
Performance Implications at the Intersection of AF_XDP and
Programmable NICs

Marco Molè
Politecnico di Milano

Milan, Italy

Farbod Shahinfar
Politecnico di Milano

Milan, Italy

Francesco Maria Tranquillo
Politecnico di Milano

Milan, Italy

Davide Zoni
Politecnico di Milano

Milan, Italy

Aurojit Panda
New York University

New York, United States

Gianni Antichi
Politecnico di Milano

Milan, Italy

ABSTRACT
AF_XDP is emerging as an easier way to implement zero-copy net-
work bypass applications. This is because it allows mixed-mode
deployments, where zero-copy and socket-based applications share
the same NIC. However, AF_XDP relies on NIC hardware and driver
features, but implementing these features on programmable NICs
adds resource overheads and increases development complexity
and thus might not be desirable. To address this, we examine the
feasibility of using eBPF based kernel extensibility to implement the
required features, and report on the tradeoff between an eBPF and
a native NIC implementation. Our analysis involved updating the
OpenNIC driver to support the loading of eBPF/XDP programs and
zero-copy AF_XDP . Our implementation is of independent interest
because it makes it easier to develop and evaluate alternate designs
for mixed-mode zero-copy deployments, and new NIC accelerated
applications. Our implementation is open-sourced

CCS CONCEPTS
• Networks → Middle boxes / network appliances; • Hard-
ware → Hardware accelerators; • General and reference →
Performance;

KEYWORDS
eBPF; AF_XDP; Programmable NICs

ACM Reference Format:
Marco Molè, Farbod Shahinfar, Francesco Maria Tranquillo, Davide Zoni,
Aurojit Panda, and Gianni Antichi. 2025. Performance Implications at the
Intersection of AF_XDP and Programmable NICs. In 3rd Workshop on eBPF
and Kernel Extensions (eBPF ’25), September 8–11, 2025, Coimbra, Portugal.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3748355.3748359

1 INTRODUCTION
AF_XDP (which has been enabled by eBPF) is emerging as a popular
way to write high-performance kernel-bypass networked applica-
tions that run on Linux [10, 14, 19, 21, 30–33]. This is because unlike
other kernel-bypass libraries (e.g., DPDK [8], netmap [28]), AF_XDP

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
eBPF ’25, September 8–11, 2025, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2084-0/25/09.
https://doi.org/10.1145/3748355.3748359

Current Practice Our Proposal
Advanced Flow Steering NIC (Hardware) + Kernel
TX NAPI budget NIC (Driver) + Kernel
NAPI instance placement NIC (Hardware) + Kernel

Table 1: List of AF_XDP features we consider in this paper. Currently, they
are implemented either in the NIC hardware or its driver. We propose allowing
programmers to use also kernel implementations.

enables mixed-mode deployments where a NIC can be shared be-
tween kernel-bypass applications and those that use the traditional
socket API (and do not bypass the kernel).

AF_XDP depends on NIC hardware features to provide compara-
ble performance as other zero-copy networking libraries: it depends
on hardware flow-steering (aRFS [7]) to direct all packets that an
AF_XDP application will process to a single NIC queue, which the ap-
plication then accesses using an AF_XDP socket (XSK). Furthermore,
the send path of an XSK runs in a NAPI instance in the kernel. What
core this NAPI instance is executed on can significantly impact ap-
plication performance, and the NAPI instance is frequently run on
a different core than the application thread. Thus, sending packets
over a XSK might require scheduling a NAPI instance on a remote
core, and Linux currently uses NIC interrupts for this purpose. Ad-
ditionally, like other high-performance network libraries, AF_XDP
depends on batching to amortize the cost of sending (and receiving
packets). But batch-size can have significant impact on performance,
and rather than relying on application, AF_XDP assumes that NIC
drivers embed the appropriate batch size. Commodity NICs from
Intel and Mellanox implement the necessary hardware features to
enable zero-copy mixed-mode deployments, and embed batch-size
and other necessary information in their drivers.

