A’ with the same source and destination as the original
messages would match. When searching for candidate
schedules, if there are no pending messages that match
the type of the message that was delivered at that step
in the original execution, we skip to the next step. Simi-
larly, we ignore any pending messages that do not match
the corresponding type of the messages from the origi-
nal execution. This leaves one remaining issue: how we
handle cases where multiple pending messages match the
corresponding original message’s type.
Observation #4: Prioritize backtrack points that re-
solve match ambiguities. When there are multiple pend-
ing messages that match, we initially only pick one.
DPOR (eventually) sets backtrack points for all other co-
enabled dependent events (regardless of type or message
contents). Of all these backtrack points, those that match
the type of the corresponding message from the original
trace should be most fruitful, because they keep the exe-
cution close to the causal structure of the original sched-
ule except for small ambiguities in message contents.

We show the pseudocode implementing Observation
#3 and Observation #4 as the while loop in Algorithm 1.
Whenever we find a backtrack point (pending message)
that matches the type but not the fingerprint of an original
delivery event from τ , we replace the original delivery
with the backtrack’s pending message, and execute the
events before and after the backtrack point as before.

Backtracking allow us to eventually explore all com-
binations of pending messages that match by type. Note
here that we do not ignore the user-defined message fin-
gerprint function: we only prioritize backtrack points for
pending messages that have the same type and that differ
in their message fingerprints.
Minimizing internal events. Once delta debugging over
external events has completed, we attempt to further re-
duce the smallest reproducing schedule found so far.
Here we apply delta debugging to internal events: for
each subsequence of internal events chosen by delta de-
bugging, we (i) mark those messages so that they are
left pending and never delivered, and (ii) apply the same
scheduling strategies described above for the remaining
events to check whether the violation is still triggered.
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Internal event minimization continues until there is no
more minimization to be performed, or until the time
budget for minimization as a whole is exhausted.
Observation #5: Shrink external message contents
whenever possible. Our last observation is that the con-
tents of external messages can affect execution length;
because the test environment crafts these messages, it
should minimize their contents whenever possible.

A prominent example is akka-raft’s bootstrapping
messages. akka-raft processes do not initially know
which other processes are part of the cluster. They in-
stead wait to receive an external bootstrapping message
that informs them of the identities of all other processes.
The contents of the bootstrapping messages (the pro-
cesses in the cluster) determine quorum size: how many
acknowledgments are needed to reach consensus, and
hence how many messages need to be delivered. If the
application developer provides us with a function for sep-
arating the components of such message contents, we
can minimize their contents by iteratively removing ele-
ments, and checking to see if the violation is still trigger-
able until no single remaining element can be removed.
Recap. In summary, we first apply delta debugging
(ExtMin) to prune external events. To check each ex-
ternal event subsequence chosen by delta debugging, we
use a stateful version of DPOR. We first try exploring a
uniquely defined schedule that closely matches the orig-
inal execution. We leverage data independence by ap-
plying a user-defined message fingerprint function that
masks over certain message contents. To overcome infla-
tion due to history-dependent message contents, we ex-
plore subsequent schedules by choosing backtrack points
according to a more coarse-grained match function: the
types of messages. We spend the remaining time bud-
get attempting to minimize internal events, and wherever
possible, we seek to shrink external message contents.

3.3 Comparison to Prior Work

We made observations #1 and #2 in our prior work [70].
In this paper, we adapt observations #1 and #2 to deter-
mine the first schedule we explore for each external event
subsequence (the first two lines of TEST). We refer to
the scheduling strategy defined by these two observations
as ‘STSSched’, named after the ‘STS’ system [70].

STSSched only prescribes a single schedule per ex-
ternal event subsequence chosen by delta debugging. In
this work we systematically explore multiple schedules
using the DPOR framework. We guide DPOR to explore
schedules in a prioritized order based on similarity to the
original execution (observations #3 and #4, shown as the
while loop in TEST). We refer to the scheduling strategy
used to prioritize subsequent schedules as ‘TFB’ (Type
Fingerprints with Backtracks). We also minimize inter-
nal events, and shrink external message contents.

4 Systems Challenges
We implement our techniques in a publicly available tool
we call DEMi (Distributed Execution Minimizer) [5].
DEMi is an extension to Akka [2], an actor framework
for JVM-based languages. Actor frameworks closely
match the system model in §2: actors are single-threaded
entities that can only access local state and operate on
messages received from the network one at a time. Upon
receiving a message an actor performs computation, up-
dates its local state and sends a finite set of messages to
other actors before halting. Actors can be co-located on
a single machine (though the actors are not aware of this
fact) or distributed across multiple machines.

On a single machine Akka maintains a buffer of sent
but not yet delivered messages, and a pool of message
dispatch threads. Normally, Akka allows multiple actors
to execute concurrently, and schedules message deliver-
ies in a non-deterministic order. We use AspectJ [50], a
mature interposition framework, to inject code into Akka
that allows us to completely control when messages and
timers are delivered to actors, thereby linearizing the se-
quence of events in an executing system. We currently
run all actors on a single machine because this simplifies
the design of DEMi, but minimization could also be dis-
tributed across multiple machines to improve scalability.

Our interposition lies above the network transport
layer; DEMi makes delivery decisions for application-
level (non-segmented) messages. If the application as-
sumes ordering guarantees from the transport layer (e.g.
TCP’s FIFO delivery), DEMi adheres to these guarantees
during testing and minimization to maintain soundness.
Fuzz testing with DEMi. We begin by using DEMi to
generate faulty executions. Developers give DEMi a
test configuration (we tabulate all programmer-provided
specifications in Appendix C), which specifies an initial
sequence of external events to inject before fuzzing, the
types of external events to inject during fuzzing (along
with probabilities to determine how often each event type
is injected), the safety conditions to check (a user-defined
predicate over the state of the actors), the scheduling con-
straints (e.g. TCP or UDP) DEMi should adhere to, the
maximum execution steps to take, and optionally a mes-
sage fingerprint function. If the application emits side-
effects (e.g. by writing to disk), the test configuration
specifies how to roll back side-effects (e.g. by deleting
disk contents) at the end of each execution.

