Bertha: Tunneling through the Network API

Akshay Narayan', Aurojit Panda’, Mohammad Alizadeh”

Hari Balakrishnan', Arvind Krishnamurthy‘, Scott Shenker*
¥ MIT CSAILL, * NYU, * University of Washington, * UC Berkeley and ICSI

Abstract

Network APIs such as UNIX sockets, DPDK, Netmap, etc. assume that
networks provide only end-to-end connectivity. However, networks
increasingly include smart NICs and programmable switches that can
implement both network and application functions. Several recent
works have shown the benefit of offloading application functionality
to the network, but using these approaches requires changing not
just the applications, but also network and system configuration. In
this paper we propose Bertha, a network API that provides a uniform
abstraction for offloads, aiming to simplify their use.

ACM Reference Format:

Akshay Narayan, Aurojit Panda, Mohammad Alizadeh, Hari Balakrishnan,
Arvind Krishnamurthy, Scott Shenker. 2020. Bertha: Tunneling through the
Network API In Proceedings of the 19th ACM Workshop on Hot Topics in
Networks (HotNets °20), November 4—6, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3422604.3425927

1 Introduction

Application developers today can choose from a wide range of
network APIs, including traditional UNIX sockets, application
libraries such as QUIC [35], kernel bypass libraries such as
DPDK [15] and Netmap [55], accelerated kernel libraries such as
XDP [26], and hardware-specific interfaces such as RDMA. However,
all of these libraries build on the assumption that the network only
provides best-effort, end-to-end packet delivery. Even higher level
libraries, including RPC libraries such as gRPC [22], build on these
low-level APIs and hence embody the assumption. While consistent
with the original Internet architecture [56], it does not reflect today’s
network infrastructure, which includes on-server offloads such as
SmartNICs and in-network offloads such as programmable switches
that can implement both application and network stack logic.
Recent research and commercial products have shown that
application functions such as key-value store caches [31], consensus
protocols [37], and transport protocols [6, 12] —which were tradition-
ally not considered a part of the network—can be implemented using
offloads [14], and that such implementations can improve application
performance and reduce resource requirements. Existing network
APIs, which focus on end-to-end delivery, do not provide applica-
tions a way to invoke SmartNIC or in-network offloads. As a result,
using offloads requires close coordination between the application

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HotNets °20, November 4—6, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8145-1/20/11.

https://doi.org/10.1145/3422604.3425927

Application Bertha
Offloads Today Application

I Offload-Aware
Application Implementation
Developer| (Sharded KV-Store)

Offload| ©ffload Implementation Implementation Declares |Application

(P4 Sharding all Chunnel Used Developer

Developer Implementation) (Listing 5)

Platform Configured with Chunnel Implementation
Offloads (Sharding Offload

(Configure server Implementation and | Developer

for KV-store) Configuration Code)

System
Administrator

Route
Traffic through offloads
(Configure
SDN Control Plane)

Network
Operator

Figure 1: Current methods of configuring network functionality
must stretch across multiple abstraction boundaries.

developer, offload developer, system administrator, and network
operator (Figure 1). This need for such coordination is a barrier to
the adoption of these approaches. Similarly, adopting new offloads
or changing how offloads are implemented requires changing the
application, and a further round of coordination. Thus using offloads
also ossifies applications, and makes upgrades more complex. In this
paper, we describe an extensible network API that embraces the use
of network offloads and simplifies applications adopting offloads.

To develop a more general interface, we turn to the model
of tunnels: network tunnels, as in VXLAN and the like, provide
end-to-end delivery with some additional functions (such as
encryption or labels), while being transparent to all but the tunnel
end points and composable. Our proposal, called Bertha (Figure 1),
uses a tunnel-like abstraction called a Chunnel to build an extensible
network interface that requires no manual changes to network
or system configuration when deploying applications that use
on-server or in-network offloads. Each Chunnel type represents
application-relevant functionality that can potentially be offloaded
to the network. Application developers specify offloads as a directed
acyclic graph (DAG) of Chunnels, and offload developers register
available Chunnels with the Bertha discovery service. Bertha selects
where Chunnel functionality is implemented when establishing
a connection and appropriately updates system and network
configurations to enable their use. We show examples of how
applications can benefit from these interfaces in §3.2.

A key insight behind our proposal is that while existing work
often treats on-server and in-network offloads differently, they
are nearly indistinguishable from an application’s perspective.
Thus, it is possible to provide a unified abstraction for nearly all
communication-oriented application offloads, regardless of where
or how they are implemented. In this paper, we describe the Bertha
interface and a prototype implementation. Not only does Bertha
make it easier for applications to use new offloads, and improve
portability, but choosing implementation when connections are

https://doi.org/10.1145/3422604.3425927
https://doi.org/10.1145/3422604.3425927

established also opens up new avenues for placement, e.g., allowing
servers to offload processing to clients. We quantify these benefits
in §5 and discuss other opportunities enabled by Bertha in §6.

2 Overview

We begin by providing an overview of Bertha and how it simplifies
applications accessing offloads.