But FPGA-based programmable NICs are also becoming more
common, and are in use in datacenters [17, 18] and other deploy-
ments [5, 9]. These NICs do not automatically come with the hard-
ware features assumed by AF_XDP , but programmers can implement
these features at the cost of added complexity and resources. Fur-
thermore, application logic can affect the ideal batch size, and thus
no single batch-size value embedded in a driver is likely to work
across all deployments. Thus, one can ask how should AF_XDP
and programmable NICs evolve to better support zero-copy network
applications running in mixed-mode deployments?

Among the possible answers to the question, in this paper we
focus on two (Table 1): one that matches current practice and re-
quires that all programmable NICs implement features required
by AF_XDP and that programmers update drivers when changing

https://doi.org/10.1145/3748355.3748359
https://doi.org/10.1145/3748355.3748359

eBPF ’25, September 8–11, 2025, Coimbra, Portugal Molè et al.

NIC

Kernel

User space Program XSK 1

NIC Driver

…
Q

ue
ue

 2

Q
ue

ue
 N

XSK 2

Q
ue

ue
 1

UMEM

2

1

…

N

Figure 1: XSKs explicitly bind to NIC’s queues.

NIC features; and another that exploits eBPF-enabled kernel exten-
sibility to support NICs that do not implement all of the required
AF_XDP hardware features and minimize driver changes.

In this paper, we compare these two options in the context of
OpenNIC, a programmable FPGA-based NIC (§3). We evaluate the
trade-offs between these options, and find that (a) while replacing
hardware features (aRFS) with a kernel extension running in soft-
ware has performance overheads, these overheads decrease with
application complexity; (b) dynamically changing batch sizes rather
than embedding it in the driver allows applications to better trade-
off throughput and latency; and (c) using programmable scheduling
(e.g., enabled by approaches like ghOSt [20]) for placing NAPI in-
stances can significantly improve receive-and-transmit throughput.
In sum, these results show that eBPF based kernel extensibility
reduces the effort and improves the performance of AF_XDP when
used with programmable NICs.

In the process of evaluating these options, we have implemented
eBPF/XDP and zero-copy AF_XDP support for OpenNIC, and our
code is open-source [25]. We report on the effort required, and the
performance of the resulting prototype in §4. The resulting system
and evaluation is of independent interest to the community, because
it makes it easier (a) to develop new NIC accelerated application;
and (b) to evaluate alterative designs for mixed-mode zero-copy
network libraries.

2 BACKGROUND
In this section, we first provide background information on AF_XDP
[22] (Section 2.1) and then introduce OpenNIC [1] (Section 2.2), the
hardware/software code-base we used as reference for a state-of-
the-art programmable NIC.

2.1 AF_XDP

AF_XDP is an address family in Linux for processing raw L2 frames.
AF_XDP sockets (or XSKs) support zero-copy operations through
use of a shared memory region between user-space and kernel
called UMEM, which is comprised of fixed sized chunks used for
holding packets [22]. This socket family provides an on-demand
kernel bypass functionality to applications. It relies on an eBPF/XDP
program (running at NIC driver) to filter and redirect traffic to the
XSK (bypassing rest of the kernel) or pass it to the network stack.

A system using AF_XDP has a user-space context and kernel-
space context, like any other socket family. In the user-space, the

Chunk
N

Chunk
2

…

Chunk
1

Application

NIC

Chunk
N

Chunk
2

…

Chunk
1

Application

NIC

Figure 2: Movement of a UMEM chunk during the lifecycle of an XSK. Red
arrows are the receive path, blue arrows are the transmit path.