DEMi then repeatedly executes fuzz runs until it finds
a safety violation. It starts by generating a sequence of
random external events of the length specified by the
configuration. DEMi then injects the initial set of ex-
ternal events specified by the developer, and then starts
injecting external events from the random sequence. De-
velopers can include special ‘WaitCondition’ markers in
the initial set of events to execute, which cause DEMi
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to pause external event injection, and deliver pending
internal messages at random until a specified condition
holds, at which point the system resumes injecting exter-
nal events. DEMi periodically checks invariants by halt-
ing the execution and invoking the developer-supplied
safety predicate over the current state of all actors. Ex-
ecution proceeds until a predicate violation is found, the
supplied bound on execution steps is exceeded, or there
are no more external or internal events to execute.

Once it finds a faulty execution DEMi saves a user-
defined fingerprint of the violation it found (a violation
fingerprint might, for example, mark which process(es)
exhibited the violation),6 a totally ordered recording of
all events it executed, and information about which mes-
sages were sent in response to which events. Users can
then replay the execution exactly, or instruct DEMi to
minimize the execution as described in §3.
Mitigating non-determinism. Processes may behave
non-deterministically. A process is non-deterministic if
the messages it emits (modulo fingerprints) are not
uniquely determined by the prefix of messages we have
delivered to it in the past starting from its initial state.

The main way we control non-determinism is by inter-
posing on Akka’s API calls, which operate at a high level
and cover most sources of non-determinism. For exam-
ple, Akka provides a timer API that obviates the need for
developers to read directly from the system clock.

Applications may also contain sources of non-
determinism outside of the Akka API. We discovered
the sources of non-determinism described below through
trial and error: when replaying unmodified test execu-
tions, the violation was sometimes not reproduced. In
these cases we compared discrepancies between execu-
tions until we isolated their source and interposed on it.
akka-raft instrumentation. Within akka-raft, actors use
a pseudo random number generator to choose when to
start leader elections. Here we provided a seeded random
number generator under the control of DEMi.
Spark instrumentation. Within Spark, the task sched-
uler chooses the first value from a hashmap in order to
decide what tasks to schedule. The values of the hashmap
are arbitrarily ordered, and the order changes from exe-
cution to execution. We needed to modify Spark to sort
the values of the hash map before choosing an element.

Spark runs threads (‘TaskRunners’) that are outside
the control of Akka. These send status update messages
to other actors during their execution. The key challenge
with threads outside Akka’s control is that we do not
know when the thread has started and stopped each step

6Violation fingerprints should be specific enough to disambiguate
different bugs found during minimization, but they do not need to be
specific to the exact state the system at the time of the violation. Less
specific violation fingerprints are often better, since they allow DEMi to
find divergent code paths that lead to the same buggy behavior.

of its computation; when replaying, we do not know how
long to wait until the TaskRunner either resends an ex-
pected message, or we declare that message as absent.

We add two interposition points to TaskRunners: the
start of the TaskRunner’s execution, and the end of the
TaskRunner’s execution. At the start of the TaskRun-
ner’s execution, we signal to DEMi the identity of the
TaskRunner, and DEMi records a ‘start atomic block’
event for that TaskRunner. During replay, DEMi blocks
until the corresponding ‘end atomic block’ event to en-
sure that the TaskRunner has finished sending messages.
This approach works because TaskRunners in Spark have
a simple control flow, and TaskRunners do not communi-
cate via shared memory. Were this not the case, we would
have needed to interpose on the JVM’s thread scheduler.

Besides TaskRunner threads, the Spark driver also
runs a bootstrapping thread that starts up actors and sends
initialization messages. We mark all messages sent dur-
ing the initialization phase as ‘unignorable’, and we have
DEMi wait indefinitely for these messages to be sent dur-
ing replay before proceeding. When waiting for an ‘unig-
norable’ message, it is possible that the only pending
messages in the network are repeating timers. We pre-
vent DEMi from delivering infinite loops of timers while
it awaits by detecting timer cycles, and not delivering
more timers until it delivers a non-cycle message.

Spark names some of the files it writes to disk using
a timestamp read from the system clock. We hardcode a
timestamp in these cases to make replay deterministic.
Akka changes. In a few places within the Akka frame-
work, Akka assigns IDs using an incrementing counter.
This can be problematic during minimization, since the
counter value may change as we remove events, and the
(non-fingerprinted) message contents in the modified ex-
ecution may change. We fix this by computing IDs based
on a hash of the current callstack, along with task IDs in
case of ambiguous callstack hashes. We found this mech-
anism to be sufficient for our case studies.
Stop-gap: replaying multiple times. In cases where it is
difficult to locate the cause of non-determinism, good re-
duction can often still be achieved simply by configuring
DEMi to replay each schedule multiple times and check-
ing if any of the attempts triggered the safety violation.
Blocking operations. Akka deviates from the computa-
tional model we defined in §2 in one remaining aspect:
Akka allows actors to block on certain operations. For
example, actors may block until they receive a response
to their most recently sent message. To deal with these
cases we inject AspectJ interposition on blocking oper-
ations (which Akka has a special marker for), and sig-
nal to DEMi that the actor it just delivered a message to
will not become unblocked until we deliver the response
message. DEMi then chooses another actor to deliver a
message to, and marks the previous actor as blocked until
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DEMi decides to deliver the response.