Chunnels are the core abstraction provided by Bertha. Each Chun-
nel type represents a single communication-oriented function, and
an application using Bertha specifies a set of such functions for a con-
nection using a DAG of Chunnel types (§3). A Chunnel type can en-
compass a variety of functions, but should meet the following goals:

Application-relevant. Each Chunnel must provide a capability
relevant to some application, i.e., functions that application develop-
ers explicitly opt to use. It should also be possible for an application
developer to opt out of the functions provided by a particular Chun-
nel type. This requirement precludes Chunnel types that cannot
be bypassed, e.g., network security, authentication, billing, etc.

Host fallback. All Chunnel functionality should be implementable
entirely by software running at the end host. Note that this
fallback implementation might provide worse performance than
one implemented in specialized hardware. Furthermore, fallback
implementations are not the primary implementation used in
practice; they merely ensure that applications can function in the
absence of a better implementation.

Minimal. Chunnels should ideally be minimal, performing only one
or a few communication-oriented functions. However, minimality
is subjective: for example, several NICs now offer TCP offload
engines [12], which are designed to offload all of TCP’s many
functions including reliability, in-order delivery, congestion control,
etc. TCP offload engines often do not support offloading portions
of this functionality. Similarly, most applications either adopt all
of TCP’s functions, or none of them. In this case ease-of-use and
ease-of-offloading make a single TCP Chunnel more appealing than
a set of finer grained Chunnels.

Composable. Chunnels should be composable, allowing an
application to combine functionality from multiple Chunnel types
in a single connection. The ability to compose Chunnels allows
applications to combine multiple functions implemented in network
offloads, and thus decouples application evolution from offload
creation. In §6 we also describe how reasoning about compositions
of Chunnels can enable further optimizations.

Beyond these requirements, in order to be useful Chunnels must
provide functionality that is useful to more than one application, and
in this paper we focus on those Chunnels which can be accelerated
through the use of hardware or software offloads. Our focus on
application-relevant functionality distinguishes us from prior
work in NFV orchestration and frameworks such as DOA [61]
and NetCalls [57], which focus on network functionality rather
than application functionality. This impacts Bertha’s design in
two crucial ways: first, Chunnels used in a Bertha connection only
impact data sent over that connection and cannot impact security
or other policies that apply to the host in general; second, no calls
into Bertha can ever conflict with (nor modify) network policies.

Figure 2: The Chunnel specified in §3.1.

Having described what a Chunnel is, we next turn to the question
of where Chunnels are implemented. Our intention when designing
Bertha is to allow applications to opt-in and use functionality imple-
mented in NIC ASICs, FPGAs, SmartNIC CPUs, and programmable
network switches, and on the host’s network data path using
libraries such as XDP, etc. Network operators, system administrators
and offload developers register accelerated implementations of
Chunnel types with a Bertha discovery service (§4.2). When an
application establishes a connection, Bertha queries the discovery
service to determine all available implementations for each Chunnel
type, and decides which implementation to use based on an operator-
provided scheduling policy. Applications use the software fallback
implementation for a Chunnel type when no network or host pro-
vided implementation can be used, e.g., because no implementations
are registered, resources required by registered implementations are
already occupied, or policy constraints prevent the use of offloads.

3 Interface and Examples

Next we detail Bertha’s application interface in §3.1 and provide
examples of its use in §3.2. For ease of reference, we summarize
Bertha-related terminology in Table 1. When adopting Bertha,
applications need to use Bertha’s application interface: for existing
applications this means they must be modified to replace existing
network code. However, once an application has adopted Bertha, no
additional changes are required to take advantage of new offloads.
In what follows, we describe the application interface using
Rust syntax, since our initial prototype is written in Rust. However,
the Bertha architecture and runtime makes no assumptions about
programming language used and other languages can be used.

3.1 Interface

Bertha provides a userspace library similar to UNIX sockets that
two or more Bertha applications — e.g., a client and a server or a
client and several replicated servers — can use to communicate.

To use Bertha, applications must create a connection endpoint, the
Bertha equivalent of a socket. In our Rust prototype, this is done by
callingbertha: : new, which takes two arguments: an endpoint name
which aids in debugging and a directed acyclic graph (DAG) of Chun-
nel types which dictates the sequence of processing steps that should
be performed on any data sent or received from this endpoint. In our
prototype the Chunnel type DAG is specified within a wrap! macro,
and Chunnels are sequenced using the | > operator. As with dataflow
graphs in other contexts (e.g., data processing), branching and merg-
ing operations are performed through the use of specific Chunnel
types. The code below constructs a new connection endpoint (foo):

bertha::new("foo",wrap! (A(arg) |>
B(B::args([CO,DOINN

Term Explanation Example
Chunnel Abstraction representing a piece of network-oriented application functionality. Sharding
Offload Specialized hardware implementing one or more Chunnels. Tofino Switch
Fallback Impl. Default Chunnel implementation that can run on the end host. XDP Program
Chunnel DAG Application’s specification of its component Chunnels. Listing 4

Scope Constraint on where a Chunnel should be implemented. Local scope (§3)

Table 1: Glossary of common terms related to Chunnels.

1 let srv = bertha: :new("container-app",
2 wrap!(local_or_remote()))
3 .listen(SocketAddr(addr, port));

Listing 1: Local-fastpath routing. If the connecting client is on the
same host, the connection uses more efficient IPCs.