application thread (user-space) interacts with the socket while ker-
nel processing happen in the form of a NAPI1 instance, an interface
between a network driver and rest of the kernel. Each queue has
a corresponding polling function, called NAPI [4] instance, that is
triggered by the queue’s interrupt line and runs until there are pend-
ing packets in the queue. Each NAPI instance runs independently
of the others and generally on different cores.
Binding sockets, UMEM and queue (user and kernel context).
Figure 1 shows an overview of a system using XSKs. Application
(running in user-space) creates a UMEM by allocating memory and
registering it with the kernel, then when creating a new XSK, ap-
plication will specify a UMEM, a network interface, and a queue to
which XSK will bound. The XSK will have communication channels
(named Rx and Tx rings) for notifying application of arrived packets
(specifying the offset in the UMEM where packet was DMAed), and
to inform NIC of packets that should be transmitted. The UMEM
will have controlling channel (FILL and COMPLETION rings) used
for advertising available memory chunks for receive operation and
notifying the application of chunks that has been transmitted. Both
the XSK and the UMEM rings are Single-Producer Single-Consumer
(SPSC) buffers, designed to operate without requiring read/write
locks. This is good for performance, as applications can dedicate
one core to the XSK (user-space) and another core to the NAPI
processing (kernel-space). The details life-cycle of a packet through
AF_XDP system is as follows.
Buffer allocation (user context). Figure 2 shows journey of a
packet entering from hardware receive ring until when it exits the
system and is placed on the transmission ring. 1 In the begin-
ning, the application is responsible for populating the FILL ring
with pointers to available UMEM chunks. 2 The kernel (driver)
will consume the FILL ring entries, converting the pointers into
a format that the hardware can interpret, called descriptors. 3
The descriptors are then sent to the NIC, which will use them as
destination addresses for the DMA transfers.
Receive Path in Driver (kernel context).When a batch of DMA
transfers is done, the NIC raises the interrupt line corresponding to
the queue that received the packets. The interrupt service routine

1New API

eBPF ’25, September 8–11, 2025, Coimbra, Portugal

QSFP
Programmable

Logic

HDL
(e.g., Verilog)

QDMA
IP

Compiler

Memory

UMEM

1 2 … 3

Ethernet
C

ontroller

OpenNIC

DMA

PCIe

Figure 3: OpenNIC High Level architecture

schedules the NAPI instance responsible for polling the queue that
will disable the interrupt line and start polling the HW RX queue
until there are pending packets. 4 For each packet, the eBPF/XDP
program is run. The program can read, modify the packet and then
drop it, pass it to the network stack, or redirect it to one of the XSK
bound to the hardware queue. When a packet is redirected to an
XSK, its UMEM address is enqueued in XSK’s RX ring.
Receive path in application (user context). 5 Application polls
the RX ring of its XSK to receive L2 frames and process them. Here,
the user-space has the ownership of the packet (UMEM chunk) and
can perform any custom processing on it. It is the application’s
responsibility to recycle it by putting it back in the FILL ring (ad-
vertising the chunk to be used for next received packet) or, 6 if
the packet needs to be forwarded, enqueue it in the TX ring.
Transmit path (user and kernel context). 6 The transmission
path is as follows: user-space applications enqueue packets in the
TX ring and then issue a syscall to kick start the transmission. 7
The actual transmission of the descriptors occurs in the kernel
context, where similar to the receive path it is executed by a NAPI
instance. 8 The NAPI instance will also reclaim the packets that
were sent and will enqueue them in the COMPLETION ring. 9
The application can then poll the COMPLETION ring and reuse the
UMEM chunks for new packets (advertise them to receive path or
write data to them and transmit them).

2.2 OpenNIC
OpenNIC is an open-source network interface card code that com-
piles on AMD/Xilinx FPGAs [1]. OpenNIC serves as a foundation
for building custom NIC offloads. Figure 3 shows the high-level
overview of the NIC, composed of the Ethernet Media Access Con-
troller (MAC) and Physical Coding Sublayer, which connects to
QSFP cages and the AMD/Xilinx Multi-Queue DMA (QDMA) en-
gine. Between these two components, developers can add their
custom made offloads using native hardware description languages
(i.e. Verilog or VHDL). Moreover, recent efforts have enabled the
possibility to use use P4 [5] and eBPF [12] to build new offloads.

