
An Architecture For Edge Networking Services
Lloyd Brown1, Emily Marx1, Dev Bali1, Emmanuel Amaro2, Debnil Sur3, Ezra Kissel4, Inder Monga5, Ethan Katz-Bassett6, Arvind

Krishnamurthy7, James McCauley8, Tejas N. Narechania1, Aurojit Panda9, Scott Shenker1,10
1 UC Berkeley, 2 Microsoft, 3 VMware Research, 4 LBL, 5 ESNet, 6 Columbia University, 7 UWashington,

8 Mount Holyoke College, 9 NYU, 10 ICSI

Abstract
The layered Internet architecture, while far from perfect, has pro-
vided a global and neutral platform for the development of a wide
range of applications. However, this core architecture has been
increasingly augmented with additional in-network functionality
that improves the performance, security, and privacy of these appli-
cations. These additional in-network functions, which are typically
implemented at the network edge, are consistent with the layering
of the Internet architecture but deviate from two of the core tenets
of the Internet: interconnection and end-to-end simplicity. In this
paper, we propose an architecture for these edge networking ser-
vices called the InterEdge that applies these two Internet tenets in
a manner appropriate to edge services while not requiring changes
to the underlying Internet architecture or infrastructure.

CCS Concepts
• Networks→ Network architectures.

Keywords
Internet architecture, Edge networking services

ACM Reference Format:
Lloyd Brown, Emily Marx, Dev Bali, Emmanuel Amaro, Debnil Sur, Ezra
Kissel, Inder Monga, Ethan Katz-Bassett, Arvind Krishnamurthy, James
McCauley, Tejas N. Narechania, Aurojit Panda, Scott Shenker. 2024. An
Architecture For Edge Networking Services. In ACM SIGCOMM 2024 Confer-
ence (ACM SIGCOMM ’24), August 4–8, 2024, Sydney, NSW, Australia. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3651890.3672261

1 Introduction
1.1 Context
The Internet’s architecture is typically described in terms of its
layered design, whose modularity has allowed the Internet to ac-
commodate radical changes in scale, scope, and usage over the past
thirty-plus years. However, at a more conceptual level, the architec-
ture is built on two crucial tenets that are neither the consequence
of, nor directly imply, this layering: interconnection and end-to-end
simplicity (E2ES).

The notion of interconnection, broadly construed, turned a col-
lection of local packet-switching networks into the Internet of today.
This interconnection happened in three logical steps (though, of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672261

course, the actual history is more complicated than the simple con-
ceptual picture we describe here). First, the notion of a universal
“internetworking protocol” (IP) allowed the interconnection of the
many heterogeneous packet networks that had arisen in the 1960s
and 1970s. Second, as the single uniform infrastructure broke into
separate autonomous systems (ASes), it was necessary to create an
interdomain routing protocol, which has now evolved into BGP.
Lastly, when Internet Service Providers (ISPs) went commercial, a
set of financial peering arrangements arose so that money could
recursively flow to the networks carrying traffic. Together, these
forms of interconnection allowed the Internet to provide a uniform
(via IP), global (via BGP), and economically viable (via peering pay-
ments) platform without any individual ISP being global. Note that
we do not use the term “global” to imply that everyone has access
to the Internet; our point is merely that Internet coverage spans a
large portion of the globe and does so without requiring any single
ISP to have global coverage.

Turning to the second tenet, by E2ES we mean a design philoso-
phywhere the Internet only provides best-effort packet delivery and
leaves all additional functionality – particularly application-level
functionality – to the communicating endpoints. This simplicity is
related to the vaunted End-to-End Principle (E2EP), but the E2EP
is far more subtle about the criteria for when in-network function-
ality is appropriate and is the subject of much commentary (the
canonical reference is [57] but see [17] for additional discussion).
The early Internet embodied E2ES, and the fact that the early In-
ternet was built around IP on the interdomain dataplane and BGP
on the interdomain control plane – two protocols that have no
specific application-level considerations in their designs – made
interconnection easier.

While the E2EP started out as an engineering design principle,
it (and its more simplistic interpretation, E2ES) gave rise to an eco-
nomic corollary: network neutrality. The tie between the two is best
captured in [39]: “One of the most basic arguments in favor of Net
Neutrality is that it is needed in order to preserve what is known as
the ‘end-to-end principle’.” Similarly, TimWu, one of the originators
of the idea of network neutrality, states in [67]: “in networking, the
‘end-to-end’ principle of network design is also a close cousin, if not
the direct ancestor of network neutrality.” The reasoning behind
these statements is that just as the E2EP/E2ES (we will use this
pair of acronyms to refer to the general constellation of end-to-end
ideas) keeps the technical aspects of application-level functional-
ity out of the network, network neutrality keeps the economic
aspects of applications out of the network. Thus, this corollary to
the E2EP/E2ES makes the Internet not just a functionally simple
platform but an economically neutral one as well, by requiring
that the IP layer not unfairly discriminate between packets based
on their higher layers (where the definition of “unfairly” differs
between different legal interpretations of network neutrality).

https://doi.org/10.1145/3651890.3672261
https://doi.org/10.1145/3651890.3672261

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lloyd Brown et al.

This combination of clean separation vertically between the net-
work and end-to-end applications (to keep the network simple and
neutral) but interconnection horizontally (to allow global coverage
to be created out of local ISPs) was crucial to the Internet’s rapid
and enduring success. But in the past two decades, the Internet’s
infrastructure has evolved significantly to meet emerging applica-
tion requirements, and as we describe below, the resulting changes
have not been guided by these two fundamental tenets.

1.2 The End of End-to-End Simplicity
The network infrastructure now applies a variety of in-network
“enhancements” that involve more than just packet forwarding,
and these additional functions are typically applied at the network
edge. We give many examples below, but for specificity, think of
caching (as in CDNs), authentication (as in zero-trust network
access or ZTNA), or edge routing (as in SD-WANs). Some of these
edge networking services are strong violations of E2ES, in that some
nodes in the network infrastructure are interposing application-
level (L7) functionality between the two endpoints of a connection.
Note that this is not a violation of the layered architecture (as
happens with transparent firewalls), but rather a departure from
the client-server model to something more akin to a client-edge(s)-
server model.

This departure was driven by the changing role of the Inter-
net, with the edge networking services typically addressing per-
formance, security, and privacy issues that were not crucial in the
early days of the Internet but which have become major pain points
now that the Internet plays such a central role in our personal and
commercial lives. For instance, “good enough” performance is no
longer sufficient because small changes in end-to-end delays have
large economic ramifications (e.g., lower response latencies cause
users to stay online longer, which in turn produces more ad revenue
[65]). Caching (as in CDNs) was the first widespread performance
enhancement, but the Internet now has several others, including
streaming support, SD-WAN, load balancing, and storage [53].

Similarly, security has become far more important in a highly
commercial Internet. Many decry the insecurity of the Internet
itself, and it certainly has weaknesses – such as its vulnerability
to denial-of-service attacks and route hijacking – but the security-
related edge networking services are mostly used to strengthen
the weak security of endpoints. Examples of this include ZTNA,
in-network next-generation firewalls (NGFWs), and authentication
services such as described in [14].

In addition, as the Internet has penetrated ever more deeply into
our personal lives, privacy has become far more important. Privacy
concerns have led to the ubiquitous use of encryption to protect
payloads, and to the deployment of edge networking services such
as private relay [5] and oDNS [58] that help hide traffic patterns
and metadata from the infrastructure.

The infrastructures offering these enhancements are not required
to apply them neutrally, in that there are no equivalents of the
network neutrality regulations that apply to these higher-level in-
network services. For instance, there is a new class of global private
networks operated by hyperscaled cloud and application providers
(that we discuss in Appendix A). While these networks have an
extensive set of edge networking services (e.g., DDoS protection,

load balancing, caching, and flow termination) these are only used
for their own traffic or (in some cases) their customers’ traffic.
In addition, there are commercial providers of edge networking
services (we will call them edge service providers, or ESPs), such as
Fastly, Cloudflare, and Akamai. However, there is no explicit legal
requirement nor historical practice that requires that these ESPs
provide services to all their customers on an equal basis (i.e., they
would be within their rights to discriminate against some customers
by charging more or denying service altogether). As we discuss in
Section 2, perhaps the greatest impact of the loss of E2ES is the
demise of neutrality.

A quick note about terminology: while ESPs and the private
networks are different in how they offer these services to others,
they have very similar technical designs. In what follows, we will
typically refer only to ESPs, but when the context is about their de-
sign, the comments will also typically apply to the private networks
of hyperscaled cloud and application providers.

1.3 The End of Interconnection
While these edge networking services are valuable – indeed, they
are necessary to handle the current workloads of applications like
content delivery – they are not interconnected. By this, we mean
that different ESPs do not coordinate with each other to deliver
edge services in the same way ISPs coordinate with each other to
ensure packet delivery. That is, even though they often peer at the
IP level (allowing them to exchange IP traffic), ESPs do not peer
at the edge service level and coordinate their handling of service
requests. To make this concrete, consider a set of established ESPs
(e.g., providing ZTNA) that do not cover region A. If a new ESP
emerges to cover region A, it cannot merely “interconnect” with an
existing ESP to provide coverage to region A. Instead, the entities
arranging for the edge networking service (i.e., the customers of
the ESPs) have to individually contract with this new ESP to gain
coverage for region A. This is as if the Internet did not have BGP but
instead required each AS that is sending traffic to provide source
routes to reach their destinations and pay the ISPs along the paths.

This lack of interconnection is not due to an accident or over-
sight but has happened because none of the necessary ingredients
that led to the Internet’s interconnection – standards, routing, and
peering – are present for these edge networking services. To clarify
what we mean by the lack of standards, note that edge network-
ing services typically have to be consistent with application-level
protocols used by the endpoints (e.g., TLS or HTTP). However, the
implementations of edge networking services do not have to be con-
sistent with each other, and interprovider consistency is necessary
for interconnection; i.e., the ESPs cannot coordinate on the delivery
of edge networking services unless they agree on the semantics
of those services. It is true that for some well-established services,
such as CDNs, interconnection standards exist (e.g., CDNI [9], Open
Caching [12], and Federated Edge [68] have been developed, though
not widely deployed), but in general there is no requirement for
edge networking services offered by different ESPs to have the
necessary level of compatibility.

Related to the lack of interconnection is the fact that ESPs do
not need to allow other ESPs to resell their services; they might
choose to do so, but there is no requirement. In contrast, the whole

An Architecture For Edge Networking Services ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

point of interconnection in the Internet is that when an access
ISP A connects to a transit ISP B, A is, by definition, reselling the
connectivity of B.

As a result of this lack of interconnection, global ESP cover-
age requires either that (i) ESP infrastructures be global, or (ii)
ESP customers stitch together coverage by several ESPs, tolerating
whatever differences in semantics or configuration exist between
those ESPs (where semantics refers to the behavior of the service
itself, and configuration is how customers specify the parameters
of the service to the ESP). Neither of these are attractive solutions:
the former creates significant barriers to entry into the ESP market,
and the latter imposes a heavy burden on ESP customers. Some
customers, such as in the CDN space, do take on the burden of
contracting with several ESPs, but our point here is not that the
burden is impossible to overcome but that it is undesirable and (as
we will argue) unnecessary in a well-designed architecture.