4.1 Limitations

Safety vs. liveness. We are primarily focused on safety
violations, not liveness or performance bugs.
Non-Atomic External Events. DEMi currently waits for
external events (e.g. crash-recoveries) to complete before
proceeding. This may prevent it from finding bugs in-
volving finer-grained event interleavings.
Limited scale. DEMi is currently tied to a single physi-
cal machine, which limits the scale of systems it can test
(but not the bugs it can uncover, since actors are unaware
of colocation). We do not believe this is fundamental.
Shared memory & disk. In some systems processes
communicate by writing to shared memory or disk rather
than sending messages over the network. Although we do
not currently support it, if we took the effort to add inter-
position to the runtime system (as in [74]) we could treat
writes to shared memory or disk in the same way we treat
messages. More generally, adapting the basic DPOR al-
gorithm to shared memory systems has been well stud-
ied [34, 85], and we could adopt these approaches.
Non-determinism. Mitigating non-determinism in akka-
raft and Spark required effort on our part. We might have
adopted deterministic replay systems [29, 36, 56, 92] to
avoid manual instrumentation. We did not because we
could not find a suitably supported record and replay sys-
tem that operates at the right level of abstraction for actor
systems. Note, however that deterministic replay alone is
not sufficient for minimization: deterministic replay does
not inform how the schedule space should be explored;
it only allows one to deterministically replay prefixes of
events. Moreover, minimizing a single deterministic re-
play log (without exploring divergent schedules) yields
executions that are orders of magnitude larger than those
produced by DEMi, as we discuss in §6.
Support for production traces. DEMi does not cur-
rently support minimization of production executions.
DEMi requires that execution recordings are complete
(meaning all message deliveries and external events are
recorded) and partially ordered. Our current implementa-
tion achieves these properties simply by testing and min-
imizing on a single physical machine.

To support recordings from production executions, it
should be possible to capture partial orders without re-
quiring logical clocks on all messages: because the ac-
tor model only allows actors to process a single mes-
sage at a time, we can compute a partial order simply
by reconstructing message lineage from per-actor event
logs (which record the order of messages received and
sent by each actor). Crash-stop failures do not need to
be recorded, since from the perspective of other pro-
cesses these are equivalent to network partitions. Crash-
recovery failures would need to be recorded to disk.

Byzantine failures are outside the scope of our work.
Recording a sufficiently detailed log for each actor

adds some logging overhead, but this overhead could be
modest. For the systems we examined, Akka is primarily
used as a control-plane, not a data-plane (e.g. Spark does
not send bulk data over Akka), where recording overhead
is not especially problematic.

4.2 Generality

We distinguish between the generality of the DEMi arti-
fact, and the generality of our scheduling strategies.
Generality of DEMi. We targeted the Akka actor frame-
work for one reason: thanks to the actor API (and to a
lesser extent, AspectJ), we did not need to exert much
engineering effort to interpose on (i) communication be-
tween processes, (ii) blocking operations, (iii) clocks,
and (iv) remaining sources of non-determinism.

We believe that with enough interposition, it should be
possible to sufficiently control other systems, regardless
of language or programming model. That said, the effort
needed to interpose could certainly be significant.

One way to increase the generality of DEMi would be
to interpose at a lower layer (e.g. the network or syscall
layer) rather than the application layer. This has sev-
eral limitations. First, some of our scheduling strategies
depend on application semantics (e.g. message types)
which would be difficult to access at a lower layer. Trans-
port layer complexities would also increase the size of
the schedule space. Lastly, some amount of application
layer interposition would still be necessary, e.g. interpo-
sition on user-level threads or blocking operations.
Generality of scheduling strategies. At their core, dis-
tributed systems are just concurrent systems (with the ad-
ditional complexities of partial failure and asynchrony).
Regardless of whether they are designed for multi-core
or a distributed setting, the key property we assume from
the program under test is that small schedules that are
similar to original schedule should be likely to trigger the
same invariant violation. To be sure, one can always con-
struct adversarial counterexamples. Yet our results for
two very different types of systems leave us optimistic
that these scheduling strategies are broadly applicable.

5 Evaluation
Our evaluation focuses on two key metrics: (i) the
size of the reproducing sequence found by DEMi, and
(ii) how quickly DEMi is able to make minimization
progress within a fixed time budget. We show a high-
level overview of our results in Table 1. The “Bug Type”
column shows two pieces of information: whether the
bug can be triggered using TCP semantics (denoted as
“FIFO”) or whether it can only be triggered when UDP
is used; and whether we discovered the bug ourselves or
whether we reproduced a known bug. The “Provenance”
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Bug Name Bug Type Initial Provenance STSSched TFB Optimal NoDiverge
raft-45 Akka-FIFO, reproduced 2160 (E:108) 2138 (E:108) 1183 (E:8) 23 (E:8) 22 (E:8) 1826 (E:11)
raft-46 Akka-FIFO, reproduced 1250 (E:108) 1243 (E:108) 674 (E:8) 35 (E:8) 23 (E:6) 896 (E:9)
raft-56 Akka-FIFO, found 2380 (E:108) 2376 (E:108) 1427 (E:8) 82 (E:8) 21 (E:8) 2064 (E:9)
raft-58a Akka-FIFO, found 2850 (E:108) 2824 (E:108) 953 (E:32) 226 (E:31) 51 (E:11) 2368 (E:35)
raft-58b Akka-FIFO, found 1500 (E:208) 1496 (E:208) 164 (E:13) 40 (E:8) 28 (E:8) 1103 (E:13)
raft-42 Akka-FIFO, reproduced 1710 (E:208) 1695 (E:208) 1093 (E:39) 180 (E:21) 39 (E:16) 1264 (E:43)
raft-66 Akka-UDP, found 400 (E:68) 392 (E:68) 262 (E:23) 77 (E:15) 29 (E:10) 279 (E:23)
spark-2294 Akka-FIFO, reproduced 1000 (E:30) 886 (E:30) 43 (E:3) 40 (E:3) 25 (E:1) 43 (E:3)
spark-3150 Akka-FIFO, reproduced 600 (E:20) 536 (E:20) 18 (E:3) 14 (E:3) 11 (E:3) 18 (E:3)
spark-9256 Akka-FIFO, found (rare) 300 (E:20) 256 (E:20) 11 (E:1) 11 (E:1) 11 (E:1) 11 (E:1)

Table 1: Overview of case studies. “E:” is short for “Externals:”. The ‘Provenance’, ‘STSSched’, and ‘TFB’ techniques are pipelined one after
another. ‘Initial’ minus ‘TFB’ shows overall reduction; ‘Provenance’ shows how many events can be statically removed; ‘STSSched’ minus ‘TFB’
shows how our new techniques compare to the previous state of the art [70]; ‘TFB’ minus ‘Optimal’ shows how far from optimal our results are;
and ‘NoDiverge’ shows the size of minimized executions when no divergent schedules are explored (explained in §6).