Endpoint foo is constructed with the Chunnel DAG shown in
Figure 2. Some Chunnels (e.g., A and B above) require input param-
eters, and Bertha allows applications to provide these as arguments
(e.g., arg as an argument to A) when constructing such a Chunnel.
While we do not show it in this example, an application can also
specify scoping constraints for subgraphs of the Chunnel DAG; these
constrain where the Chunnel is implemented. Bertha allows offload
developers and operators to provide multiple implementations of
each Chunnel type and Bertha decides which implementation to use
at runtime. The Bertha runtime forwards any arguments provided
for a Chunnel type to the selected implementation.

Similar to existing APIs, Bertha supports two types of connection
endpoint: server and client. A server can call 1isten in order to wait
for a client, and a client can connect to a waiting server endpoint. A
connection is established when a client connects to a server. During
connection establishment, all endpoints exchange the Chunnel
DAG they were provided and decide which implementation of each
Chunnel should be used for this connection (§4). Note that Chunnel
types are bound to implementations at the point where a connection
is established, and as a result a single application might use several
different implementations of the same Chunnel type.

3.2 Example Uses

Local Fast-Path Transfers. Prior work [33, 66] has shown that
sending messages between containers can add significant overheads
since all data between two containers must traverse the host network
stack to ensure that the network API remains independent of place-
ment decisions and to provide container isolation. Using efficient
inter-process communication (IPC) mechanisms can reduce their
impact.1 In Listing 1, we show how Bertha can enable this efficient
communication between containers while preserving interface uni-
formity; work such as Slim [66] has shown how to preserve isolation
in this setting. In the listing, the local_or_remote Chunnel uses
fastIPC calls when transferring data between containers on the same
node and datagrams otherwise. We evaluate this approach in §5.

Serialization. Serialization is often an important source of over-
heads when building distributed applications. As a result, several

'"Windows [41] implements a fast-path for localhost TCP connections which avoids
reliability and congestion control (There is an unmerged proposal for a similar feature
on Linux [11]) However, the use of network namespacing precludes socket libraries
from using these optimizations because each network namespace has a separate
loopback interface.

1 let conn = bertha: :new("ordered-multicast-client",
2 wrap!(serialize() |> ordered_mcast()))
3 .connect(endpts); // endpts is a list of addresses.

Listing 2: The ordered_mcast Chunnel can automatically create a
multicast group among the nodes in the consensus group.

recent libraries [4, 7, 21] have been developed that reduce serializa-
tion overheads on modern processors, and existing libraries such
as Protobufs [23], and Apache Thrift [5] have seen increasingly ag-
gressive optimizations, including the use of FPGA offloads [28], to
improve their performance. However, using new implementations
or new libraries given an application currently requires application
developersto (atleast) rebuild their applications, and can involve non-
trivial code changes. Modeling serialization as a Bertha Chunnel can
ameliorate Bertha-application’s challenge of adopting new serializa-
tion implementations, including ones that are hardware accelerated.
This is because (as noted above) given a Chunnel type, the Bertha
runtime picks the best available implementation and falls back on the
application’s supplied implementation when no alternative is avail-
able. The use of a serialization Chunnel changes the connection’s
interface: applications send and receive objects rather than bytes.

Network-Assisted Consensus. There is a rich body of work on
accelerating consensus protocols, including the use of network
offloads for packet ordering [37, 52]. Listing 2 shows a potential
component of a Speculative Paxos (or NOPaxos) implementation
specifying the use of a network-ordering Chunnel (ordered_mcast).
Note, that since one end of this connection involves multiple
endpoints, the argument passed into connect is a vector containing
endpoints addresses (including ports), and initial discovery and
negotiation involves all endpoints.

Anycast. I[P Anycast has traditionally been used (most popularly,
with the DNS root name servers) to geo-shard requests by routing
them to the closest host advertising that IP. However, due to
routing instability, many developers instead opt to use DNS for this
purpose [38, 47, 48]. Implementing anycast using a Bertha tunnel
allows applications to dynamically choose between DNS-based and
IP-anycast based approaches depending on where they are deployed.

Load Balancing, Sharding, and Routing. Finally, in Listing 3
we show an example of more complex Chunnel composition.
We consider a storage service [2, 3, 46] where a service exposes
a single external address, but requests sent to this address are
routed to one of several backend shards for processing. In current
implementations the task of steering the packet to the current
backend is either performed by an application load balancer—e.g.,
Amazon’s Application Load Balancer (ALB) [29], the F5 Load
balancer [17], ProxySQL [54], McRouter [46]—or by logic hardcoded
at the client. Both approaches have drawbacks: the load balancer

let rsml1 = bertha: :new("rsm1",
ordered_mcast()).connect(nodes1);

let rsm2 = bertha: :new("rsm2",
ordered_mcast()).connect(nodes?2);

let srv = bertha: :new("service", wrap!(
shard(shard: :args([rsm1, rsm2], shard_fn))))
.listen(SocketAddr(extern_addr, port));

RO T N G O

Listing 3: Request routing.

1 let shards = vec![s1, s2, s3];

2 let shard_fn = |p: Pkt| {

3 p.dst_port = hash(p.payload[10..14]) % 3 }

4 let srv = bertha: :new("my-kv-srv", wrap!(

s shard(shard::args(choices: shards),

6 fn: shard_fn) |> reliable())).listen(addr, port);

Listing 4: Sharding server. The use of datagram-based transport
allows offloads to avoid terminating connections.

1 // Run during client initialization, registers a Chunnel.