1.4 The Goal of This Paper
Summarizing the status quo, the Internet has a time-tested, if imper-
fect, architecture at L3 built around the tenets of interconnection
and E2ES. In recent years, the Internet infrastructure has been aug-
mented with an ad hoc collection of interposed networking services
at the edge that do not obey either tenet. The purpose of this paper
is to identify a coherent architecture for edge networking services
that tries to be more consistent with these two guiding tenets of
the Internet. We call the resulting design the InterEdge.

Note that the InterEdge does not, in any way, alter the current
Internet architecture; it merely provides an organizing structure for
the additional edge networking functions that currently have no
place in the Internet architecture. In addition, we are not claiming
that the world cannot exist without such an architecture; in fact, the
world of edge networking services clearly does exist! Nor are we
claiming that such an architecture would be easily adopted. Instead,
we are merely noting that the research literature has never explored
what a clean architecture for these edge networking services might
look like, and our goal here is to describe one such architecture.

In the next section, we discuss three topics: related work, why we
might need an architecture for edge networking services, and the
technical challenges posed by such an architecture. Next, in Section
3, we give an overview of the InterEdge’s basic architecture. In Sec-
tions 4–6, we describe how the InterEdge can support interposition,
interconnection and neutrality, and applications. We consider the
potential impact of InterEdge on the Internet ecosystem and the
possible incentives for adopting the InterEdge in Section 7.

2 Related Work, Rationale, and Challenges
2.1 Related Work
The research community has produced a wealth of clean-slate de-
signs for new Internet architectures (see [18] for an overview).
These design exercises have added to our understanding in many
areas, such as quality-of-service [19, 50], content delivery [40, 69],
evolvability [22, 37, 45, 54], security [70], mobility [59], and re-
siliency [3] (where, in each case, we have cited only a few of the
many relevant works). In contrast, in this paper, we accept the
Internet architecture as given and are merely trying to provide an
architectural framework for the many edge networking services

that have been deployed within the current Internet. The InterEdge
proposal we present here is closely related to our earlier work on
the Extensible Internet (EI); EI has been discussed in a previous
short editorial [8] and a blog post [60], but no detailed technical
description has been published.

But the InterEdge owes far more to real-world developments
than to previous research results. There are many commercial de-
ployments at the “edge” (for various definitions of that term) that
have transformed how enterprises achieve higher performance and
security on the Internet. In particular, there is now a rich ecosys-
tem of ESPs, and many of the hyperscalers have deployed similar
infrastructures for their own use (as described in Appendix A). This
is a case, as with cloud computing, where the commercial world
sprinted far ahead of the research community. In a recent editorial
[10] we argued that these recent commercial developments pose a
threat to the public Internet, but here our focus is on the technical
design of a new architecture for the edge.

Our work only addresses edge deployments that are focused
on network-related functionality rather than computation-related
functionality, so what is commonly called “Edge Computing” is
not within our purview. We use the term networking-related to
refer to functionality whose behavior and resource consumption
are easily characterized, whereas computation-related functionality
offer users a wider range of capabilities and resources. Of course, the
distinction between the two is not clearly defined, and as various
computational tasks become more standardized (e.g.,model serving
at the edge) they could eventually be considered networking-related
(much as caching has made the transition to a networking-related
service). Note that the true distinction here is less networking versus
computation than common and easily characterized primitives versus
proprietary and/or complicated functionality. Our goal is to make it
easy to deploy these common primitives that in turn will allow the
development of more sophisticated and performant applications.

From a conceptual standpoint, the work on which we depend
the most is that of Blumenthal and Clark (the latter being one of
the coauthors of the original end-to-end paper [57]), who argued
in [11] that the E2EP must be reinterpreted for the modern Inter-
net because the current lack of trust, diversity of end devices, and
operator-driven requirements are important reasons for overriding
the original principle and more aggressively inserting function-
ality in the network. Given this reinterpretation, how should we
think about the current Internet’s extensive use of edge networking
functionality? Their seminal paper makes two crucial observations.

According to [11], the “ability to support new and unanticipated
applications” at scale is the most important criterion when deciding
where to place functionality (assuming, of course, that the seman-
tics of the function can be safely implemented in the network,
which was the major focus of the original end-to-end paper [57]).
When the core forwarding function of the network was mostly
implemented in hardware, this criterion called for moving most
functions to endpoints, so that (i) hardware implementation of net-
work forwarding remained feasible and (ii) the network’s hardware
datapath did not become cluttered with a set of complicated and
possibly interfering functions. Most current ESPs use distributed
software platforms where different services need not interfere with
each other nor with traffic that does not need their functionality,
so this concern no longer applies.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lloyd Brown et al.

Blumenthal and Clark also express worries about “investment in
closed islands of enhanced service” that may come with in-network
functionality. This is a prescient critique of the status quo, with
the private networks of the hyperscalers being prime examples of
“closed islands.” The purpose of the InterEdge is to broaden access
to and increase the supply of these in-network services.

To summarize, much of the rationale for the E2EP has been un-
dercut by a new set of concerns, and the simplicity of the early
Internet has disappeared as a growing set of edge services have
proven essential for better privacy, security, and performance. How-
ever, while neither the rationale for nor the reality of the Internet’s
technical simplicity still holds, the argument for neutrality remains
valid. More specifically, even if some higher-level functionality has
moved into the network, it is still important to keep the economic
aspects of that functionality out of the network, so that applications
can compete fairly with each other, rather than being explicitly
favored by the infrastructure.

Thus, as mentioned earlier, we think that the most important
concern raised by the end of the E2EP/E2ES is that the neutrality of
the infrastructure is no longer ensured. There is nothing preventing
the ESPs, or the private networks of the hyperscalers, from discrim-
inating against specific customers. We discuss the implications of
this in the next subsection, where we discuss why one needs an
architecture for edge networking services.

2.2 Why Do We Need An Architecture Like
InterEdge?

Any rationale for a new design must start with the question:What is
wrong with the status quo? In answering this question, we compare
the status quo with the alternative where the edge networking
services are provided as part of an architecture in which the ESPs
are interconnected (which would require standards) and neutral. In
such a comparison, we have five main areas of concern: coverage,
lock-in, innovation, integration, and long-term evolution.
Coverage: The fact that new ESPs cannot seamlessly interconnect
with the existing ESPs means that it is harder to expand coverage
to currently underserved areas (see [15] for current CDN coverage).
To be clear, the lack of ESP coverage only means that the ESP
infrastructure is further away, not that there is no Internet access.
However, ESPs incur sizable expenses to provide relatively dense
coverage in lucrative markets, so there must be significant customer
benefit in doing so. Thus, just as the baseline has moved in the US
from Internet access to high-bandwidth Internet access because
some applications do not function well without high-bandwidth,
we can expect the same will soon hold true for nearby ESP support.
Lock-in: As noted earlier, there are typically no assurances that
the semantics or the configurations of the edge networking ser-
vices of different ESPs are the same. The lack of standards for the
basic service semantics (e.g., different pub/sub services give dif-
ferent guarantees) leads to a strong form of lock-in, because an
application built on one set of semantics cannot safely move to
a weaker set of semantics. Even if the semantics of two edge net-
working services are the same, the configuration used to specify
the desired behavior might not be. This leads to a weaker form
of lock-in, where switching between ESPs involves substantial re-
configuration but not rewriting the application. There is currently

much concern about similar weak and strong lock-in effects in the
cloud computing market [16].
Innovation: It would be hard to argue that the current ESPs are
not innovative, since the past ten years have seen a significant
increase in the variety of edge networking service deployments.
And one might fear that the requirement of standards, which would
be necessary for interconnection, would slow this rapid innovation.
But both points are more subtle than they first appear, as we now
discuss.

While new services have been introduced, they are typically
consistent with current application-level protocols (e.g., HTTP) and
do not require modifications to client software. The exceptions,
such as the deployment of QUIC [42] (which runs on top of UDP)
and private relay [5] (which involves an intermediate proxy), are
cases where the same entity controlled the client, edge, and back-
end deployments. This consistency with current application-level
protocols is not because there are no benefits to new application-
level protocols (in fact, the exceptional cases above show there
are benefits) but because, for fear of lock-in, vendors of end-user
software are reluctant to support an edge service requiring client
modifications if it is not offered by several ESPs. Creating standards
for such services would enable support by multiple ESPs, and there-
fore encourage the deployment of edge networking services that
require client modifications.

However, the presence of a standardization process does not
preclude ESPs from offering experimental services that are not yet
standardized. If an ESP offers a new nonstandardized service in
an open manner – e.g., providing an open-source implementation
that is consistent with the overall architecture (that we describe in
Section 3) – customers can adopt it knowing that standardization
(and therefore broader support) is a likely outcome if the service
becomes popular.

Another factor inhibiting innovation is that the current ESPs
typically only deploy services that can be easily monetized on their
own: i.e., can be charged for individually, and generate enough
revenue to justify their deployment. This is not the way to build a
generally useful platform, where often one needs a suite of services
on which to build applications, not all of which generate enough
revenue to justify a deployment infrastructure.

In the cloud ecosystem, open-source innovations in basic primi-
tives (e.g., key-value stores like Redis) can quickly become widely
used, without needing to generate a specific revenue stream. This
is the kind of innovation we hope to enable in the InterEdge; by en-
couraging a more dynamic ecosystem of open-source innovations
that can more easily achieve wide deployment, the Internet will
become a more powerful platform for applications.
Integration:As discussed in the Introduction, there is a wide range
of edge networking services, and they are offered by a variety of
ESPs. In many cases, it is up to the enterprise (for services like
SD-WAN and ZTNA) or application provider (for CDN service
and DDoS protection) to figure out how to make the various edge
networking services work together (i.e., so that an enterprise can
simultaneously have both SD-WAN and ZTNA operating). The
presence of an edge networking services architecture would not
solve this integration problem completely but would certainly make
the integration of network edge services easier for customers.

An Architecture For Edge Networking Services ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

One might argue that the current edge networking services
are in a stage similar to what Minitel [44] and AOL [4] and other
early online systems were before the Internet arose. They provided
extremely useful functionality, but were standalone systems; the
breadth of their effectiveness was largely due to the size of the
provider, not the synergy with other systems. That synergy came
about only after the Internet provided a single coherent platform
that made it easy to deploy new Internet applications. Achieving
that synergy for edge networking services is the goal of InterEdge,
and it requires that the platform be extensible (allowing the easy
deployment of new services) and integrated (so users can avail
themselves of several services within the same platform).
Long-term evolution: One test of a global platform is whether
it will support the deployment of its successor. The telephony in-
frastructure gave rise to the Internet (by providing point-to-point
communication). The Internet then gave rise to the hyperscalers by
allowing their customers to access them remotely; the private in-
frastructure of these hyperscalers now sources the vast majority of
Internet traffic reaching end users [41], often bypassing public tran-
sit providers to carry the traffic directly into access networks [6, 63].
The question is: can the current Internet, with its hyperscaled pri-
vate networks and large-scale ESPs, support the next step in this
evolution? More specifically, is the current platform general enough
to technically support this evolution, and is it neutral enough to
economically allow this evolution?