Bug Name STSSched TFB
raft-45 56s (594) 114s (2854)
raft-46 73s (384) 209s (4518)
raft-56 54s (524) 2078s (31149)
raft-58a 137s (624) 43345s (834972)
raft-58b 23s (340) 31s (1747)
raft-42 118s (568) 10558s (176517)
raft-66 14s (192) 334s (10334)
spark-2294 330s (248) 97s (78)
spark-3150 219s (174) 26s (21)
spark-9256 96s (73) 0s (0)

Table 2: Minimization runtime in seconds (total schedules executed).
Overall runtime is the summation of “STSSched” and “TFB”. spark-
9256 only had unignorable events remaining after STSSched com-
pleted, so TFB was not necessary.

column shows how many events from the initial execu-
tion remain after statically pruning events that are con-
current with the safety violation. The “STSSched” col-
umn shows how many events remain after checking the
initial schedules prescribed by our prior work [70] for
each of delta debugging’s subsequences. The “TFB” col-
umn shows the final execution size after we apply our
techniques (‘Type Fingerprints with Backtracks’), where
we direct DPOR to explore as many backtrack points that
match the types of original messages (but no other back-
track points) as possible within the 12 hour time bud-
get we provided. Finally, the “Optimal” column shows
the size of the smallest violation-producing execution we
could construct by hand. We ran all experiments on a
2.8GHz Westmere processor with 16GB memory.

Overall we find that DEMi produces executions that
are within a factor of 1X to 4.6X (1.6X median) the
size of the smallest possible execution that triggers that
bug, and between 1X and 16X (4X median) smaller
than the executions produced by our previous technique
(STSSched). STSSched is effective at minimizing exter-
nal events (our primary minimization target) for most
case studies. TFB is significantly more effective for min-
imizing internal events (our secondary target), especially
for akka-raft. Replayable executions for all case studies
are available at github.com/NetSys/demi-experiments.

We create the initial executions for all of our case stud-
ies by generating fuzz tests with DEMi (injecting a fixed

number of random external events, and selecting internal
messages to deliver in a random order) and selecting the
first execution that triggers the invariant violation with
≥300 initial message deliveries. Fuzz testing terminated
after finding a faulty execution within 10s of minutes for
most of our case studies.

For case studies where the bug was previously known,
we set up the initial test conditions (cluster configuration,
external events) to closely match those described in the
bug report. For cases where we discovered new bugs, we
set up the test environment to explore situations that de-
velopers would likely encounter in production systems.

As noted in the introduction, the systems we fo-
cus on are akka-raft [3] and Apache Spark [90]. akka-
raft, as an early-stage software project, demonstrates
how DEMi can aid the development process. Our eval-
uation of Spark demonstrates that DEMi can be applied
to complex, large scale distributed systems.
Reproducing Sequence Size. We compare the size of
the minimized executions produced by DEMi against the
smallest fault-inducing executions we could construct by
hand (interactively instructing DEMi which messages to
deliver). For 6 of our 10 case studies, DEMi was within
a factor of 2 of optimal. There is still room for im-
provement however. For raft-58a for example, DEMi ex-
hausted its time budget and produced an execution that
was a factor of 4.6 from optimal. It could have found a
smaller execution without exceeding its time budget with
a better schedule exploration strategy.
Minimization Pace. To measure how quickly
DEMi makes progress, we graph schedule size as
a function of the number of executions DEMi tries.
Figure 2 shows an example for raft-58b. The other
case studies follow the same general pattern of sharply
decreasing marginal gains.

We also show how much time (# of replays)
DEMi took to reach completion of STSSched and TFB
in Table 2.7 The time budget we allotted to DEMi for all

7It is important to understand that DEMi is able to replay executions
significantly more quickly than the original execution may have taken.
This is because DEMi can trigger timer events before the wall-clock
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Figure 2: Minimization pace for raft-58b. Significant progress is made
early on, then progress becomes rare.

case studies was 12 hours (43200s). All case studies ex-
cept raft-56, raft-58a, and raft-42 reached completion of
TFB in less than 10 minutes.
Qualitative Metrics. We do not evaluate how minimiza-
tion helps with programmer productivity. Data on how
humans do debugging is scarce; we are aware of only one
study that measures how quickly developers debug mini-
mized vs. non-minimized traces [40]. Nonetheless, since
humans can only keep a small number of facts in work-
ing memory [62], minimization seems generally useful.
As one developer puts it, “Automatically shrinking test
cases to the minimal case is immensely helpful” [13].

5.1 Raft Case Studies

Our first set of case studies are taken from akka-raft [3].
akka-raft is implemented in 2,300 lines of Scala exclud-
ing tests. akka-raft has existing unit and integration tests,
but it has not been deployed in production. The known
bugs we reproduced had not yet been fixed; these were
found by a recent manual audit of the code.

For full descriptions of each case study, see Ap-
pendix D. The lessons we took away from our akka-raft
case studies are twofold. First, fuzz testing is quite effec-
tive for finding bugs in early-stage software. We found
and fixed these bugs in less than two weeks, and sev-
eral of the bugs would have been difficult to anticipate
a priori. Second, debugging unminimized faulty execu-
tions would be very time consuming and conceptually
challenging; we found that the most fruitful debugging
process was to walk through events one-by-one to under-
stand how the system arrived at the unsafe state, which
would take hours for unminimized executions.

5.2 Spark Case Studies

Spark [4] is a mature software project, used widely in
production. The version of Spark we used for our evalu-
ation consists of more than 30,000 lines of Scala for just
the core execution engine. Spark is also interesting be-

duration for those timers has actually passed, without the application
being aware of this fact (cf. [39])

Without Shrinking With shrinking
Initial Events 360 (E: 9 bootstraps) 360 (E: 9 bootstraps)
After STSSched 81 (E: 8 bootstraps) 51 (E: 5 bootstraps)

Table 3: External message shrinking results for raft-45 starting with 9
processes. Message shrinking + minimization was able to reduce the
cluster size to 5 processes.

akka-raft Spark
Message Fingerprint 59 56
Non-Determinism 2 ∼250
Invariants 331 151
Test Configuration 328 445

Table 4: Complexity (lines of Scala code) needed to define message
fingerprints, mitigate non-determinism, define invariants, and configure
DEMi. Akka API interposition (336 lines of AspectJ) is application
independent.

cause it has a significantly different communication pat-
tern than Raft (e.g., statically defined masters).