2 bertha::register_chunnel("reliable", ReliableChunnel,

3 bertha::endpoints::Both, bertha::scope::Application);

4 fn connect(addr: Address, port: Port) => Chunnel::Conn {

5 bertha::new("client_conn", wrap!()).connect(addr, port)

6 3

7 // Gets a key from the key-value store.

8 fn get_key(k: Key) -> Value {

9 let c = connect(kv_addr, kv_port);

10 c.send(Kvs::Serialize(Kvs::0p::Get, k));

1}

Listing 5: Code for a sharding client. The client endpoint specifies
no Chunnels, and the set of Chunnels used is dictated entirely by
the server.

can turn into a bottleneck in the former, while the latter greatly
complicates resharding. Thus, it might be beneficial to use an
approach that allows both modalities, using client sharding when
resharding is unlikely and load balancing otherwise. Unfortunately,
current interfaces make it hard to deploy such a hybrid approach.

Bertha enables the use of hybrid load balancing approaches by
binding to an implementation only when a connection is established.
Furthermore, as we showed above, Bertha also provides Chunnels
implementing ordered multicast for state machine replication (RSM)
for fault tolerance.

4 Design

We next describe Bertha’s architecture, and illustrate it by walking
through how Bertha instantiates a connection. We do so in the con-
text of a sharded key-value store (Listing 4) and its client (Listing 5).

In Bertha, applications register fallback implementations for
Chunnels when launched. For example, Line 2 of Listing 5 shows the
client registering a reliable transport Chunnel type. The reliability
Chunnel is specified by the server connection, and is thus implicitly
used by the client connection. In practice, we expect Bertha applica-
tions will link against libraries that provide fallback implementations
for common Chunnels, e.g., mTCP [30] for a TCP Chunnel.

Fallback implementations should be designed to execute on all
hosts where an application can be deployed, and should thus only as-
sume access to widely-supported software and hardware capabilities
such as SIMD instructions. As explained in §3, operators can regis-
ter accelerated variants, including ones which use offloads with the
Bertha discovery service (§4.2). The Bertha runtime is responsible for
selecting an appropriate implementation during connection negotia-
tion (§4.3), which occurs when the connection is established (line 10).

4.1 Bertha Runtime

The Bertha runtime, an application library, is responsible for
implementing the Chunnel DAG specified by applications when es-
tablishing a connection. To do so, it takes as input the Chunnel DAG
specified by the application, and queries the Bertha discovery service
(§4.2) to find all available implementations for each Chunnel type in
the DAG. The set of implementations found might includes ones that
run in software on one (or more) connected end-hosts, in SmartNICs,
or in a programmable switch or other device in the network. The
runtime then uses the negotiation protocol §4.3 to decide which of
these implementations to use. We envision that the Bertha runtime
will eventually also enable interoprability with other network APIs
including UNIX sockets, but we defer this question to the future.
Finally, the Bertha runtime, which has access to the entire DAG of
Chunnels that comprise a connection can transform Chunnel DAG,
e.g.,by combining several Chunnels, in order to further optimize con-
nections. We discuss this and other optimization opportunities in §6.

4.2 BerthaDiscovery

The Bertha discovery service is responsible for tracking the set
of implementations available for each Chunnel type. Offload
developers (or network operators and system administrators) can
register implementations for a Chunnel type by interacting with the
Bertha discovery service; the Bertha runtime queries the discovery
service in order to determine available implementations.

Chunnel implementations specify scoping constraints—e.g.,
a Chunnel can only be implemented on the same host as an
application (bertha: : scope: : Application)—and constraints on
where it must be implemented—e.g., whether the Chunnel requires
functionality at both ends (endpoints::Both) of a connection.
Implementations also provide initialization and teardown functions
and a function that returns an implementation priority and set
of resource requirements. The latter two are used when deciding
which implementation to use at runtime.

A Chunnel’s initialization function is responsible for configuring
the system and network so that that the application can use the se-
lected Chunnel implementation. The teardown function is similarly
responsible for changing system and network configuration when
an application terminates. These functions thus abstract over and
automate tasks performed by system and network operators today.
They can e.g., call operating system tools (e.g., ethtool) or invoke
APIs on orchestrators and SDN controllers which are commonly
deployed in current clusters. Note that initialization and teardown
might vary across deployments for a given Chunnel type.

4.3 Chunnel Negotiation

During Chunnel negotiation the runtime first checks that a connec-
tion is feasible, i.e., DAGs on both ends are compatible and hosts are
reachable. The runtime then chooses among the available implemen-
tations for each Chunnel a connection uses. Bertha makes this choice
based on each implementation’s priority and resource requirements
and an operator-supplied policy function. In our current prototype,
we assume a simple policy function that prefers client-provided
implementations over server-provided implementations, and set
implementation priorities to prefer kernel bypass and hardware
accelerated implementations over standard implementations. We
expect to support more complex policies in the future (§6).

10 KB 256 B 8B

600 —— 120 100
-
m 20
=400 s
by 60 |
o : | E 1 50] L
i= T T 7 |’]
2 200
s 30 25

0 0 0

Bertha TCP Manual Bertha TCP Manual Bertha TCP Manual
Config Config Config

Figure 3: Bertha allows the client to take advantage of more efficient
IPC than inter-container TCP connections on the same host (in
this case, Unix pipes) when available, without configuration. The
boxplots show the median latency, with boxes extending to p25 and
p75 and whiskers to p5 and p95. Note the different y-axis scales.
The RPC latencies the Bertha client achieves are comparable to an
application with Unix pipes.