As stated previously, there is currently no requirement that ESPs
must be neutral, so they can deny service to or demand additional
revenue from customers as they see fit. Such actions could distort
competition in application-level markets and potentially thwart
innovations that may eventually threaten the dominance of the
current incumbents, thereby limiting the possibilities for long-term
evolution. In addition, a neutral Internet infrastructure that assumes
every flow is between a client and a backend connected with one
of the current hyperscaled incumbents is not general enough to
support a new set of incumbents; instead, we need a neutral network
that can support any-to-any communication rather than just client-
to-incumbent communication. Thus, we are not optimistic that the
Internet, on its current trajectory, could support or would allow the
next generation of incumbents to arise.

2.3 Technical Challenges
The previous discussion described, in general terms, how an edge
services architecture that provides interconnection and neutrality
might improve on the status quo. Here, we try to identify what
technical challenges we must confront in designing such an archi-
tecture.

The first class of challenges involves creating an architecture
that is flexible, performant, and extensible. This is more about the
overall structure of the architecture, and we describe it in Section 3.

The second set of challenges comes from the interposition of
third-party edge networking services on connections, where “third
parties” mean entities that are not associated with either end of
the connection. Many ESPs today are third parties in this sense,
so this use case is common today. However, today’s application-
level protocols do not deal with this case cleanly because trust
and privacy are problematic when a third party is interposing on

a protocol originally designed for client-server interactions. We
address this in Section 4.

The third class of challenges arises from interconnection and
neutrality. Interconnection requires standards, coordination (so
that services are applied at the appropriate edge), and financial ar-
rangements, so that money flows to the entities delivering services.
Neutrality requires nondiscrimination. We discuss these challenges
in Section 5.

3 Basic Architecture
In designing the InterEdge, we borrow the basic design patterns
from current ESPs (because they have proven effective at scale)
and only make changes to support interconnection and neutral-
ity, which are the two new requirements we are placing on edge
networking services (and the latter requires very few changes).
ESPs use commodity compute clusters relatively near clients to im-
plement their functionality; this positioning is essential to reduce
latencies, and the use of general-purpose compute (as opposed to
the ASICs in traditional networking gear) is essential to handle
application-level functionality. The InterEdge follows this model,
with all edge service processing implemented on service nodes
(SNs) that are commodity clusters placed near endpoints (i.e., at
network edges, such as aggregation points, central offices, or PoPs).
SNs are provided by what we will call InterEdge Service Providers
(IESPs). Because the InterEdge is a standardized interconnecting
architecture (as will become clear below), there will likely be far
more IESPs than today’s ESPs, and they can span from current ESPs
(who might adopt InterEdge for at least some of their offerings)
to carriers, cellular providers, and IXPs, and even to others in to-
day’s ecosystem that have not entered the current edge networking
services business because of its relatively high barriers but who
already have a physical presence at various network edges. The
sizes of IESPs will vary greatly, from the global scale of today’s large
ESPs to smaller IESPs that serve communities that are currently
underserved today.

In addition, as we describe in Section 5, the edge services pro-
vided by the IESPs can be paid for by either (i) the provider of
the application being used, (ii) the provider of the content being
consumed, or (iii) the owner of a host (where we use the term host
in what follows to refer to endpoint devices, whether they be client
or server in any particular connection).

We now describe the rest of the InterEdge architecture, starting
with the basic components (see Figure 1), a few operational details,
and some important properties.

3.1 Components
Interposition-Layer Protocol (ILP): All communication between
SNs, and between hosts and SNs, use a new tunneling protocol
called ILP. We describe ILP in more detail in Section 4.
Host-SN association: Every host is associated with one or more
first-hop SNs; these are the InterEdge’s analog of L3’s first-hop
routers, and handle both outgoing and incoming packets. The first-
hop SNs of any IESP can be discovered using a variety of standard
techniques (e.g., configuration, anycast, lookup, etc.). The host will
use whichever first-hop SN is appropriate for a given connection,

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lloyd Brown et al.

Host

IE Host Stack

App A App B

Host

IE Host Stack

App A App B

Server

Server

Programmable Switch

Service Node

Service A Service B

Service C Service D

Host-to-SN Pipes
SN-to-SN Pipe

L2 Header
L3 Header

L4 to L7
and

payload

IE Packet

ILP Header

Figure 1: An overview of InterEdge components.

and that choice will often depend on who is paying for the edge
services (since they will choose the IESP).
Service model: The InterEdge’s service model – that is, the set of
services any host accessing the InterEdge can count on – is defined
by a set of standardized services implemented in the SNs. These
services, examples of which we describe more fully in Section 6, are
defined not by detailed written specifications but by evolving open-
source software implementations called service modules. These
services and their implementations are chosen by some governance
body (such as the IETF) and deployed on all SNs, ensuring that the
InterEdge’s service model is uniformly available.
Execution environment: To make this uniform service deploy-
ment practical, all SNs have a common execution environment
that supports a few basic primitives (such as sending and receiving
packets over ILP, reading and updating configuration, and check-
pointing state for fault tolerance) in addition to an extensible set
of libraries that service modules can use for common tasks (e.g.,
cryptography [56], regular expression matching [71], and video-
and-audio re-encoding [46]). All service modules are written to
this common execution environment, creating a Write-Once-Run-
Anywhere (WORA) ecosystem for InterEdge services. We assume
that SNs have TPMs that can be used for attestation. We discuss
the use of secure enclaves in the SN in Section 6.
Datapath: Packets enter and leave an SN through what we call the
pipe-terminus, and then packets can be sent for general process-
ing within the SN’s execution environment. One can think of the
execution environment’s datapath as having three components: a
fast path (executed on the pipe-terminus); a slow path, which can
provide more general processing on general compute servers; and
off-path functions, such as access to persistent storage, that are sub-
stantially slower than packet forwarding. In the most basic case, the
pipe-terminus sends packets to a server hosting a service module
associated with the InterEdge service specified in ILP metadata. The
pipe-terminus also has a decision cache that stores match-action
pairs, enabling the pipe-terminus to take more general actions (such
as forwarding the packet to a specified next-hop SN). This cache is
populated by the service modules (either based on their configura-
tion or after processing some initial packets in a connection). SNs
can have a variety of hardware accelerators (e.g., programmable
switching, SmartNICs, cryptographic engines). These can be used,
at the operator’s discretion, to accelerate pipe-terminus actions

and the execution of various libraries on servers. Service modules
can also have alternative versions that directly leverage various
accelerators when available, but service modules must have a basic
version that only requires general compute support from an SN.
Host support: The InterEdge requires a host component that im-
plements support for ILP. Additionally, the host component is also
responsible for implementing client-side support for services – such
as pub/sub, anycast and multicast – that require host logic.
Edomains: The InterEdge will consist of many autonomous do-
mains of edge control, which we will call edomains. Each IESP will
constitute one or more edomains, with global scale IESPs perhaps
using multiple edomains to provide some geographic locality in
how other IESPs exchange traffic with them (as discussed below).
Edomains will often not line up with the ASes of the Internet, and
in particular a host’s first hop SN may be in a different AS than the
host. In what follows, we will sometimes refer to a host residing in
an edomain, but what we mean is that its first-hop SN resides in
that edomain.

3.2 Operational Details
Service invocation: Services can be invoked in several ways. First,
they can be explicitly invoked by hosts (either by the client or server
when establishing a connection), with applications indicating their
desired service to the host OS via an extended host network API.
This desired service is signalled to the SN via metadata in ILP. There
is no composition in such explicit invocations; hosts can only invoke
a single service because the InterEdge cannot guarantee that any
two arbitrary services meaningfully compose. However, naturally
composable services can be combined into “bundles” (e.g., an IP-
like service and a caching service) that hosts can invoke, and the
invocation may have optional settings (signalled in the metadata)
that control various aspects of the service (e.g., whether or not to
invoke caching). Note that this bundling is one way InterEdge can
integrate several services; more generally (as we discuss later in
Section 5), the burden of figuring out how to combine two or more
services is taken on by the developers of those services, not the
customers of those services.

Second, such services can be invoked by the host out of band
(via a control protocol between the host and its first-hop SN) and
applied to specified portions of its traffic (e.g., a host asking for
last-hop QoS to be applied to portions of its incoming traffic, as
discussed in Section 6).

Third, services can be imposed by a third party, which typically
would be the operator of the network in which a host resides; for
example, an enterprise may impose a firewall service or an SD-WAN
service on all traffic entering and leaving its network. In this case,
the enterprise would have what we call a “pass-through” SN at its
boundary that terminates ILP and executes the operator-imposed
services, and then forwards to the next-hop SN where the client-
invoked InterEdge services would be implemented (and the client’s
partial trust relationship discussed in Section 4 is with that next-
hop SN). As is true today, it is up to the operator to ensure that such
operator-imposed services do not overly restrict host behavior.
Inter-edomain connectivity: To deliver packets to receivers in
different edomains, we need to establish connectivity between edo-
mains via ILP. In the InterEdge, we require that every edomain

An Architecture For Edge Networking Services ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

peers directly with all other edomains via an ILP connection. The
economics of these peering arrangements are discussed in Section 5.
These peering arrangements between edomains do not change the
economic arrangements or the mechanisms used for interdomain
routing at the IP layer.

The actual mechanics of inter-edomain forwarding are a bit more
involved. For every pair of edomains, basic edomain administration
will ensure that (i) there is at least one pair of SNs (one in each
edomain) directly connected by a long-lived ILP connection and
(ii) each SN has a mapping between each edomain and an SN in
their edomain that has a direct connection to that edomain. SNs
can route inter-edomain traffic through the appropriate SN in their
edomain, or, as an optimization, they can establish, on demand, a
connection directly to the destination’s associated SN in another
edomain. We evaluate the overheads of maintaining many peering
connections in Appendix C.
Direct connectivity: The typical communication path (at least
for host-to-host interactions) involves a packet going from the
source to the SN associated with the source, to the SN associated
with the destination, and then to the destination. In some cases,
however, communications can go directly between hosts without
any intervening SNs, akin to how in IP two hosts in the same subnet
can communicate directly without passing through a router. More
specifically, if the host implementation of the InterEdge service
allows direct connection and detects that the source and destination
are within the same subnet (or closer to each other than to the
associated SNs), the host service implementations on the source
and destination can exchange packets directly over ILP.
Name services: Different services can be based on different name
and address spaces (e.g., pub/sub is based on topics, multicast is
based on groups). However, we assume for point-to-point services
that the appropriate name resolution returns not just the service-
specific address but also one or more SNs associated with the desti-
nation host.

3.3 Important Properties
Flexible, performant, and extensible: These are the properties
we promised in the Introduction, and we now justify them here. All
services can avail themselves of general compute, so there is com-
plete flexibility in the semantics of the services. The performance
comes from carefully separating service functions into fast-path,
slow-path, and off-path components. The extensibility is due to
the common execution environment and the deployment model.
When a new service is standardized, its service module is made
available, and after some delay to allow for sufficient testing (say,
on the order of several months), it is required that all SNs support
this service. At that point, hosts that have applications or operating
systems that are aware of this new service can invoke it, and hosts
that are unaware can continue without change. The InterEdge is
thus fully extensible, and we expect that its set of services will grow
over time. We expect these services to be basic primitives (such
as pub/sub or attestation) or use-case-specific (such as support for
streaming), but not application-specific (i.e., they are not designed
to support specific proprietary applications).
Backwards compatible: The InterEdge is backwards-compatible,
in that InterEdge-unaware endpoints can continue interacting with

each other without change, because nothing in the existing IP
infrastructure has changed.
Resilient: Interposition makes resiliency harder to achieve, a prob-
lem already raised by currently deployed edge networking services.
While a more thorough answer to this question is outside the scope
of this paper, we observe that (i) for stateless services, SN failures
are like router failures and can be easily recovered from, and (ii)
for stateful services, one can use host-driven state reconstruction
techniques (as briefly mentioned for pub/sub in Section 6) for cor-
rectness and standby-replication for performance.