3 CHALLENGES SUPPORTING AF_XDP

Achieving high performance with AF_XDP requires support from
the network interface card (NIC) driver. While it is possible to use
AF_XDPwithout NIC driver support, this results in a fallback to copy
mode, which significantly degrades performance [13]. Integrating
NIC drivers with the AF_XDP kernel subsystem presents several
challenges, which we discuss in this section. These challenges stem

Resource RSS aRFS Extra Resources

LUT 2809 2809 1×
LUTRAM 322 573 1.77×
Flip-flop 1964 5252 2.6×
BRAM 0 2 −

Table 2: Resource utilization on the Xilinx/AMD Alveo U280 featuring the
UltraScale+ XCU280 FPGA. The RSS module is implemented using the standard
Toeplitz hash algorithm while the aRFS with a 64 entries CAM.

either from hardware-specific interfaces or from the limited visibil-
ity that the driver has into the behavior and requirements of the
application running on top of it.

(1) RSS and flow steering. XSKs are tied to a single UMEM, and
a single queue (Figure 1). A UMEM can be shared between multi-
ple queues (create a shared memory across queues in user-space
program), but at the time of writing, the XDP program can only
redirect traffic to XSK bound to the same hardware Rx queue (this
was possible but later removed due to security concerns [24]). This
effective limits software receive flow steering (RFS).

RFS is vital for the correct operation of AF_XDP based applica-
tions and also have grave implications on how their performance
scale. If applications flow land on a hardware queue not bound to
the XSK, XDP can not steer it to XSK and the packets are lost. The
common solutions that we are aware of are:
Current options:

• Single-queue mode: The most straightforward but least scal-
able option is to use a single NIC queue and bind a XSK
to it. This entirely avoids the complexity of steering, but
it becomes a severe bottleneck and nullifies the scalability
benefits of RSS. In this mode the steering is delegated to the
user-space.

• Socket multiplexing on one queue: Multiple XSKs can share
a queue, allowing different flows or roles to be handled by
distinct sockets. However, this requires the XDP program
to inspect and classify each packet in software to determine
its destination socket. This adds overhead in the fast path,
undermines performance, and bypasses the NIC’s hardware
steering capabilities.

• Advanced hardware steering with aRFS: Ideally, one would
use a NIC with support for accelerated Receive Flow Steering
(aRFS) or similar hardware-based flow steering. This allows
dynamic mapping of flows to specific queues, which can
then be served by zero-copy AF_XDP sockets with minimal
overhead. Unfortunately, implementing aRFS support on pro-
grammable NICs such as OpenNIC requires resources which
can no longer be used to implement application logic. In
Table 2 we quantify this trade-off by comparing resources
required to implement RSS and aRFS. The former is imple-
mented in Hardware Description Language (HDL) using the
standard Toeplitz hash algorithm [23]. The latter uses the
Binary CAM LogiCORE IP from Xilinx/AMD [11] to imple-
ment a 64 entries Content Addressable Memory that matches
flow IDs to specific DMA queues. We observe that in this

eBPF ’25, September 8–11, 2025, Coimbra, Portugal Molè et al.

1 2 3 4 5
Number of sockets

0
5

10
15
20
25

Th
ro

ug
hp

ut
 (M

pp
s) Work: 0

SQ+XDP
MQ+aRFS

(a)

1 2 3 4 5
Number of sockets

0
5

10
15
20
25

Work: 512

(b)

1 2 3 4 5
Number of sockets

0
5

10
15
20
25

Work: 1024

(c)
Figure 4: Comparing socket multiplexing inside XDP or using aRFS. (SQ:
single queue,MQ: multiple queue)

case aRFS requires 2.6× more flip-flops and 1.77× more LU-
TRAM. These resource requirements grow as we increase
the number of aRFS rules that can be supported.

How in-kernel functionalities can help. Our observation shows
that implementing aRFS might not be feasible or desirable on a
programmable NIC. Most FPGA-based programmable NICs only
provide a barebone programming framework, and do not implement
features like aRFS out of the box. This forces the system developer
to dedicate the limited resources of the FPGA to implement logic
that is not related to the offloaded application. An alternative is to
use eBPF and implement RFS in kernel [3]. In this setting, multiple
XSKs are attached to a single queue (Figure 1), and a user supplies
an eBPF program to determine to what XSK each packet is routed,
enabling software multiplexing.