500

Latency (ps)
N w B
(=3 o o
o o o

=
o
=)

0 2 4 6 8
Time (sec)

Figure 4: Since clients resolve names dynamically, they can discover

closer server instances without additional configuration.

In the case of Listing 5, the negotiation process for the reliability
Chunnel first checks whether compatible implementations are
available at both client and server; the connection fails in the
absence of the implementations. The runtime then chooses the
highest priority implementation at each of the server and the client.

5 Benefits

The main benefit of adopting Bertha is that it simplifies the path for
applications to adopt newer software and hardware-based offloads.
In this section we focus on quantifying the benefit of adopting such
advances. For this position paper, we focused on quantitative ben-
efits in the absence of hardware offloads. We plan to explore offloads
based on SmartNICs and other in-network components in the future.

Container Networking. We implemented the container fast-path
Chunnel described in §3.2 in 750 lines of Rust. The Chunnel is
restricted to the host scope. Connections that use this Chunnel and
connect applications on the same host transfer data using UNIX
named sockets, while connection between applications on different
hosts make use of standard network sockets.

In Figure 3, we evaluate the benefit of this approach using a simple
ping application and varying request sizes. In this experiment, a client
makes a connection to the server on the same host, and measures the
latency of 3 requests on that connection. We repeat this measurement
across 10000 connections. Establishing a Bertha connection requires
two additional IPC round trips to query the discovery service and ne-
gotiate the connection mechanism. However, subsequent messages
on an established connection do not encounter additional latency.
Despite this overhead, the Bertha implementation has latency similar
to a specialized implementation that hardcodes the use of IPCs.

Dynamic Name Resolution. Because the route_local Chunnel
checks whether a local server instance is available each time a con-
nection is established, it allows clients to switch over to host-local
instances when available. This is analogous to the behavior provided
by IP anycast and the Bertha anycast Chunnel (§3.2). In Figure 4,
when the client starts, the only server running is placed on a remote
machine. As aresult, it uses the full network stack when sending RPC
requests, and they traverse the network. At t =4 sec., an instance of
the server is started locally; subsequent client connections choose
the local instance and communicate using UNIX domain sockets.
As aresult, the subsequent requests have lower latency.

Sharding. We implement a sharding Chunnel in 2100 lines of
Rust and 200 lines of C (an XDP fallback implementation). Our
server application is a key-value store which uses the hashmap
implementation from Rust’s standard library and serialization
from the widely-used bincode crate atop UDP RPCs. When the
server creates a sharding Chunnel, it provides a list of shards and a
sharding function as input. When the server listens on a connection
with a sharding Chunnel it provides a canonical address on which
the server listens for connections. We register three different shard
Chunnel implementations: an accelerated XDP implementation
run on the same machine as the server, and in-application fallback
implementations in the server and client.

We evaluate the sharding Chunnel in Figure 5. Our evaluation
uses two clients and one server”. We implement shards using threads,
assigning one thread per shard. We measure the p95 latency over
300000 YCSB [13] requests (workload A, read-heavy) with a uniform
distribution of keys. We evaluate performance in four scenarios:
Client Push The client applications uses the fallback imple-
mentation to compute the correct shard and the forwards the
request directly to the shard. This improves sharding scalability,
and eliminates bottleneck. This scenario is also a case where the
presence of a fallback implementation improves performance, even
in the absence of offloads.

Server Accelerated Shards are computed at the server using the
XDP sharding implementation. All clients forward requests to the
XDP sharding process, which then forwards it to the appropriate
shard. This reduces client overheads, but creates a bottleneck at the
server.

Mixed One client uses client push, while the other uses the server
accelerated implementation. This shows a case where differences
in client configuration result in different implementations being
picked by different connections. The performance in this case is a
mix of the previous two versions.

Server Fallback Finally, we show the case where the server’s
fallback implementation is used. The lack of an accelerated
implementation and the need to handle traffic from all clients,
results in poor performance, but still provides correctness.

Our results show that Bertha can switch between accelerated im-
plementations without performance degradation, and demonstrate
the benefits of these different approaches.

2Each with 4-core Intel Xeon E5-1410, 64 GB of memory, Linux kernel version 5.4.0,
and a Mellanox ConnectX3-Pro NIC.

—— Client Push —— Mixed —— App Fallback —— Server Accelerated

1 Shard 2 Shards

=
o
(=}
o

750

500

250

p95 Latency (us)

0 50000 100000 150000 O

50000 100000 150000

4 Shards 8 Shards

0 50000 100000 150000 O 50000 100000 150000

Offered Load (reqgl/sec)

Figure 5: Exposing sharding information to clients allows the user to dynamically choose between using client and server implementations.

6 Research Directions

We now discuss some open questions related to Bertha.

Scheduling and Placement. One of Bertha’s responsibilities is to
aid in Chunnel negotiation, the process by which Chunnel implemen-
tations are chosen. Making this decision involves not only a policy
specification from the application, but also knowledge about net-
work state and resource utilization. For example, if two programs can
benefit from offloading functionality to a P4 switch, but the switch
only has capacity for one, the Bertha runtime must choose between
these two applications. Note that Chunnel priorities alone are insuf-
ficient to accomplish this goal. This problem exists even when using
recently proposed techniques [33, 34, 42, 62, 64] including SR-IOV for
sharing hardware resources. One approach to addressing this chal-
lenge is to borrow techniques from the multi-resource scheduling
literature [19, 20, 39], and we plan to examine this in future work.