4 Supporting Interposition
Since interposition is a necessary feature of the InterEdge, we think
it is important to revisit how best to support interposition. Today’s
implementations of interposition have two major drawbacks. First,
they are computationally inefficient (see [72] for an exploration of
interposition overheads in service meshes and other settings) be-
cause they need to terminate a connection (since they must operate
on data that might be encrypted) and then forward it on another
connection. Second, many of today’s implementations, at least those
in the hyperscaled private networks, are built on the assumption
that the interposing point belongs in the same trust domain as the
backend server (so that assuming access to the connection payload
does not violate trust assumptions). This limits where interposition
can be performed and is therefore antithetical to our goal of pro-
viding a common set of widely deployed edge networking services
implemented using potentially third-party interposition.

We designed ILP to address these problems. To start with, we
assume a different trust model than the one assumed by existing
interposition solutions. Our trust model starts with what is assumed
by applications (both those running over the Internet and inside
datacenters) that do not use interposed services; we assume that
application developers and users fully trust the devices and servers
that they control, and that they do not trust network switches
or links (as evidenced by the wider adoption of TLS, QUIC, and
other encrypted transport protocols). We then extend that model
so that, in the InterEdge, we assume that applications only partially
trust SNs. The partial trust in SNs reflects the fact that an SN must
necessarily learn more information about a packet than what is
carried in current layer 2–4 headers, because (in lieu of secure
enclaves, which we discuss in Section 6) they can observe which
service processes the packet, and the type of processing applied
by the service. However, applications (and users) can control what
additional information is revealed by choosing the service they use
and the inputs they provide in the ILP header.

In addition to adopting the trust model above, we designed ILP
to meet three additional goals:

• Generality: It should not restrict what services can be im-
plemented.

• Efficiency: It should have minimal impact on packet latency
and time to establish a connection, beyond the overheads
imposed by the service itself.

• Cacheability: It should allow services to use a decision
cache at the pipe-terminus to reduce processing overheads.

To fit within our trust model, ILP requires each packet’s ILP
headers (Figure 2) to be encrypted using a key shared between the

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lloyd Brown et al.

Service ID
Connection ID

Service specific
information

L2/L3 Header

L4 Header

Data

IL
P

H
ea

de
r

Decrypt
ILP

header
using

peer key

Service ID
Connection ID

Service specific
information

L2/L3 Header

L4 Header

Data

Decision
Cache

Query decision cache

Match
Found

No
Match

Send to Service
Module to determine
next hop

Encrypt
ILP
header
using next
hop key

Service ID
Connection ID

Service specific
information

L2/L3 Header

L4 Header

Data

Figure 2: ILP header and processing at a SN

ILP packet’s sender and its receiver (either a host and an SN or
two SNs), and must be decrypted before it can be processed. As
is standard, we assume that this shared key is created when the
sender and the receiver first connect with each other: i.e., when
a host first associates with an SN or when two SNs establish a
pipe between each other. This shared key is only used to encrypt
the ILP header, and we assume that application-level data is pro-
tected using a different key that is only known to the connection
endpoints. Using a single shared key to encrypt ILP headers for
multiple connections ensures that ILP adds no additional latency
when establishing a connection or when sending individual packets.
To reduce cryptographic overheads and avoid imposing ordering
or reliability requirements on the network, we plan to use PSP [34],
a recently proposed encryption protocol that is designed so it can
be easily offloaded to NIC ASICs and can operate on individual
packets, even when they arrive out of order.

As we described previously, all packets at an SN are first received
by the pipe-terminus, which is responsible for decrypting the ILP
header using the shared key associated with the packet’s source
address (carried in the Layer 3 header). Next, the pipe-terminus
uses the packet’s L3 header, service ID, and connection ID to query
the decision cache. If a match is found, it indicates whether and to
whom the SN should forward the packet (the decision can specify
multiple forwarding destinations, in which case a copy of the packet
is forwarded to each destination). If no match is found, the pipe-
terminus forwards the packet’s L3 header and decrypted ILP header
to the appropriate service (determined using the service identifier
in the ILP header). Services can use an InterEdge-provided API and
information from the L3 header (i.e., the source address) and ILP
header (the connection ID) to add rules to the decision cache, if
desired. Either the decision cache or the service provides the pipe-
terminus with a (possibly empty) list of forwarding destinations.
The pipe-terminus looks up each destination’s key, encrypts the
ILP header, adds the appropriate network headers, and forwards
the packet (Figure 2).

To ensure generality, other than requiring that the initial portion
of the ILP header contain a service ID and connection ID, we place
no limits on the length (beyond those imposed by the network
MTU) or contents of a packet’s ILP header. Furthermore, we allow
services to require different ILP headers (while keeping service and
connection IDs the same) for different packets in a connection. This

allows services to encode an arbitrary amount of information in the
ILP header (across packets). Thus, our design imposes no limitation
on the size or type of inputs used by a service.

The use of separate encryption keys for the ILP header and
application data is necessary, given our trust assumptions and re-
quirements. While some prior work [36, 49, 61] has shown how
cryptographic techniques (such as homomorphic encryption) that
allow algorithms to compute on encrypted data can be used to build
interposition software that does not have complete visibility into
application content, these approaches come at the cost of generality
(since they limit what computation can be performed), cacheability,
and efficiency. To the best of our knowledge, no existing approach
meets our three requirements while also obeying our trust assump-
tions. See Appendix B for more details on how ILP can be used by
services.

5 Supporting Interconnection and Neutrality
Interconnection and neutrality are core requirements of the In-
terEdge. As discussed, interconnection requires standards for the
services SNs deploy, coordination among the SNs to appropriately
respond to service requests, and financial arrangements among
IESPs. We have already discussed the standardization of InterEdge
services, but here we note that this includes standardizing how
those services are configured, so that a customer can seamlessly
move between IESPs without having to reconfigure their services.
The standards thus not only allow interconnection but also provide
portability.

However, the coordination of InterEdge services is more compli-
cated than that of packet delivery (though we are not saying that
BGP is simple!) and depends on the nature of the particular ser-
vice. When an enterprise has arranged for an SD-WAN service, the
associated SN for outgoing packets goes through the enterprise’s
first-hop SN arranged for by the enterprise. When a residential
customer has arranged for last-hop QoS (a service described in
Section 6), the associated SN for incoming packets goes through
an SN arranged for by the resident. However, when an application
provider has arranged for a CDN service from some IESP, then the
application packets going to some client come from an SN associ-
ated with the application provider’s IESP. For more complicated
services that involve interactions between multiple clients, such as

An Architecture For Edge Networking Services ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

the pub/sub service we describe in Section 6, there are more com-
plicated interactions between SNs. These interactions are driven
by the service’s standard implementation and, thus, are typically
service-specific and worked out by the designers of the service.

The last aspect of interconnection is the financial arrangement
of peering between IESPs. In the InterEdge, we require that in
terms of ILP connections, every edomain engages in settlement-
free peering with all other edomains; that is, when an SN in one
edomain sends packets via ILP to an SN in another edomain, no
money changes hands. The settlement-free requirement is natural –
neither edomain is offering transport, and each is being paid directly
by their respective customers – and necessary to avoid issues of
network neutrality (see [38] for further discussion of this topic, in
a somewhat different context). These InterEdge arrangements do
not change the economic arrangements or the mechanisms used
for interdomain routing at the IP layer.

While we have covered the basics of achieving interconnection,
three thorny problems remain.

First, since there can be different ways SNs are associated with a
host (these associations can be based on the user, the enterprise, the
application, and/or the content provider), how are they coordinated?
We don’t think there is a magic answer, but instead hope that this
is something for which a workable set of guidelines will emerge as
the ecosystem matures; as a parallel, recall that BGP has oscillatory
modes in theory, but a set of reasonable business practices provably
avoid them [27]. As a starting point for such guidelines, note that
there are services paid for by enterprises (such as last-hop QoS)
that apply to all traffic and can be administered by an SN very close
to the enterprise, while other services that are more application-
specific (such as caching) can be applied by a different SN that need
not be located as close. The coordination rules for these two kinds
of services would be that the client’s request for content would
travel to its own first-hop SN (dictated by the enterprise’s InterEdge
configuration), then to the first-hop SN run by the IESP hired by the
application provider. The return path would be the reverse, with
the cached content going from the SN paid for by the application
provider to the SN paid for by the enterprise and then to the client
itself.

Second, how do we ensure neutrality? The most important goal
here is to prevent an IESP from discriminating against specific appli-
cation providers; this would ensure that application-level markets
are not distorted by the interests of the IESPs, which is the essence
of network neutrality. To combat this, we propose that each IESP
be forced to publish their standard rates and make their services
available to all on nondiscriminatory terms (subject, of course, to
external regulatory concerns). These prices might depend on the
volume and location of service, but cannot vary based on the cus-
tomer. More specifically, there can be no discrimination based on
the user’s identity aside from the type of service requested and the
amount they are paying. However, there are other societal goals
that come under the umbrella of neutrality (see [2] for a discussion
of neutrality in caching). These additional notions of neutrality will
vary on a service-by-service basis, and should be addressed by the
body standardizing these services.

Third, there are a variety of ways customers pay IESPs, and
how do we support them all? This interaction is simple when the
IESP is being paid by the owner of the host, since each owner can

choose their IESP. The situation is more complicated when the
payment comes from an application or content provider (for, say,
CDN or transcoding services) where a single entity wants to arrange
for first-hop SNs near all potential clients. They have a choice of
going with an IESP that has global coverage or going with a set
of smaller IESPs that together cover the desired areas. We believe
that most customers will not want to stitch together coverage, yet
we also do not want the IESP market dominated by an oligopoly
of global providers. However, with standard rates being published
openly, we believe that a set of “brokers” will arise that can do the
stitching on behalf of customers. Such brokers are common in other
industries (e.g., travel), and could help allow collections of smaller
IESPs compete with the global ones; in particular, carriers could
more easily become IESPs (deploying at the edge is easy for them,
but attaining global coverage is hard).

6 Supporting Applications
6.1 Context
The intent of this section is to describe how the InterEdge can help
support applications through the deployment of edge networking
services. The InterEdge architecture described in Section 3 can im-
plement a wide range of edge networking services. Its performance
is not its competitive advantage, as we do not expect the InterEdge
implementations of common services such as CDNs to match the
finely-tuned implementations used by the larger ESPs. The fact
that the InterEdge architecture provides a platform on which many
different services can run is a step forward,1 but the presence of
a common execution environment and standardized open-source
service modules is the more radical departure. It will not change
what could be deployed at the edge, but it can change what might
be deployed by lowering the deployment barriers and enabling
interconnection. This lowering of deployment barriers is because (i)
the common execution environment enables deployment of a single
implementation in all SNs, and (ii) the presence of an open-source
infrastructure and set of services means that one can become an
ESP without a sizable development team.