For a description of our Spark case studies, see Ap-
pendix E. Our main takeaway from Spark is that for the
simple Spark jobs we submitted, STSSched does surpris-
ingly well. We believe this is because Spark’s commu-
nication tasks were all almost entirely independent of
each other. If we had submitted more complex Spark jobs
with more dependencies between messages (e.g. jobs
that make use of intermediate caching between stages)
STSSched likely would not have performed as well.

5.3 Auxiliary Evaluation

External message shrinking. We demonstrate the bene-
fits of external message shrinking with an akka-raft case
study. Recall that akka-raft processes receive an external
bootstrapping message that informs them of the IDs of all
other processes. We started with a 9 node akka-raft clus-
ter, where we triggered the raft-45 bug. We then shrank
message contents by removing each element (process
ID) of bootstrap messages, replaying these along with
all other events in the failing execution, and checking
whether the violation was still triggered. We were able
to shrink the bootstrap message contents from 9 process
IDs to 5 process IDs. Finally, we ran STSSched to com-
pletion, and compared the output to STSSched without
the initial message shrinking. The results shown in Ta-
ble 3 demonstrate that message shrinking can help mini-
mize both external events and message contents.
Instrumentation Overhead. Table 4 shows the com-
plexity in terms of lines of Scala code needed to define
message fingerprint functions, mitigate non-determinism
(with the application modifications described in §4),
specify invariants, and configure DEMi. In total we spent
roughly one person-month debugging non-determinism.

6 Related Work
We start this section with a discussion of the most closely
related literature. We focus only on DEMi’s minimiza-
tion techniques, since DEMi’s interposition and testing
functionality is similar to other systems [55, 57, 72].
Input Minimization for Sequential Programs. Mini-
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mization algorithms for sequentially processed inputs are
well-studied [18,20,24,40,69,81,94]. These form a com-
ponent of our solution, but they do not consider interleav-
ings of internal events from concurrent processes.
Minimization without Interposition. Several tools
minimize inputs to concurrent systems without control-
ling sources of non-determinism [10, 26, 44, 47, 76]. The
most sophisticated of these replay each subsequence
multiple times and check whether the violation is repro-
duced at least once [25,44]. Their major advantage is that
they avoid the engineering effort required to interpose.
However, we found in previous work [70] that bugs are
often not easily reproducible without interposition.

QuickCheck’s PULSE controls the message delivery
schedule [25] and supports schedule minimization. Dur-
ing replay, it only considers the order messages are sent
in, not message contents. When it cannot replay a step,
it skips it (similar to STSSched), and reverts to random
scheduling once expected messages are exhausted [43].
Thread Schedule Minimization. Other techniques seek
to minimize thread interleavings leading up to concur-
rency bugs [22, 30, 41, 46]. These generally work by
iteratively feeding a single input (the thread schedule)
to a single entity (a deterministic scheduler). These ap-
proaches ensure that they never diverge from the original
schedule (otherwise the recorded context switch points
from the original execution would become useless). Be-
sides minimizing context switches, these approaches at
best truncate thread executions by having threads exit
earlier than they did in the original execution.
Program Analysis. By analyzing the program’s control-
and dataflow dependencies, one can remove events in the
middle of the deterministic replay log without causing
divergence [19, 31, 42, 54, 74, 79]. These techniques do
not explore alternate code paths. Program analysis also
over-approximates reachability, disallowing them from
removing dependencies that actually commute.

We compare against these techniques by configuring
DEMi to minimize as before, but abort any execution
where it detects a previously unobserved state transi-
tion. Column ‘NoDiverge’ of Table 1 shows the results,
which demonstrate that divergent executions are crucial
to DEMi’s reduction gains for the akka-raft case studies.
Model Checking. Algorithmically, our work is most
closely related to the model checking literature.

Abstract model checkers convert (concurrent) pro-
grams to logical formulas, find logical contradictions (in-
variant violations) using solvers, and minimize the logi-
cal conjunctions to aid understanding [23,49,61]. Model
checkers are very powerful, but they are typically tied
to a single language, and assume access to source code,
whereas the systems we target (e.g. Spark) are composed
of multiple languages and may use proprietary libraries.

It is also possible to extract formulas from raw bina-

ries [11]. Fuzz testing is significantly lighter weight.
If, rather than randomly fuzzing, testers enumerated

inputs of progressively larger sizes, failing tests would be
minimal by construction. However, breadth first enumer-
ation takes very long to get to ‘interesting’ inputs (After
24 hours of execution, our bounded DPOR implementa-
tion with depth bound slightly greater than the optimal
trace size still had not found any invariant violations. In
contrast, DEMi’s randomized testing discovered most of
our reported bugs within 10s of minutes). Furthermore,
minimization is useful beyond testing, e.g. for simplify-
ing production traces.

Because systematic input enumeration is intractable,
many papers develop heuristics for finding bugs
quickly [17, 28, 35, 55, 57, 63, 64, 66, 75, 78, 84]. We do
the same, but crucially, we are able to use information
from previously failing executions to guide our search.

As far as we know, we are the first to combine DPOR
and delta debugging to minimize executions. Others have
modified DPOR to keep state [87, 88] and to apply
heuristics for choosing initial schedules [53], but these
changes are intended to help find new bugs.
Bug Reproduction. Several papers seek to find a sched-
ule that reproduces a given concurrency bug [9, 67, 91,
92]. These do not seek to find a minimal schedule.
Probabilistic Diagnosis. To avoid the runtime overhead
of deterministic replay, other techniques capture care-
fully selected diagnostic information from production
execution(s), and correlate this information to provide
best guesses at the root causes of bugs [12,21,48,68,89].
We assume more complete runtime instrumentation (dur-
ing testing), but provide exact reproducing scenarios.
Log Comprehension. Model inference techniques sum-
marize log files in order to make them more easily under-
standable by humans [14–16,32,58,59]. Model inference
is complementary, as it does not modify the event logs.
Program Slicing & Automated Debugging. Program
slicing [80] and the subsequent literature on automated
debugging [27, 45, 60, 73, 83, 95] seek to localize errors
in the code itself. Our goal is to slice the temporal dimen-
sion of an execution rather than the code dimension.