Performance Optimization. In what we described thus far, appli-
cation developers are responsible for deciding what Chunnels to use,
and the order in which they are applied. The Bertha runtime, which
has visibility into the entire sequence of Chunnels a connection’s
data traverses, enables optimization techniques which further
improve performance. Possible optimizations include (a) reordering
the DAG in order to reduce the amount of data transferred between
offloads (e.g., PCIe bus and network traversals); (b) combining multi-
ple Chunnels in order to take advantage of hardware capabilities; (c)
eliminating unnecessary or redundant Chunnels; and (d) specializing
Chunnel implementations based on their operating context.

For example, consider a Bertha connection with the pipeline
encrypt |> http2 |> tcp running on a host where a SmartNIC
can be used to offload encryption and TCP functionality. When
implemented as specified, the Bertha runtime must either use a
fallback implementation for encryption or incur a 3X increase
(NIC-CPU-NIC) in the amount of data sent over PCle to the NIC.
Reordering this pipeline as http2 | >encrypt | > tcp allows the use
of the offloaded implementation without increased PCle overhead.
Because Bertha decides on a Chunnel implementation when
establishing a connection and in coordination with all endpoints,
reordering is safe in this case. Similarly, if the SmartNIC did not
explicitly offer separate offloads for encryption and TCP, but did
offer one for TLS, Bertha could reorder and then merge the last
two Chunnels, allowing the application to take advantage of the
TLS offload. Bertha can similarly also adopt techniques similar to

Floem [51] to split a complex Chunnel and partially offload its imple-
mentation. DAG optimization techniques have been used in other
domains including data-intensive processing [50] and deep neural
nets [24], but have so far not been applied to the network dataplane.

Deployment Concerns. How does Bertha operate when connect-
ing hosts in different ASes? The key challenge is trust, since a host
might end up relying on a Chunnel implementation in a different
network. A possible solution is to adopt techniques such as program
attestation [9, 27, 36] and proof carrying code [43, 44], which
allow remote hosts to check semantics of the running program.
Unfortunately, translating these techniques so they can be used
with constrained hardware devices such as switches, FPGAs, and
SmartNICs is challenging and requires additional research.

7 Related Work

Our approach closely resembles the approach taken by ONNX [49],
Tensorflow [1] and other machine learning frameworks which
represent models as DAGs and enable offload-use when possible.

Our work is enabled by the long line of prior work on active
networking [60], network function virtualization (NFV) [16], and
programmable switches and SmartNICs [10, 31, 37, 53, 58] that
enable programmability in the network fast path. Recent work
on virtualizing programmable network devices and accelerators,
including HyPer4 [25], P4Visor [65], AmorphOS [32] and AvA [63]
have made it easier to share these offloads among applications. Our
focus in this work has been on simplifying the use of these advances
in applications.

Finally, the widespread adoption of software-defined networking
(SDN) [40] has prompted the development of languages including
Frenetic [18], Flowlog [45], VeriCon [8], Merlin [59], etc. which
provide programmatic control over network configuration. This
line of work, which focuses on an interface for changing network
configuration is complementary to our work and might be useful
during Chunnel initialization.

8 Acknowledgements

We thank the anonymous reviewers and the following people
for their valuable feedback: Srinivas Narayana, Amy Ousterhout,
Shoumik Palkar, Deepti Raghavan, Justine Sherry, Anirudh
Sivaraman, and Shivaram Venkataraman. This work was supported
in part by funding from VMware, Intel, and NSF grants 1407470,
1526791, 1563826, 1704941, 1817115, 2028832, and 2029037.

References

[11]

(12

[13]

[14

[15]
[16

(17

(18]

[31]

[32

[33]

[36]

[37]

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: A System for Large-Scale Machine Learning.
In OSDI, 2016.

Amazon. Elastic Load Balancing. https://aws.amazon.com/elasticloadbalancing/.
Andrew Morgan. How MySQL is able to scale to 200 Million QPS - MySQL Cluster.
http://highscalability.com/blog/2015/5/18/how-mysql-is-able- to- scale-to-200-
million-qps-mysql-cluster.html.

Apache. Arrow. https://arrow.apache.org/.

Apache. Thrift. https://thrift.apache.org/.

M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker, and D. Wentzlaff.
Enabling Programmable Transport Protocols in High-Speed NICs . In NSDI, 2020.
C.P. Authors. Cap’n Proto Cerealization Protocol. https://capnproto.org/.

T. Ball, N. Bjerner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv, M. Schapira,
and A. Valadarsky. VeriCon: Towards Verifying Controller Programs in
Software-Defined Networks. In PLDI, 2014.

A.Baumann, M. Peinado, and G. C. Hunt. Shielding applications from an untrusted
cloud with haven. In TOCS, 2015.

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica,
and M. Horowitz. Forwarding Metamorphosis: Fast Programmable Match-Action
Processing in Hardware for SDN. In SIGCOMM, 2013.

Bruce Curtis. net-tcp: TCP/IP stack bypass for loopback connections.
https://www.spinics.net/lists/netdev/msg210741.html.