In this section, we do not list the commonly offered services
like caching or ZTNA, but instead, we offer a few examples of
services that might not individually generate significant revenue,
but together would create a better platform for applications and
users. These services fall into five categories: privacy, security, last-
hop QoS, multipoint delivery, and specialty services.

6.2 Examples of Possible InterEdge Services
Privacy: The essence of interposition is that intermediate nodes
can access some application (i.e., payload) state, which inherently
lessens client privacy. To counteract this, we propose the follow-
ing for privacy-sensitive services: (i) SNs perform their interposed
packet processing in secure enclaves (the use of enclaves will be
specified when the service is standardized), and (ii) ILP is always en-
crypted. Thus, unless an attacker has penetrated the secure enclave,
the non-enclave portions of SNs are only aware of what other SNs
they are communicating with (since they can see the destination
address in the ILP header) but know nothing about the content. The
1A designer of one of the leading ESPs, who we obviously cannot name, said to us:
“We need a platform like this. Our current development practice is too fragmented.”

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lloyd Brown et al.

use of enclaves makes it simpler to implement oDNS, private relays,
ToR-like mixnet infrastructures, and other privacy-aware services.
There are other approaches to privacy in middleboxes (such as
mbTLS [48], ZKMB [36], and BlindBox [61]), but these typically
require changes to client protocols. Note that InterEdge’s privacy
guarantees are somewhat different from these three examples, and
that InterEdge relies on enclaves whose security models are evolv-
ing. In addition, packet processing in secure enclaves incurs some
overhead, which we characterize in Appendix C.
Security: InterEdge services, and the applications built thereon,
will use the usual suite of cryptographic protocols (suitably mod-
ified for InterEdge) to ensure the privacy and integrity of com-
munications. Beyond these traditional measures, we describe one
area where InterEdge could substantially improve security: prefix
hijacking. Such attacks have long been a concern for network and
cloud service providers, and recent prefix hijacking attacks have
targeted cloud providers [30, 32], online services [33], and cellular
providers [31]. The Resource Public Key Infrastructure (RPKI) has
been proposed to eliminate these problems. Unfortunately, prior
work [29, 43] has shown that these RPKI-based protections against
prefix hijacking are not yet widely effective. In particular, while
there has been an increase in the number of ASes that use route ori-
gin authorization (ROA) (i.e., they provide cryptographically signed
information attesting to path validity), relatively few perform route
origin validation (ROV) (i.e., few check the correctness of this data).
A recent (2022) survey by Cloudflare [55] found that fewer than 261
million users (about 6.5% of Internet users) are protected by these
techniques. While subsequent work [1] says that a larger number
of users might be protected (because of validation by transit ASes),
there is agreement that prefix attacks are a concern until we get
widespread (near universal) deployment of ROA and ROV. This
is a problem that InterEdge can address: our design assumes that
any pair of InterEdge SNs are connected directly over an encrypted
and authenticated tunnel. This trivially prevents hijacking attacks
that redirect traffic to malicious hosts, as was the case with recent
attacks on Amazon [30, 32] and Twitter [33]. While this approach
cannot restrict what geographic regions data transits when travel-
ing between the two endpoints [31], the use of encryption limits
what information can be garnered by an adversary.
Last-hop QoS:While the general topic of QoS has resulted in many
proposals (e.g., [7, 52]) but little deployment, here we target the
more limited, but still useful, notion of QoS where the main source
of degraded service comes at the user’s own edge (i.e., their Internet
access point). InterEdge could provide a last-hop QoS service to
receivers where they specify to their first-hop SN (which is pre-
sumably on the other side of their congested network access link)
the total bandwidth that their access link can handle and a set of
weights or priorities (for weighted-fair-queueing and/or priority
scheduling) for various traffic streams (identified by source pre-
fixes). This approach would allow a household to give high priority
to gaming traffic (which requires low latency), while still preserv-
ing enough bandwidth for streaming movies (see [13] for a similar
service).
Multipoint delivery: The InterEdge could easily support inter-
connected versions of three popular multipoint paradigms: anycast
packet delivery, multicast packet delivery, and pub/sub message

delivery. To give a brief idea of how this might be implemented, we
describe how to handle the core design challenge of knowing where
the various members of a group are. We assume that IANA or some
other organization provides a durable and scalable lookup service
that associates each address with the public key of the owner of that
address, and contains additional information described below. Re-
ceivers join anycast or multicast groups by sending a join message
to their first-hop SN, and these messages must have a signature
from the owner authorizing them to join. Some groups will be open
to all, and the owner can post a signed statement in the lookup
service, allowing all receivers to validate their join messages. To
achieve better scalability, we change the semantics of anycast and
multicast so that before a host can send to a group it must first
inform its first-hop SN of its intention to do so; i.e., it must register
as a sender to the group. We assume that edomains use SDN-like
network management tools with a persistent and scalable store that
we refer to as the core (which will be used in anycast, multicast,
and pub/sub). Whenever an SN receives a join message for a group
for which it does not currently have a member, it sends a notice to
the edomain’s core, which keeps track of which of the edomain’s
SNs have members of each group. If the edomain does not currently
have a member, the core forwards this message to the IANA lookup
service, which keeps track of which edomains have members of
each group. The same is done when registering as a sender (first
to SN, then perhaps to core, and then perhaps to lookup service),
with the extra step that the SN reads from the core the set of other
internal SNs that have members (and puts a watch on this list so the
core will send updates). When the core registers a sender with the
lookup service, it reads from the lookup service the list of edomains
with members (and puts a watch on that list so the lookup service
will send updates). As a result of these actions, each SN knows, for
each group for which it has a sender, all SNs in its edomain that
have associated members. Each SN also knows all group member-
ships of its associated hosts. Each edomain core knows the group
memberships of each of its SNs, and for those groups where there
is at least one sender in the edomain, the core knows which other
edomains have members in that group. The rest of the mechanisms
for anycast, multicast, and pub/sub are relatively straightforward,
so we do not describe them here, but we have an implementation
of pub/sub running on our prototype.
Specialty services: The previous services are all familiar generic
primitives, but the InterEdge could also provide services that are
more specialized to certain use cases. For instance, message queues
such as Kafka [47] are a core component of many distributed ap-
plications that process streaming data, but most implementations
are typically optimized for environments where these requests are
made by processes that run in the same datacenter. Recently, how-
ever, Cloudflare Queues [20] has tried to address this change in
workloads by proposing a geo-distributed message queuing service
running on its edge. The InterEdge could provide such a service in
an interconnected manner.

Bulk data delivery is a form of multipoint delivery but focuses
on large data transfers rather than single packets or messages. The
InterEdge could incorporate an interconnected version of this, and
we are currently building such a service for possible use for large
experimental datasets in the scientific community.

An Architecture For Edge Networking Services ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Similarly, consistency services such as Spanner [21] and other
follow-on works [28, 35] have shown that using fine-grained time
synchronization for message ordering can reduce coordination
overheads, and thus improve performance for databases and enable
new use cases. If InterEdge requires that SNs be equipped with
GPS receivers, it could offer a high-latency (owing to variations
in latency) and low-throughput (due to limits on time precision)
but ordered message delivery system. While such a system cannot
guarantee atomicity (since we cannot assume bounds on message
latencies), the prior works we cited above show that even ordering
in the absence of atomicity can reduce coordination overheads for
applications.

Lastly, the InterEdge could easily support a generic VPN service
that provides a customer with a publicly reachable address, redirects
incoming traffic to a customer-specified authentication service, and
only allows in traffic that has been duly authenticated.

6.3 Discussion
To reiterate our opening comments in this section, the point of the
InterEdge is not that it is technically superior in capabilities to what
ESPs have today but that its use of a common open-source platform
and its focus on interconnection (which allows services to arise
that connect clients using different IESPs), makes it easier to deploy
services that might not, on their own, generate enough revenue to
warrant deployment. But taken together, these less lucrative ser-
vices would make the Internet a far better platform for applications.
For instance, security would be improved if prefix hijacking were
eliminated; users would be happier if they could resolve congestion
on their last mile by choosing the relative priorities of incoming
connections, and if their privacy was always protected by mech-
anisms such as private relay, oDNS, and (when desired) mixnets;
and application development would be eased by the presence of
global-scale multipoint delivery and other primitives like message
queues. Of course, we have only listed a few of the possible services
that could be integrated into InterEdge, and we expect many more
possibilities to emerge as new use cases arise.

We have developed an InterEdge prototype and have tested
InterEdge-enabled hosts and the following services (some of which
we did not have space to mention here) in our lab, on CloudLab [24],
and on Fabric [25]: mixnets, pub/sub, oDNS, cluster interconnection,
DDoS protection, mobility lookup service, and support for attesta-
tion. In building our initial prototype, we focused on flexibility, not
performance. Specifically, we designed it so that we can rapidly add
services, prototype new features, and deploy them in virtualized
environments. We used IPC to send and receive data from services
which obviously adds overhead, but this approach makes it trivial
to prototype services. There are well-known solutions to address
these and other performance bottlenecks in our prototype, but we
will only begin focusing on performance once we have explored
more of the service design space.

7 Ecosystem Considerations
The current edge networking services ecosystem has two notable
characteristics: a predominant focus on a few highly lucrative ser-
vices (with CDN, SD-WAN, and security features probably leading
the way), and two categories of networking service providers: the

hyperscaled cloud and application providers who apply edge net-
working services to their own traffic (and potentially to those of
their cloud customers), and a broader set of commercial ESPs. At
the structural level, the edge networking services ecosystem has
clearly been shaped by seeking revenues, rather than starting with
a clean architecture. The reverse is true of the Internet, where the
architecture preceded commercialization. More generally, the lack
of an architecture occurs in many technology ecosystems, but it is
rarer in communication ecosystems where the need for intercon-
nection (between providers), portability (devices moving between
providers), and uniformity (so devices can talk to each other) has
typically driven the adoption of architectural standards (e.g., cellu-
lar, telephony, wifi, bluetooth, etc.).

The question, then, is how might we “retrofit” an architecture
onto an already existing ecosystem? The operative word is “might”
because such a massive change in a large ecosystem is, at best, a
low-probability event. We approach this as two separate issues: (i)
once the InterEdge has some traction how might it spread more
widely, and (ii) how might the InterEdge get its initial traction.

Turning to the first issue, we ask the following question: if a
production-quality InterEdge implementation achieved some level
of adoption, how might the ecosystem evolve in response to its
presence? In the short term, we envision that the private networks
of the hyperscalers would remain unchanged, as they would be
unwilling to risk their core business by adopting an emerging in-
frastructure. In contrast, we think some of the larger ESPs might
adopt the InterEdge (while still offering some of their own propri-
etary services) because their size (in terms of coverage) offers such
an advantage that using a standardized service might help rather
than hurt (i.e., customers would have no worry about lock-in, but
would still seek out the largest providers). The probability of this
depends greatly on the extent of early adoption on which this ques-
tion is predicated; the larger ESPs would likely only adopt if the
InterEdge had sufficient traction so that (i) adopting it did not scare
off current customers and (ii) there were enough novel services
(requiring changes to client protocols) so that ESPs were willing to
abandon their narrower proprietary strategy in favor of offering a
wider variety of functionality.