7 Conclusion
Distributed systems, like most software systems, are be-
coming increasingly complex over time. In comparison
to other areas of software engineering however, the de-
velopment tools that help programmers cope with the
complexity of distributed & concurrent systems are lag-
ging behind their sequential counterparts. Inspired by the
obvious utility of test case reduction tools, we sought to
develop a minimization tool for distributed executions.
Our evaluation results for two very different systems
leave us optimistic that these techniques can be success-
fully applied to a wide range of concurrent systems.
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A Delta Debugging
We show the Delta Debugging simplification algo-
rithm [93] we use in Figure 3, and an example execu-
tion of Delta Debugging in Figure 5. An updated version
of the ddmin simplification algorithm appeared in [94].
We use the simpler version of ddmin (which is equiva-
lent to the version ddmin from [94], except that it does
not consider complements) because we ensure that each
subsequence of external events is consistent (semanti-
cally valid), and therefore are still guarenteed to find a
1-minimal output without needing to consider comple-
ments.

B DPOR
We show the original depth-first version of Dynamic
Partial Order Reduction in Algorithm 2. Our modified
DPOR algorithm uses a priority queue rather than a (re-
cursive) stack, and tracks which schedules it has explored
in the past. Tracking which schedules we have explored
in the past is necessary to avoid exploring redundant
schedules (an artifact of our non depth-first exploration
order). The memory footprint required for tracking pre-
viously explored schedules continues growing for every
new schedule we explore. Because we assume a fixed
time budget though, we typically exhaust our time bud-
get before DEMi runs out of memory.

There are a few desirable properties of DPOR we want
to maintain, despite our prioritized exploration order:
Soundness: any executed schedule should be valid, i.e.
possible to execute on an uninstrumented version of the
program starting from the initial configuration.

Step External Event Subsequence TEST
1 e1 e2 e3 e4 · · · · 4
2 · · · · e5 e6 e7 e8 4
3 e1 e2 · · e5 e6 e7 e8 4
4 · · e3 e4 e5 e6 e7 e8 8
5 · · e3 · e5 e6 e7 e8 8 (e3 found)
6 e1 e2 e3 e4 e5 e6 · · 8
7 e1 e2 e3 e4 e5 · · · 4 (e6 found)
Result · · e3 · · e6 · ·

Table 5: Example execution of Delta Debugging, taken from [93]. ‘·’
denotes an excluded original external event.

Programmer-provided Specification Default
Initial cluster configuration -
External event probabilities No external events
Invariants Uncaught exceptions
Violation fingerprint Match on any violation
Message fingerprint function Match on message type
Non-determinism mitigation Replay multiple times

Table 6: Tasks we assume the application programmer completes in
order to test and minimize using DEMi. Defaults of ‘-’ imply that the
task is not optional.

Efficiency: the happens-before partial order for every ex-
ecuted schedule should never be a prefix of any other
partial orders that have been previously explored.
Completeness: when the state space is acyclic, the strat-
egy is guaranteed to find every possible safety violation.

Because we experimentally execute each schedule,
soundness is easy to ensure (we simply ensure that we
do not violate TCP semantics if the application assumes
TCP, and we make sure that we cancel timers whenever
the application asks to do so). Improved efficiency is
the main contribution of partial order reduction. The last
property—completeness—holds for our modified ver-
sion of DPOR so long as we always set at least as many
backtrack points as depth-first DPOR.

C Programmer Effort
In Table 6 we summarize the various tasks, both optional
and necessary, that we assume programmers complete in
order to test and minimize using DEMi.

D Raft Case Studies
Raft is a consensus protocol, designed to replicate a fault
tolerant linearizable log of client operations. akka-raft is
an open source implementation of Raft.

The external events we inject for akka-raft case studies
are bootstrap messages (which processes use for discov-
ery of cluster members) and client transaction requests.
Crash-stop failures are indirectly triggered through fuzz
schedules that emulate network partitions. The cluster
size was 4 nodes (quorum size=3) for all akka-raft case
studies.

The invariants we checked for akka-raft are the con-
sensus invariants specified in Figure 3 of the Raft pa-
per [65]: Election Safety (at most one leader can be
elected in a given term), Log Matching (if two logs con-
tain an entry with the same index and term, then the logs
are identical in all entries up through the given index),
Leader Completeness (if a log entry is committed in a
given term, then that entry will be present in the logs of
the leaders for all higher-numbered terms), and State Ma-
chine Safety (if a server has applied a log entry at a given
index to its state machine, no other server will ever apply
a different log entry for the same index). Note that a vio-
lation of any of these invariants allows for the possibility
for the system to later violate the main linearizability in-
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Input: E s.t. E is a sequence of externals, and TEST(E) = 8. Output: E ′ = ddmin(E) s.t. E ′ v E, TEST(E ′) = 8, and E ′ is minimal.

ddmin(E) = ddmin2(E, /0) where

ddmin2(E ′,R) =


E ′ if |E ′|= 1 (“base case”)
ddmin2

(
E1,R

)
else if TEST(E1 ∪R) = 8 (“in E1”)

ddmin2
(
E2,R

)
else if TEST(E2 ∪R) = 8 (“in E2”)

ddmin2
(
E1,E2 ∪R

)
∪ddmin2

(
E2,E1 ∪R

)
otherwise (“interference”)

where 8 denotes an invariant violation, E1 < E ′, E2 < E ′, E1 ∪E2 = E ′, E1 ∩E2 = /0, and |E1| ≈ |E2| ≈ |E ′|/2 hold.
Figure 3: Delta Debugging Algorithm from [93]. v and < denote subsequence relations. TEST is defined in Algorithm 1.