Chelsio Communications. TCP Offload Engine (TOE). http://www.chelsio.com/
nic/tcp-offload-engine/.

B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
Cloud Serving Systems with YCSB. In SoCC, 2010.

W. J. Dally, Y. Turakhia, and S. Han. Domain-specific hardware accelerators.
CACM, July 2020.

DPDK Authors. DPDK. https://www.dpdk.org/.

ETSI. Network Functions Virtualisation. http://portal.etsi.org/NFV/NFV_White_
Paper.pdf.

F5 Labs. Intelligent Application traffic Management. https://www.f5.com/
products/big-ip-services/local-traffic-manager.

N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and
D. Walker. Frenetic: A Network Programming Language. In ICFP, 2011.

A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Domi-
nant Resource Fairness: Fair Allocation of Multiple Resource Types. In NSDI, 2011.
I. Gog, M. Schwarzkopf, A. Gleave, R. N. M. Watson, and S. Hand. Firmament:
Fast, Centralized Cluster Scheduling at Scale. In OSDI, 2016.

Google. Flatbuffers. https://google.github.io/flatbuffers/.

Google. gRPC. https://grpc.io/.

Google. Protocol Buffers. https://developers.google.com/protocol-buffers/.
Google. XLA: Optimizing Compiler for Machine Learning. https :
/[www.tensorflow.org/xla/.

D. Hancock and J. E. van der Merwe.
Programmable Data Plane. CoNEXT, 2016.
T. Hoeiland-Jergensen, J. D. Brouer, D. Borkmann,]J. Fastabend, T. Herbert,
D. Ahern, and D. Miller. The EXpress Data Path: Fast Programmable Packet
Processing in the Operating System Kernel. In CoNEXT, 2018.

M. Jakobsson. Secure remote attestation. IACR Cryptol. ePrint Arch., 2018:31, 2018.
J.Jang,S.].Jung,S.Jeong,J. Heo, H. Shin, T.J. Ham, and J. W. Lee. A specialized archi-
tecture for object serialization with applications to big data analytics. In ISCA, 2020.
Jeff Barr. New — Advanced Request Routing for AWS Application Load Balancers.
https://aws.amazon.com/blogs/aws/new-advanced- request-routing-for-aws-
application-load-balancers/.

E. Y. Jeong, S. Woo, M. Jamshed, H. Jeong, S. Ihm, D. Han, and K. Park. MTCP:
A Highly Scalable User-Level TCP Stack for Multicore Systems. In NSDI, 2014.
X.Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and L. Stoica. NetCache:
Balancing Key-Value Stores with Fast In-Network Caching. In SOSP, 2017.

A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J. Rossbach.
Sharing, Protection, and Compatibility for Reconfigurable Fabric with AmorphOS.
In OSDI, 2018.

D.Kim, T. Yu,H. H. Liu, Y. Zhu, J. Padhye, S. Raindel, C. Guo, V. Sekar, and S. Seshan.
FreeFlow: Software-based Virtual RDMA Networking for Containerized Clouds.
In NSDI, 2019.

P. Kumar, N. Dukkipati, N. Lewis, Y. Cui, Y. Wang, C. Li, V. Valancius, J. Adriaens,
S. Gribble, N. Foster, and A. Vahdat. PicNIC: Predictable Virtualized NIC. In
SIGCOMM, 2019.

A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang,
F.Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P. Westin,
R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W.-T. Chang, and Z. Shi. The QUIC
Transport Protocol: Design and Internet-Scale Deployment. In SSIGCOMM, 2017.
D. Lee, D. Kohlbrenner, S. Shinde, K. Asanovic, and D. Song. Keystone: An Open
Framework for Architecting Trusted Execution Environments. In EuroSys, 2020.
J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. K. Ports. Just Say NO to
Paxos Overhead: Replacing Consensus with Network Ordering. In OSDI, 2016.

HyPer4: Using P4 to Virtualize the

[38

(39]

[40

[41

(58]

[59

[60]

e
2

[62

[63]

[64

[65

[66]

B. M. Maggs and R. K. Sitaraman. Algorithmic nuggets in content delivery.
SIGCOMM CCR, July 2015.

H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh.
Learning Scheduling Algorithms for Data Processing Clusters. In SIGCOMM, 2019.
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. OpenFlow: Enabling Innovation in Campus Networks.
SIGCOMM CCR, Mar. 2008.

Microsoft. Fast TCP Loopback Performance and Low Latency with Win-
dows Server 2012 TCP Loopback Fast Path. https://docs.microsoft.com/en-
us/archive/blogs/wincat/fast- tcp-loopback- performance-and-low-latency-
with-windows- server-2012- tcp-loopback-fast-path.

Microsoft. Introduction to Hyper-V on Windows 10. https://docs.microsoft.com/
en-us/virtualization/hyper-v-on-windows/about/.

G. C. Necula. Proof-carrying code. In POPL, 1997.

G. C. Necula and P. Lee. Safe Kernel Extensions without Run-Time Checking.
In OSDI, 1996.

T. Nelson, A. D. Ferguson, M. J. Scheer, and S. Krishnamurthi. Tierless
Programming and Reasoning for Software-Defined Networks. In NSDI, 2014.