This positive outcome will require four significant ecosystem
advances. First is the development of a new set of services that
are not compatible with current client protocols and that complete
the path from “interesting open-source offering” to “InterEdge-
adopted standard” to “widely used InterEdge service.” These won’t
necessarily be highly lucrative services, but services that prove
useful in various use cases. This will help establish the benefit of
not remaining tied to current client protocols. Second, the InterEdge
community (developers, providers, and customers) provides some
overall architectural oversight in terms of how to address the thorny
problems we raise in Section 5. Third, a new generation of IESPs
emerges; because the InterEdge software infrastructure is open-
source, these new providers need not have large development teams,
but only need to have edge deployments where it would be easy
to add InterEdge SNs (and these edge deployments need not be
global in scope, because of interconnection). Examples of these
new IESPs could include ISPs, cellular carriers, IXPs, and others.
These new entrants to the ESP business would provide the impetus
for larger ESPs to adopt, since through interconnection these new

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lloyd Brown et al.

entrants – who collectively would have far more sites than even the
largest existing ESPs – could create a credible threat to the larger
ESPs. Fourth, the combination of these new IESPs and the ability
to interconnect means that coverage greatly improves.

If all this comes to pass, the InterEdge could become so wide-
spread that it essentially defines a new and extensible service model
of the Internet. At that point, the hyperscalers might abandon their
proprietary private networks in favor of the InterEdge, given that
the InterEdge would provide more features and more coverage, at
potentially less cost and little fear of lock-in. These private net-
works are not profit centers for the hyperscalers, they are merely
a means to an end: customers who stay online longer. If the In-
terEdge makes it easier and cheaper (by providing an open-source
infrastructure and potentially third-party providers) to achieve that
goal, it might prove to be the more attractive option.

Given this possible trajectory from initial adoption towardswider
InterEdge deployment, we turn to the second issue of initial adop-
tion and ask the following question: who might be an early adopter
of the InterEdge? One possibility is the large ESPs. If you view
them as dominant in the ESP ecosystem, the incentives are weak
without the InterEdge gaining prior traction. However, if you view
the hyperscaled clouds and application providers as the true apex
predators of the broader ecosystem, and the ESPs as merely nibbling
at the corners of the market (which, given that the relative market
caps differ by more than an order of magnitude, is not an unreason-
able perspective), then the incentives for the large ESPs to adopt
become stronger. That is, the large ESPs might adopt InterEdge to
avoid being absorbed by the hyperscalers.

However, there are indications that the large ESPs do not see the
cloud and application providers as competitors. There is good rea-
son for this view, because the hyperscalers and the ESPs have very
different business models (e.g., different margins), so it is unlikely
that the hyperscalers would go after the ESP market. In that case,
our search for early adopters should focus on the ESP ecosystem.
Since the large ESPs dominate in this market, there is little reason
for them to precipitously jump to the InterEdge. However, a key
aspect of the InterEdge is, as we mentioned above, that it would
enable collections of smaller ESPs to compete more effectively with
the larger ones. Thus, the most likely first adopters would be the
smaller ESPs and companies that are not in the ESP business but
have physical infrastructures at the edge that could easily host SNs.

But that leaves open the question of how these groups could
take the first step towards creating the InterEdge. The ARPANET
provides an instructive example of one such possible first step. The
ARPANET provided a pre-commercial platform on which the ideas
that led to the Internet could be tested, and then demonstrated, and
then used by applications. Recall that the ARPANET did not just
prove that what we now call the Internet architecture could deliver
packets, but also that such a standardized packet-delivery platform
could be used by a wide range of applications.

Similarly, what might be needed to encourage the smaller ESPs
and the not-yet-ESPs to adopt the InterEdge is an ongoing pre-
commercial deployment that proves not only that the InterEdge
can support services, but also that some of the more novel services
(that current ESPs are not supporting) could gain traction in the
marketplace. This is the path we are currently pursuing, by seeking
to operate our prototype as an open platform on which the research

community can explore new edge services and new applications
that exploit those and other edge services.

Recall that the purpose of this section was to describe a plausible
path to adoption, and point out some of the necessary precursors.
Admittedly, at this point success seems far-fetched, but as the saying
goes “Pessimists are usually right and optimists are usually wrong
but all the great changes have been accomplished by optimists”
[26]. On the other hand, as Macbeth said, this could be a “tale told
by an idiot, full of sound and fury, signifying nothing.” Neither the
authors nor the readers of this paper can predict the future; all we
can do in this section is describe some of the incentives that may
affect the outcome.

8 Conclusion
The previous section speculated on how the InterEdgemight change
the ecosystem, but such predictions – both our optimistic ones and
our critics’ pessimistic ones – are hardly reliable, and our optimism
is not the contribution of this paper. Instead, the contribution of
this paper is to describe, for the first time, what an architecture for
edge networking services might look like. These edge networking
services are here to stay, and we think the role of our research
community is to provide insight into how we might guide the
ecosystem towards a future that best serves society’s need by pro-
viding a global, extensible, and neutral platform for application
deployment. This paper is our initial attempt to provide some of
that guidance, and we hope that its publication will spur a broader
discussion of this topic.

What our design shows is that an interconnected and neutral
architecture for edge networking services could be easily built, and
plausibly deployable through current ecosystem incentives. More-
over, the main benefit of this architecture is not the development of
radical new services that cannot be built today, but rather the devel-
opment and deployment of a range of widely useful, but perhaps
not sufficiently backwards-compatible and/or lucrative, services
that would not be deployed today.

Ethics Statement. While this paper addresses ethical issues re-
lating to what designs might be best for society, the methodology
does not raise any ethical concerns.

Acknowledgments
We thank our shepherd Katerina Argyraki and the SIGCOMM re-
viewers for their comments. We also thank Marwan Fayed, David
D. Clark, Mark Nottingham, Michael Schapira, and members of the
Berkeley NetSys lab for their comments. This work was funded in
part by gifts from Intel, Broadcom (through VMware Research) and
Protocol Labs; by grants from NSF (CNS-2242502, CNS-2242503,
CNS-2148275, Eager-2137220, OAC-2201489, and CNS-2213387);
and by the Department of Energy’s Office of Advanced Scien-
tific Computing Research (ASCR) under Contract No. DE-AC02-
05CH1123.

An Architecture For Edge Networking Services ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

References
[1] 2023. Exploring the Latest RPKI ROV Adoption Numbers. https://www.kentik.

com/blog/exploring-the-latest-rpki-rov-adoption-numbers/.
[2] Muhammad Abdullah, Pavlos Nikolopoulos, and Katerina Argyraki. 2023.

Caching and Neutrality. In HotNets. Association for Computing Machinery.
[3] Tom Anderson, Ken Birman, Robert Broberg, Matthew Caesar, Douglas Comer,

Chase Cotton, Michael J. Freedman, Andreas Haeberlen, Zachary G. Ives, Arvind
Krishnamurthy, William Lehr, Boon Thau Loo, David Mazières, Antonio Nicolosi,
Jonathan M. Smith, Ion Stoica, Robbert van Renesse, Michael Walfish, Hakim
Weatherspoon, and Christopher S. Yoo. 2014. A Brief Overview of the NEBULA
Future Internet Architecture. SIGCOMM CCR (2014).

[4] AOL. 2024. https://www.aol.com/.
[5] Apple. 2024. About iCloud Private Relay. https://support.apple.com/en-us/

HT212614.
[6] Todd Arnold, Jia He, Weifan Jiang, Matt Calder, Italo Cunha, Vasileios Giotsas,

and Ethan Katz-Bassett. 2020. Cloud Provider Connectivity in the Flat Internet.
In IMC.

[7] Fred Baker, David L. Black, Kathleen Nichols, and Steven L. Blake. 1998. Definition
of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers. RFC
2474.

[8] Hari Balakrishnan, Sujata Banerjee, Israel Cidon, David E. Culler, Deborah Es-
trin, Ethan Katz-Bassett, Arvind Krishnamurthy, James Murphy McCauley, Nick
McKeown, Aurojit Panda, Sylvia Ratnasamy, Jennifer Rexford, Michael Schapira,
Scott Shenker, Ion Stoica, David L. Tennenhouse, Amin Vahdat, and Ellen W.
Zegura. 2021. Revitalizing the public internet by making it extensible. Comput.
Commun. Rev. 51, 2 (2021), 18–24. https://doi.org/10.1145/3464994.3464998

[9] Gilles Bertrand, Stephan Emile, Trevor Burbridge, Philip Eardley, Kevin J. Ma, and
Grant Watson. 2012. Use Cases for Content Delivery Network Interconnection.
RFC 6770. https://doi.org/10.17487/RFC6770

[10] Marjory Blumenthal, Ramesh Govindan, Ethan Katz-Bassett, Arvind Krishna-
murthy, James McCauley, Nick Merrill, Tejas Narechania, Aurojit Panda, and
Scott Shenker. 2024. Can We Save the Public Internet? SIGCOMM Comput.
Commun. Rev. 53, 3 (feb 2024), 18–22. https://doi.org/10.1145/3649171.3649175

[11] Marjory S. Blumenthal and David D. Clark. 2001. Rethinking the Design of the
Internet: The End-to-End Arguments vs. the Brave New World. ACM Trans.
Internet Technol. (2001).

[12] Open Caching. 2021. SVTA2007: Open Cache Request Routing Functional Speci-
fication. https://www.svta.org/product/svta2007/.

[13] Frank Cangialosi, Akshay Narayan, Prateesh Goyal, Radhika Mittal, Mohammad
Alizadeh, and Hari Balakrishnan. 2021. Site-to-Site Internet Traffic Control
(EuroSys).

[14] Karen Casella, Travis Nelson, and Sunny Singh. 2021. Edge Authentication
and Token-Agnostic Identity Propagation. https://netflixtechblog.com/edge-
authentication-and-token-agnostic-identity-propagation-514e47e0b602.

[15] CDN Planet. 2024. Content Delivery Networks by country. https://www.
cdnplanet.com/cdns-by-country/.

[16] Sarah Chasins, Alvin Cheung, Natacha Crooks, Ali Ghodsi, Ken Goldberg,
Joseph E Gonzalez, Joseph M Hellerstein, Michael I Jordan, Anthony D Joseph,
Michael W Mahoney, et al. 2022. The sky above the clouds. arXiv preprint
arXiv:2205.07147 (2022).

[17] T.M. Chen and A.W. Jackson. 1998. Commentaries on "Active networking and
end-to-end arguments". IEEE Network 12, 3 (1998), 66–71. https://doi.org/10.
1109/65.690972

[18] David D. Clark. 2018. Designing an Internet (1st ed.). The MIT Press.
[19] David D. Clark, Scott Shenker, and Lixia Zhang. 1992. Supporting Real-Time

Applications in an Integrated Services Packet Network: Architecture and Mecha-
nism. In Proceedings of the Conference on Communications Architecture & Protocols,
SIGCOMM 1992, Baltimore, Maryland, USA, August 17-20, 1992, Deepinder P. Sidhu
and David Oran (Eds.). ACM.

[20] Cloudflare. 2023. Cloudflare Queues. https://developers.cloudflare.com/queues/.
[21] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,

Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.

[22] Jon Crowcroft, Steven Hand, Richard Mortier, Timothy Roscoe, and Andrew
Warfield. 2003. Plutarch: An Argument for Network Pluralism. SIGCOMM
Comput. Commun. Rev. (2003).