Algorithm 2 The original depth-first version of Dynamic Partial Order Reduction from [34]. last(S) denotes the configuration reached after
executing S; next(κ,m) denotes the state transition (message delivery) where the message m is processed in configuration κ;→S denotes ‘happens-
before’; pre(S, i) refers to the configuration where the transition ti is executed; dom(S) means the set {1, . . . ,n}; S.t denotes S extended with an
additional transition t.

Initially: EXPLORE( /0)
procedure EXPLORE(S)

κ ← last(S)
for each message m ∈ pending(κ) do

if ∃i = max({i ∈ dom(S)|Si is dependent and may be coenabled with next(κ,m) and i 6→S m}):
E←{m′ ∈ enabled(pre(S, i))|m′ = m or ∃ j ∈ dom(S) : j > i and m′ = msg(S j) and j→S m}
if E 6= /0:

add any m′ ∈ E to backtrack(pre(S, i))
else

add all m ∈ enabled(pre(S, i)) to backtrack(pre(S, i))
if ∃m ∈ enabled(κ):

backtrack(κ)←{m}
done← /0
while ∃m ∈ (backtrack(κ)\done) do

add m to done
EXPLORE(S.next(κ,m))

variant (State Machine Safety).
For each of the bugs where we did not initially know

the root cause, we started debugging by first minimiz-
ing the failing execution. Then, we walked through the
sequence of message deliveries in the minimized execu-
tion. At each step, we noted the current state of the actor
receiving the message. Based on our knowledge of the
way Raft is supposed to work, we found places in the
execution that deviate from our understanding of correct
behavior. We then examined the code to understand why
it deviated, and came up with a fix. Finally, we replayed
to verify the bug fix.

The akka-raft case studies in Table 1 are shown in the
order that we found or reproduced them. To prevent bug
causes from interfering with each other, we fixed all other
known bugs for each case study. We reported all bugs and
fixes to the akka-raft developers.
raft-45: Candidates accept duplicate votes from the
same election term. Raft is specified as a state machine
with three states: Follower, Candidate, and Leader. Can-
didates attempt to get themselves elected as leader by so-
liciting a quorum of votes from their peers in a given
election term (epoch).

In one of our early fuzz runs, we found a violation
of ‘Leader Safety’, i.e. two processes believed they were
leader in the same election term. This is a highly prob-
lematic situation for Raft to be in, since the leaders may
overwrite each others’ log entries, thereby violating the
key linearizability guarantee that Raft is supposed to pro-
vide.

The root cause for this bug was that akka-raft’s can-
didate state did not detect duplicate votes from the same
follower in the same election term. (A follower might re-
send votes because it believed that an earlier vote was
dropped by the network). Upon receiving the duplicate
vote, the candidate counts it as a new vote and steps up
to leader before it actually achieved a quorum of votes.
raft-46: Processes neglect to ignore certain votes from
previous terms. After fixing the previous bug, we found
another execution where two leaders were elected in the
same term.

In Raft, processes attach an ‘election term’ number
to all messages they send. Receiving processes are sup-
posed to ignore any messages that contain an election
term that is lower than what they believe is the current
term.
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akka-raft properly ignored lagging term numbers for
some, but not all message types. DEMi delayed the de-
livery of messages from previous terms and uncovered a
case where a candidate incorrectly accepted a vote mes-
sage from a previous election term.
raft-56: Nodes forget who they voted for. akka-raft is
written as a finite state machine. When making a state
transition, FSM processes specify both which state they
want to transition to, and which instance variables they
want to keep once they have transitioned.

All of the state transitions for akka-raft were correct
except one: when the Candidate steps down to Follower
(e.g., because it receives an ‘AppendEntries’ message,
indicating that there is another leader in the cluster), it
forgets which node it previously voted for in that term.
Now, if another node requests a vote from it in the same
term, it may vote for a different node than it previously
voted for in the same term, later causing two leaders to be
elected, i.e. a violation of Raft’s “Leader Safety” condi-
tion. We discovered this by manually examining the state
transitions made by each process throughout the mini-
mized execution.
raft-58a: Pending client commands delivered before
initialization occurs. After ironing out leader election
issues, we started finding other issues. In one of our fuzz
runs, we found that a leader process threw an assertion
error.

When an akka-raft Candidate first makes the state tran-
sition to leader, it does not immediately initialize its state
(the ‘nextIndex’ and ‘matchIndex’ variables). It instead
sends a message to itself, and initializes its state when it
receives that self-message.

Through fuzz testing, we found that it is possible that
the Candidate could have pending ClientCommand mes-
sages in its mailbox, placed there before the Candidate
transitioned to Leader and sent itself the initialization
message. Once in the Leader state, the Akka runtime
will first deliver the ClientCommand message. Upon pro-
cessing the ClientCommand message the Leader tries to
replicate it to the rest of the cluster, and updates its nex-
tIndex hashmap. Next, when the Akka runtime delivers
the initialization self-message, it will overwrite the value
of nextIndex. When it reads from nextIndex later, it is
possible for it to throw an assertion error because the
nextIndex values are inconsistent with the contents of the
Leader’s log.
raft-58b: Ambiguous log indexing. In one of our fuzz
tests, we found a case where the ‘Log Matching’ invari-
ant was violated, i.e. log entries did not appear in the
same order on all machines.

According to the Raft paper, followers should reject
AppendEntries requests from leaders that are behind, i.e.
prevLogIndex and prevLogTerm for the AppendEntries
message are behind what the follower has in its log.

The leader should continue decrementing its nextIndex
hashmap until the followers stop rejecting its AppendEn-
tries attempts.

This should have happened in akka-raft too, except for
one hiccup: akka-raft decided to adopt 0-indexed logs,
rather than 1-indexed logs as the paper suggests. This
creates a problem: the initial value of prevLogIndex is
ambiguous: Followers can not distinguish between an
AppendEntries for an empty log (prevLogIndex == 0)
an AppendEntries for the leader’s 1st command (pre-
vLogIndex == 0), and an AppendEntries for the leader’s
2nd command (prevLogIndex == 1 1 == 0). The last
two cases need to be distinguishable. Otherwise follow-
ers will not be able to reject inconsistent logs. This cor-
ner would have been hard to anticipate; at first glance it
seems fine to adopt the convention that logs should be
0-indexed instead of 1-indexed.