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li, R. McElroy,
M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and V. Venkataramani. Scaling
Memcache at Facebook. In NSDI, 2013.

E. Nordstrom, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Y. Ko, J. Rexford, and M. J.
Freedman. Serval: An end-host stack for service-centric networking. In NSDI, 2012.
E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai Network: A Platform for
High-Performance Internet Applications. SIGOPS Oper. Syst. Rev., August 2010.
ONNX. Open Neural Network Exchange. https://onnx.ai/.

S.Palkar, J. Thomas, D. Narayanan, P. Thaker, R. Palamuttam, P. Negi, A. Shanbhag,
M. Schwarzkopf, H. Pirk, S. Amarasinghe, S. Madden, and M. Zaharia. Evaluating
End-to-End Optimization for Data Analytics Applications in Weld. In VLDB, 2018.
P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and T. Anderson.
Floem: A Programming System for NIC-Accelerated Network Applications. In
OSDI, 2018.

D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krishnamurthy. Designing
Distributed Systems Using Approximate Synchrony in Data Center Networks.
In NSDI, 2015.

D. R. K. Ports and J. Nelson. When Should the Network be the Computer? In
HotOS, 2019.

ProxySQL. ProxySQL: A High Performance Open Source MySQL Proxy.
https://proxysql.com/.

L. Rizzo. netmap: A Novel Framework for Fast Packet I/O. In USENIX ATC, 2012.
J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments in System Design.
ACM ToCS, Nov. 1984.

J. Sherry, D. Kim, S. Mahalingam, A. Tang, S. Wang, and S. Rat-
nasamy. Netcalls: End Host Function Calls to Network Traffic Process-
ing Services. =~ UC Berkeley Technical Report No. UCB/EECS-2012-175.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-175.html, 2012.
A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh, H. Balakrishnan,
G. Varghese, N. McKeown, and S. Licking. Packet Transactions: High-Level
Programming for Line-Rate Switches. In SIGCOMM, 2016.

R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer, and N. Foster.
Merlin: A Language for Provisioning Network Resources. In CONEXT, 2014.

D. L. Tennenhouse and D. J. Wetherall. Towards an Active Network Architecture.
SIGCOMM CCR, October 2007.

M. Walfish, J. Stribling, M. N. Krohn, H. Balakrishnan, R. T. Morris, and S. Shenker.
Middleboxes no longer considered harmful. In OSDI, 2004.

T. Wang, H. Zhu, F. Ruffy, X. Jin, A. Sivaraman, D. Ports, and A. Panda. Multitenancy
for Fast and Programmable Networks in the Cloud. In HotCloud, 2020.

H. Yu, A. M. Peters, A. Akshintala, and C. J. Rossbach. AvA: Accelerated
Virtualization of Accelerators. ASPLOS, 2020.

P. Zheng, T. Benson, and C. Hu. P4Visor: Lightweight Virtualization and Com-
position Primitives for Building and Testing Modular Programs. In CoNEXT, 2018.
P. Zheng, T. Benson, and C. Hu. P4Visor: lightweight virtualization and
composition primitives for building and testing modular programs. CoNEXT, 2018.
D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Krishnamurthy, and
T. Anderson. Slim: OS Kernel Support for a Low-Overhead Container Overlay
Network. In NSDI, 2019.

https://aws.amazon.com/elasticloadbalancing/
http://highscalability.com/blog/2015/5/18/how-mysql-is-able-to-scale-to-200-million-qps-mysql-cluster.html
http://highscalability.com/blog/2015/5/18/how-mysql-is-able-to-scale-to-200-million-qps-mysql-cluster.html
https://arrow.apache.org/
https://thrift.apache.org/
https://capnproto.org/
https://www.spinics.net/lists/netdev/msg210741.html
http://www.chelsio.com/nic/tcp-offload-engine/
http://www.chelsio.com/nic/tcp-offload-engine/
https://www.dpdk.org/
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www.f5.com/products/big-ip-services/local-traffic-manager
https://www.f5.com/products/big-ip-services/local-traffic-manager
https://google.github.io/flatbuffers/
https://grpc.io/
https://developers.google.com/protocol-buffers/
https://www.tensorflow.org/xla/
https://www.tensorflow.org/xla/
https://aws.amazon.com/blogs/aws/new-advanced-request-routing-for-aws-application-load-balancers/
https://aws.amazon.com/blogs/aws/new-advanced-request-routing-for-aws-application-load-balancers/
https://docs.microsoft.com/en-us/archive/blogs/wincat/fast-tcp-loopback-performance-and-low-latency-with-windows-server-2012-tcp-loopback-fast-path
https://docs.microsoft.com/en-us/archive/blogs/wincat/fast-tcp-loopback-performance-and-low-latency-with-windows-server-2012-tcp-loopback-fast-path
https://docs.microsoft.com/en-us/archive/blogs/wincat/fast-tcp-loopback-performance-and-low-latency-with-windows-server-2012-tcp-loopback-fast-path
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://onnx.ai/
https://proxysql.com/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-175.html

	Abstract
	1 Introduction
	2 Overview
	3 Interface and Examples
	3.1 Interface
	3.2 Example Uses

	4 Design
	4.1 Bertha Runtime
	4.2 Bertha Discovery
	4.3 Chunnel Negotiation

	5 Benefits
	6 Research Directions
	7 Related Work
	8 Acknowledgements
	References