[23] Jason A Donenfeld. 2017. Wireguard: next generation kernel network tunnel.. In
NDSS.

[24] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of CloudLab. In ATC. 1–14. https://www.flux.utah.edu/
paper/duplyakin-atc19

[25] fabric [n. d.]. FABRIC Testbed. https://fabric-testbed.net.

[26] T.L. Friedman. 2009. Hot, Flat, and Crowded 2.0: Why We Need a Green Revolution–
and How It Can Renew America. Picador. https://books.google.com/books?id=
BpkALHFTnhUC

[27] Lixin Gao and Jennifer Rexford. 2001. Stable internet routing without global
coordination. IEEE/ACM Trans. Netw. 9, 6 (2001), 681–692. https://doi.org/10.
1109/90.974523

[28] Ahmad Ghalayini, Jinkun Geng, Vighnesh Sachidananda, Vinay Sriram, Yi-
long Geng, Balaji Prabhakar, Mendel Rosenblum, and Anirudh Sivaraman. 2021.
CloudEx: a fair-access financial exchange in the cloud. In HotOS. 96–103.

[29] Yossi Gilad, Avichai Cohen, Amir Herzberg, Michael Schapira, and Haya Shulman.
2017. Are We There Yet? On RPKI’s Deployment and Security. In NDSS.

[30] DanGoodin. 2018. Suspicious event hijacks Amazon traffic for 2 hours, steals cryp-
tocurrency. https://arstechnica.com/information-technology/2018/04/suspicious-
event-hijacks-amazon-traffic-for-2-hours-steals-cryptocurrency/.

[31] Dan Goodin. 2019. BGP event sends European mobile traffic through China Tele-
com for 2 hours. https://arstechnica.com/information-technology/2019/06/bgp-
mishap-sends-european-mobile-traffic-through-china-telecom-for-2-hours/.

[32] Dan Goodin. 2022. How 3 hours of inaction from Amazon cost cryptocurrency
holders $235,000. https://arstechnica.com/information-technology/2022/09/how-
3-hours-of-inaction-from-amazon-cost-cryptocurrency-holders-235000/.

[33] Dan Goodin. 2022. Some Twitter traffic briefly funneled through Rus-
sian ISP, thanks to BGP mishap. https://arstechnica.com/information-
technology/2022/03/absence-of-malice-russian-isps-hijacking-of-twitter-ips-
appears-to-be-a-goof/.

[34] Google. 2022. PSP Architecture Specification. https://raw.githubusercontent.
com/google/psp/main/doc/PSP_Arch_Spec.pdf.

[35] Prateesh Goyal, Ilias Marinos, Eashan Gupta, Chaitanya Bandi, Alan Ross, and
Ranveer Chandra. 2022. Rethinking cloud-hosted financial exchanges for re-
sponse time fairness. In Proceedings of the 21st ACM Workshop on Hot Topics in
Networks. 108–114.

[36] Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau, and Michael Walfish. 2022.
Zero-Knowledge Middleboxes. In 31st USENIX Security Symposium (USENIX
Security 22). 4255–4272.

[37] Dongsu Han, Ashok Anand, Fahad Dogar, Boyan Li, Hyeontaek Lim, Michel
Machado, Arvind Mukundan, Wenfei Wu, Aditya Akella, David G. Andersen,
John W. Byers, Srinivasan Seshan, and Peter Steenkiste. 2012. XIA: Efficient Sup-
port for Evolvable Internetworking. In Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation (NSDI).

[38] Yotam Harchol, Dirk Bergmann, Nick Feamster, Eric Friedman, Arvind Krishna-
murthy, Aurojit Panda, Sylvia Ratnasamy, Michael Schapira, and Scott Shenker.
2020. A Public Option for the Core. In SIGCOMM.

[39] Tatiana Iskandar, Lee Semien, and Daniel Vinegrad. 2010. The End-to-
End Principle. https://cs.stanford.edu/people/eroberts/cs201/projects/2010-11/
NetNeutrality/Articles/Proponents.html.

[40] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy,
Kye Hyun Kim, Scott Shenker, and Ion Stoica. 2007. A data-oriented (and be-
yond) network architecture. In Proceedings of the 2007 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (Kyoto,
Japan) (SIGCOMM ’07). Association for Computing Machinery, New York, NY,
USA, 181–192. https://doi.org/10.1145/1282380.1282402

[41] Craig Labovitz. 2019. Internet Traffic 2009-2019. https://pc.nanog.org/static/
published/meetings/NANOG76/1972/20190610_Labovitz_Internet_Traffic_
2009-2019_v1.pdf. Presentation at NANOG 76.

[42] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017.
The quic transport protocol: Design and internet-scale deployment. In Proceedings
of the conference of the ACM special interest group on data communication. 183–
196.

[43] Robert Lychev, Sharon Goldberg, and Michael Schapira. 2013. BGP security in
partial deployment: Is the juice worth the squeeze?. In SIGCOMM.

[44] Julien Mailland and Kevin Driscoll. 2017. Minitel: The online world France built
before the web. IEEE Spectrum (2017).

[45] James McCauley, Yotam Harchol, Aurojit Panda, Barath Raghavan, and Scott
Shenker. 2019. Enabling a permanent revolution in internet architecture. In
Proceedings of the ACM Special Interest Group on Data Communication (Beijing,
China) (SIGCOMM ’19). Association for Computing Machinery, New York, NY,
USA, 1–14. https://doi.org/10.1145/3341302.3342075

[46] Tatsuji Moriyoshi, Fumiyo Takano, and Yuichi Nakamura. 2011. GPU acceleration
of H. 264/MPEG-4 AVC software video encoder. APSIPA (2011).

[47] Neha Narkhede, Gwen Shapira, and Todd Palino. 2017. Kafka: The Definitive
Guide Real-Time Data and Stream Processing at Scale (1st ed.). O’Reilly Media,
Inc.

[48] David Naylor, Richard Li, Christos Gkantsidis, Thomas Karagiannis, and Peter
Steenkiste. 2017. And then there were more: Secure communication for more
than two parties. In Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies. 88–100.

[49] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Blackburn,
Diego R López, Konstantina Papagiannaki, Pablo Rodriguez Rodriguez, and Peter

https://www.kentik.com/blog/exploring-the-latest-rpki-rov-adoption-numbers/
https://www.kentik.com/blog/exploring-the-latest-rpki-rov-adoption-numbers/
https://www.aol.com/
https://support.apple.com/en-us/HT212614
https://support.apple.com/en-us/HT212614
https://doi.org/10.1145/3464994.3464998
https://doi.org/10.17487/RFC6770
https://doi.org/10.1145/3649171.3649175
https://www.svta.org/product/svta2007/
https://netflixtechblog.com/edge-authentication-and-token-agnostic-identity-propagation-514e47e0b602
https://netflixtechblog.com/edge-authentication-and-token-agnostic-identity-propagation-514e47e0b602
https://www.cdnplanet.com/cdns-by-country/
https://www.cdnplanet.com/cdns-by-country/
https://doi.org/10.1109/65.690972
https://doi.org/10.1109/65.690972
https://developers.cloudflare.com/queues/
https://www.flux.utah.edu/paper/duplyakin-atc19
https://www.flux.utah.edu/paper/duplyakin-atc19
https://fabric-testbed.net
https://books.google.com/books?id=BpkALHFTnhUC
https://books.google.com/books?id=BpkALHFTnhUC
https://doi.org/10.1109/90.974523
https://doi.org/10.1109/90.974523
https://raw.githubusercontent.com/google/psp/main/doc/PSP_Arch_Spec.pdf
https://raw.githubusercontent.com/google/psp/main/doc/PSP_Arch_Spec.pdf
https://cs.stanford.edu/people/eroberts/cs201/projects/2010-11/NetNeutrality/Articles/Proponents.html
https://cs.stanford.edu/people/eroberts/cs201/projects/2010-11/NetNeutrality/Articles/Proponents.html
https://doi.org/10.1145/1282380.1282402
https://pc.nanog.org/static/published/meetings/NANOG76/1972/20190610_Labovitz_Internet_Traffic_2009-2019_v1.pdf
https://pc.nanog.org/static/published/meetings/NANOG76/1972/20190610_Labovitz_Internet_Traffic_2009-2019_v1.pdf
https://pc.nanog.org/static/published/meetings/NANOG76/1972/20190610_Labovitz_Internet_Traffic_2009-2019_v1.pdf
https://doi.org/10.1145/3341302.3342075

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lloyd Brown et al.

Steenkiste. 2015. Multi-context TLS (mcTLS) enabling secure in-network func-
tionality in TLS. ACM SIGCOMM Computer Communication Review 45, 4 (2015),
199–212.

[50] Abhay Kumar Parekh. 1992. A generalized processor sharing approach to flow
control in integrated services networks. Ph. D. Dissertation. Massachusetts Institute
of Technology.

[51] Rishabh Poddar, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2018.
{SafeBricks}: Shielding Network Functions in the Cloud. In 15th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 18). 201–216.

[52] S. Shenker R. Braden, D. Clark. 1994. Integrated Services in the Internet Architecture:
an Overview. RFC 1633.

[53] r2 2023. Cloudflare R2. https://developers.cloudflare.com/r2/.
[54] Sylvia Ratnasamy, Scott Shenker, and Steven McCanne. 2005. Towards an Evolv-

able Internet Architecture. In Proc. of SIGCOMM.
[55] Carlos Rodrigues and Vasilis Giotsas. 2022. Helping build a safer Internet by

measuring BGP RPKI Route Origin Validation. https://blog.cloudflare.com/rpki-
updates-data/.

[56] Jeffery Rott. 2012. Intel Advanced Encryption Standard Instructions (AES-NI).
Intel Developer Zone https://goo.gl/0VvQ8G, retrieved 07/17/2015.

[57] Jerome H Saltzer, David P Reed, and David D Clark. 1984. End-to-end arguments
in system design. ACM Transactions on Computer Systems (TOCS) 2, 4 (1984),
277–288.

[58] Paul Schmitt, Anne Edmundson, Allison Mankin, and Nick Feamster. 2019. Obliv-
ious DNS: practical privacy for DNS queries: published in PoPETS 2019. In
Proceedings of the Applied Networking Research Workshop (Montreal, Quebec,
Canada) (ANRW ’19). Association for Computing Machinery, New York, NY, USA,
17–19. https://doi.org/10.1145/3340301.3341128

[59] Ivan Seskar, Kiran Nagaraja, Sam Nelson, and Dipankar Raychaudhuri. 2011.
MobilityFirst Future Internet Architecture Project. In AINTEC.

[60] Scott Shenker. 2022. Creating an Extensible Internet. https://blog.apnic.net/
2022/04/14/creating-an-extensible-internet/

[61] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. 2015. Blind-
box: Deep packet inspection over encrypted traffic. In Proceedings of the 2015
ACM conference on special interest group on data communication. 213–226.

[62] Amin Vahdat and Soheil Hassas Yeganeh. 2022. Announcing
PSP’s cryptographic hardware offload at scale is now open source.
https://cloud.google.com/blog/products/identity-security/announcing-psp-
security-protocol-is-now-open-source.

[63] Kevin Vermeulen, Loqman Salamatian, Sang Hoon Kim, Matt Calder, and Ethan
Katz-Bassett. 2023. The Central Problem with Distributed Content: Common
CDN Deployments Centralize Traffic In A Risky Way. In HotNets.