As a result of this ambiguity, followers were unable to
correctly reject AppendEntries requests from leader that
were behind.
raft-42: Quorum computed incorrectly. We also found
a fuzz test that ended in a violation of the ‘Leader Com-
pleteness’ invariant, i.e. a newly elected leader had a log
that was irrecoverably inconsistent with the logs of pre-
vious leaders.

Leaders are supposed to commit log entries to their
state machine when they knows that a quorum (N/2+1)
of the processes in the cluster have that entry replicated
in their logs. akka-raft had a bug where it computed the
highest replicated log index incorrectly. First it sorted
the values of matchIndex (which denote the highest log
entry index known to be replicated on each peer). But
rather than computing the median (or more specifically,
the N/2+1’st) of the sorted entries, it computed the mode
of the sorted entries. This caused the leader to commit
entries too early, before a quorum actually had that en-
try replicated. In our fuzz test, message delays allowed
another leader to become elected, but it did not have all
committed entries in its log due to the previously leader
committing too soon.

As we walked through the minimized execution, it be-
came clear mid-way through the execution that not all
entries were fully replicated when the master committed
its first entry. Another process without all replicated en-
tries then became leader, which constituted a violation of
the “Leader Completeness” invariant.
raft-66: Followers unnecessarily overwrite log en-
tries. The last issue we found is only possible to trigger
if the underlying transport protocol is UDP, since it re-
quires reorderings of messages between the same source,
destination pair. The akka-raft developers say they do not
currently support UDP, but they would like to adopt UDP
in the future due to its lower latency.

The invariant violation here was a violation of the
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‘Leader Completeness’ safety property, where a leader
is elected that does not have all of the needed log entries.

Leaders replicate uncommitted ClientCommands to
the rest of the cluster in batches. Suppose a follower with
an empty log receives an AppendEntries containing two
entries. The follower appends these to its log.

Then the follower subsequently receives an Appen-
dEntries containing only the first of the previous two en-
tries (this message was delayed). The follower will inad-
vertently delete the second entry from its log.

This is not just a performance issue: after receiving
an ACK from the follower, the leader is under the im-
pression that the follower has two entries in its log. The
leader may have decided to commit both entries if a quo-
rum was achieved. If another leader becomes elected, it
will not necessarily have both committed entries in its
log as it should, leading to a ‘LeaderCompleteness’ vio-
lation.

E Spark Case Studies
Spark is a large scale data analytics framework. We fo-
cused our efforts on reproducing known bugs in the
core Spark engine, which is responsible for orchestrat-
ing computation across multiple machines.

We looked at the entire history of bugs reported for
Spark’s core engine. We found that most reported bugs
only involve sequential computation on a single ma-
chine (e.g. crashes due to unexpected user input). We
instead focused on reported bugs involving concurrency
across machines or partial failures. Of the several dozen
reported concurrency or partial failure bugs, we chose
three.

The external events we inject for Spark case studies
are worker join events (where worker nodes join the clus-
ter and register themselves with the master), job sub-
missions, and crash-recoveries of the master node. The
Spark job we ran for all case studies was a simple paral-
lel approximation of the digits of Pi.
spark-2294: Locality inversion. In Spark, an ‘execu-
tor’ is responsible for performing computation for Spark
jobs. Spark jobs are assigned ‘locality’ preferences: the
Spark scheduler is supposed to launch ‘NODE LOCAL’
tasks (where the input data for the task is located on the
same machine) before launching tasks without prefer-
ences. Tasks without locality preferences are in turn sup-
posed to be launched before ‘speculative’ tasks.

The bug for this case study was the following: if an
executor E is free, a task may be speculatively assigned
to E when there are other tasks in the job that have not
been launched (at all) yet. Similarly, a task without any
locality preferences may be assigned to E when there
was another ‘NODE LOCAL’ task that could have been
scheduled. The root cause of this bug was an error in
Spark scheduler’s logic: under certain configurations of

pending Spark jobs and currently available executors, the
Spark scheduler would incorrectly invert the locality pri-
orities. We reproduced this bug by injecting random, con-
currently running Spark jobs (with differing locality pref-
erences) and random worker join events.
spark-3150: Simultaneous failure causes infinite
restart loop. Spark’s master node supports a ‘Cold-
Replication’ mode, where it commits its state to a
database (e.g., ZooKeeper). Whenever the master node
crashes, the node that replaces it can read that informa-
tion from the database to bootstrap its knowledge of the
cluster state.

To trigger this bug, the master node and the driver
process need to fail simultaneously. When the master
node restarts, it tries to read its state from the database.
When the driver crashes simultaneously, the information
the master reads from the database is corrupted: some of
the pointers referencing information about the driver are
null. When the master reads this information, it derefer-
ences a null pointer and crashes again. After failing, the
master restarts, tries to recover its state, and crashes in an
infinite cycle. The minimized execution for this bug con-
tained exactly these 3 external events, which made the
problematic code path immediately apparent.
spark-9256: Delayed message causes master crash.
We found the following bug through fuzz testing.

As part of initialization, Spark’s client driver registers
with the Master node by repeatedly sending a Register-
Application message until it receives a RegisteredAppli-
cation response. If the RegisteredApplication response
is delayed by at least as long as the configured timeout
value (or if the network duplicates the RegisterApplica-
tion RPC), it is possible for the Master to receive two
RegisterApplication messages for the same client driver.

Upon receiving the second RegisterApplication mes-
sage, the master attempts to persist information about the
client driver to disk. Since the file containing information
about the client driver already exists though, the master
crashes with an IllegalStateException.

This bug is possible to trigger in production, but it will
occur only very rarely. The name of the file containing in-
formation has a second-granularity timestamp associated
with it, so it would only be possible to have a duplicate
file if the second RegisteredApplication response arrived
in the same second as the first response.
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