[64] Kevin Vermeulen, Loqman Salamatian, Sang Hoon Kim, Matt Calder, and Ethan
Katz-Bassett. 2023. The Central Problem with Distributed Content: Common
CDN Deployments Centralize Traffic In A Risky Way. In Proceedings of the 22nd
ACM Workshop on Hot Topics in Networks (, Cambridge, MA, USA,) (HotNets
’23). Association for Computing Machinery, New York, NY, USA, 70–78. https:
//doi.org/10.1145/3626111.3628213

[65] Gustav Ernberg von Heijne, Jonathon Imperiosi, Rob Hazan, and Beng Eu. 2019.
Fast Ads Matter. https://web.dev/articles/fast-ads-matter.

[66] TaoWang, Xiangrui Yang, Gianni Antichi, Anirudh Sivaraman, and Aurojit Panda.
2022. Isolation mechanisms for {High-Speed}{Packet-Processing} pipelines. In
NSDI.

[67] Tim Wu. [n. d.]. Network Neutrality FAQ. http://www.timwu.org/network_
neutrality.html.

[68] Zadara. [n. d.]. Federated Edge. https://www.zadara.com/federated-edge/.
[69] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick

Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
data networking. SIGCOMM Comput. Commun. Rev. 44, 3 (jul 2014), 66–73.
https://doi.org/10.1145/2656877.2656887

[70] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian Perrig,
and David G. Andersen. 2011. SCION: Scalability, Control, and Isolation on
Next-Generation Networks. In IEEE S&P.

[71] Zhipeng Zhao. 2021. Pigasus: Efficient Handling of Input-Dependent Streaming on
FPGAs. Ph. D. Dissertation. Carnegie Mellon University.

[72] Xiangfeng Zhu, Guozhen She, Bowen Xue, Yu Zhang, Yongsu Zhang, Xuan Kelvin
Zou, Xiongchun Duan, Peng He, Arvind Krishnamurthy, Matthew Lentz, et al.
2022. Dissecting Service Mesh Overheads. arXiv preprint arXiv:2207.00592 (2022).

https://developers.cloudflare.com/r2/
https://blog.cloudflare.com/rpki-updates-data/
https://blog.cloudflare.com/rpki-updates-data/
https://goo.gl/0VvQ8G
https://doi.org/10.1145/3340301.3341128
https://blog.apnic.net/2022/04/14/creating-an-extensible-internet/
https://blog.apnic.net/2022/04/14/creating-an-extensible-internet/
https://cloud.google.com/blog/products/identity-security/announcing-psp-security-protocol-is-now-open-source
https://cloud.google.com/blog/products/identity-security/announcing-psp-security-protocol-is-now-open-source
https://doi.org/10.1145/3626111.3628213
https://doi.org/10.1145/3626111.3628213
https://web.dev/articles/fast-ads-matter
http://www.timwu.org/network_neutrality.html
http://www.timwu.org/network_neutrality.html
https://www.zadara.com/federated-edge/
https://doi.org/10.1145/2656877.2656887

An Architecture For Edge Networking Services ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Note: Appendices are supporting material that has not been peer-
reviewed.

A Private Hyperscaler Networks and ESPs
We now describe some features of the private networks run by
the hyperscaled cloud and application providers, and then describe
some features of ESPs. We are not privy to the technical details (size,
speeds, workloads, etc.) of the private networks run by hyperscalers,
but from what we can gather these networks share some basic
common aspects that we describe here. Of course, there are some
specialized aspects, such as gaming support, that are specific to
certain hyperscalers and we do not mention them here.

These private networks have roughly four distinct functional
components, described below. We want to clearly distinguish those
components (even though there are significant overlaps in the in-
frastructure used to support them), to clarify that only the last two
in our list support the kind of edge networking services we refer
to. The first two are primarily for internal traffic, which is not our
concern in this paper.

• Enterprise and datacenter networks: These are purely inter-
nal networks.

• Backbone networks: These are high-speed interconnections
between their datacenters. They often have specialized mech-
anisms to maximize utilization and handle failures gracefully.
These are primarily for internal traffic.

• “Off-net” edge networking services [64]: These are instal-
lations at PoPs often within carrier networks (i.e., with ad-
dresses within the carrier’s address space).

• “On-net” edge networking services: These are edge network-
ing services placed in PoPs near clients that are connected
to the rest of the hyperscaler’s network via private dedi-
cated bandwidth, and typically have addresses within the
hyperscaler’s address space.

Typically ESPs have some combination of On-net and Off-net
installations, but do not necessarily have the set of hyperscaled
datacenters connected by a high-speed backbone.

B Using ILP in Services
We provided an overview of ILP (§4) earlier in the paper. Here we
provide some details about how InterEdge services can use the
decision cache, ILP, and offloading capabilities at the pipe-terminus.
This offloading to a pipe-terminus is different from offloading ca-
pabilities on individual servers (used to accelerate cryptography,
video and audio re-encoding, regular expression matching, etc.),
in which services access various accelerators by using InterEdge-
provided library functions. We start by describing the InterEdge
decision cache, and our envisioned pipe-terminus implementation,
before describing how services incorporate with this design.

B.1 The Decision Cache and pipe-terminus
We allow implementations of the decision cache to arbitrarily evict
entries, even when the connections they are associated with are
active. Providing flexibility in when decision cache entries can be
evicted is necessary to ensure that the SN remains correct even
as the number of connections grow beyond the cache’s capacity,
and also provides flexibility in how and where the decision cache is

implemented. However, this decision means that a service module
needs to be able to make forwarding decisions not just for the first
few packets in a connection, but for any arbitrary packet in the
connection.

Our design expects that decision cache is implemented in the
pipe-terminus. The pipe-terminus itself can be implemented in
software running on a server (indeed, this is what we do at present,
but we expect that in the long-term most SNs will use switching
ASICs to implement their pipe-terminus). This is feasible: existing
hardware [62] can already encrypt and decrypt ILP headers, and
implementing the decision cachemerely requires using exact-match
tables that are a part of every switch ASIC. While we do not require
that switches implementing a pipe-terminus use programmable
ASICs, our design allows services to offload functionality to the pipe-
terminus if a programmable ASIC with an appropriate isolation
mechanism (e.g., usingMenshen [66]) is used.We do not discuss this
further, beyond noting that the precise decision of what services
can be offloaded and how they are expressed depends on the ASIC
architecture used.

B.2 Using the Decision Cache
The main challenge that a service module faces when using the
decision cache is that it must be able to recompute decisions for any
packet in the connection. This is easiest when a service requires
that all packets in a connection carry the same information in their
ILP header, since in this case the service can reuse the same logic
it used when the connection was first established to route any
packet. For such services, using the decision cache merely improves
performance, and requires no further consideration.

However, in general not all services can use the same ILP headers
for all packets in a connection. Some services (e.g., ZTNA security
services that check software version information when establishing
a connection) require a substantial amount of information to make
forwarding decisions. In the best case this information can be a
significant portion of the MTU (thus reducing goodput), and in
the worse case it might not even fit in a single packet. Therefore,
we neither require nor expect all services to use the same ILP
header for packets sent while establishing a connection, and packets
sent once the connection has been established. Instead, we require
that such services maintain an internal cache of their forwarding
decisions, thus allowing services to use domain-specific information
to implement connection scaling, and determine the duration for
which connection information has to be maintained. We allow
these service to use the decision cache as above, and to allow them
visibility into whether or not a connection is still active. We also
provide an API that services can use to determine whether or not
a decision cache entry has been recently used. Implementing this
API merely requires retrieving the hit-count for an entry, and is
supported by most switching ASICs and software routers today.

C Benchmarks
There are two design choices we made whose impact on perfor-
mance deserves exploration: the use of secure enclaves and direct
peering between all domains.
Secure enclaves: One of the novel aspects of InterEdge is its re-
liance on packet processing in secure enclaves for ensuring privacy.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Lloyd Brown et al.

Microbenchmark Enclave? Throughput (PPS) Latency (us)

No-service No 377420.1 12.4
No-service Yes 372882.9 13.1
Null-service No 120018.5 33.0
Null-service Yes 110627.1 35.5

Table 1: No-service and null-service performance comparison
with and without AMD SEV enclaves in an AMD EPYC 7B12
CPU.

Enclaves are not commonly used for network processing (though
see [51]), so we measured their impact on forwarding performance.
To assess the resulting overheads on the basic datapath we used a
null-service and a no-service microbenchmark. In the null-service
case, the packet arrives on an ingress pipe to the pipe-terminus,
then is sent to a service module (via IPC) which immediately returns
the packet to the pipe-terminus, which then sends it to an egress
pipe. The no-service case is where the packet is merely received by
the pipe-terminus and then forwarded out the egress pipe, with no
invocation of a service via IPC (e.g., as if we implemented service
communication through shared memory rings).

The third row of Table 1 shows the packets per second and the
latency of an SN using a null-service. Our current prototype is able
to handle 120k packets per second using 2 cores (one for the pipe-
terminus, and one for the service) and 64 outstanding packets. The

unloaded median latency is 33us per packet. The first row in Table 1
shows the performance when we do not have to communicate with
a service through IPC. In this case, we can see a single core could
handle 377k packets per second with a median latency of 12.4us
per packet.

To see what the impact of the enclave is, we repeat the exper-
iments by running them inside a secure enclave. As the second
and fourth row of Table 1 show, using an enclave reduces through-
put by up to 9% and increases latency by up to 8%. This suggests
that it is feasible to use secure enclaves in InterEdge. Note that
since enclaves typically have little computational overhead, but do
have I/O overhead, these overhead numbers on a no-service and a
null-service are likely to be the worst-case overheads.
Direct peering: The direct interdomain peering described in Sec-
tion 3 requires that some SNsmight need tomaintain a large number
of tunnels to peers in other domains, with encryption as described
in 4. To evaluate the feasibility of this scale, we benchmark Wire-
guard [23], a widely used VPN tunnel. A commodity (16-core) server
could easily maintain 98,000 simultaneous tunnels, each doing sym-
metric key rotation every three minutes. In terms of compute, this
consumed less than half a core, and in terms of bandwidth it con-
sumed roughly 3.4 Mbps. Thus, we do not expect the number of
directly peered domains to constrain interdomain traffic; instead,
the likely bottleneck is the total traffic being handled by any SN,
which can be load-balanced by proactive domain management.

	Abstract
	1 Introduction
	1.1 Context
	1.2 The End of End-to-End Simplicity
	1.3 The End of Interconnection
	1.4 The Goal of This Paper

	2 Related Work, Rationale, and Challenges
	2.1 Related Work
	2.2 Why Do We Need An Architecture Like InterEdge?
	2.3 Technical Challenges

	3 Basic Architecture
	3.1 Components
	3.2 Operational Details
	3.3 Important Properties

	4 Supporting Interposition
	5 Supporting Interconnection and Neutrality
	6 Supporting Applications
	6.1 Context
	6.2 Examples of Possible InterEdge Services
	6.3 Discussion

	7 Ecosystem Considerations
	8 Conclusion
	References
	A Private Hyperscaler Networks and ESPs
	B Using ILP in Services
	B.1 The Decision Cache and pipe-terminus
	B.2 Using the Decision Cache

	C Benchmarks