In Figure 4 we evaluate the performance of software multiplex-
ing in XDP compared to aRFS. The test program receives packets
through XSKs, finds a Fibonacci number as a proxy for packet pro-
cessing complexity (the work parameter in the Figure 4), and finally
sends the packet back. The number of XSKs changes from 1 to
5. Each XSK is owned by a different thread polling it constantly.
With XDP, we observe contention when accessing FILL or COM-
PLETION rings creating a bottleneck for I/O heavy workload. With
aRFS each socket is bound to a different hardware queue and avoids
the contention, and throughput scales linearly. When no cycles are
required to process packets, aRFS can achieve line-rate (25 Gbps
for send and receive traffic in total) with two XSKs.

Of course, the current RFS implementation is limited: XSKs must
be attached to a single queue, and thus only a single queue’s traffic
can be multiplexed across XSKs. This affects scalability, e.g., limit-
ing the ability to use multiple queues (and thus cores) to process
incoming flows that are distributed across queues using RSS. One
way to improve this situation is to generalize Linux’s RFS imple-
mentation and allow a single eBPF program to multiplex packets
received from multiple queues across XSKs.

(2) TX descriptor posting and NAPI time-sharing. AF_XDP posts
TX descriptors from within the NAPI poll loop, interleaving RX
and TX processing. This is in contrast to the Linux’s socket imple-
mentation where only RX processing is performed in the NAPI poll
loop, and TX logic is implemented in the syscall context. While
RX processing is bounded by the NAPI budget (default 64 packets),
there is no universal TX budget, leading to either prolonged NAPI
instances or TX ring bloat. The common approaches are:
Current options:

• Fixed TX budget (e.g., 64 descriptors): Mimic the RX budget to
cap TXwork per poll. This prevents a single NAPI invocation

0 10 20 30 40 50 60
Microseconds

0.00
0.25
0.50
0.75
1.00

CD
F

budget of 64
no budget

(a) Not bounding the Tx budget can
reduce the applications responsiveness,
because NAPI may take 10 𝜇𝑠 longer.

budget of 64 no budget

0

10

20

30

40

Th
ro

ug
hp

ut
 (M

pp
s)

(b) Configuring transmit budget af-
fects throughput of Tx heavy applica-
tion

Figure 5: Linux kernel does not expose a Tx budget configuration while its
value shows different trade-offs

from monopolizing CPU time but may underutilize available
TX ring space and reduce transmission burst efficiency.

• Fill TX ring aggressively: Post as many descriptors as the
ring allows on each poll. This maximizes throughput and
burst performance but risks excessively long NAPI polls that
starve RX processing and can increase RX latency.

How in-kernel functionalities can help. In Figure 5, we show
the trade-off between the two approaches.We ran a AF_XDP through-
put generator, txpush [2], and measured the/ NAPI execution time
and throughput. NAPI execution time was measured by taking
timestamps at the start of the function and just before returning.
Figure 5a shows that without any fixed budget applications that
produces a lot of TX traffic can inflate the execution time of its NAPI
instance by up to 90%, while experiencing an increase in through-
put of 27%, pictured in Figure 5b. Prolonged NAPI instances lead to
higher latencies in processing incoming packets, as the RX budget
is fixed to 64 packets per NAPI execution.

The takeaway is that the TX budget should be configurable at
runtime because the optimal value depends on workload charac-
teristics. Moreover, the introduction of programmable NICs allows
for complex offloads on the transmission path, that increase the
processing time on the NIC and thus buffering. By configuring
this parameter it would be possible to have a system level knob to
control buffering on the transmission path of the offload and thus
optimize for performance.

Our approach to achieving this builds on the observation that
the kernel already monitors the execution time of NAPI instances to
enforce an upper time bound and prevent system starvation caused
by excessively long softirq execution [29]. If the kernel observes
a low number of NAPI instances executed within a time interval,
this may indicate that individual instances are consuming excessive
time, potentially due to heavy XSK TX activity. Here, if one of the
affected NAPI instances is zero-copy enabled, it may be beneficial
to reduce its transmit budget to alleviate system pressure. One way
to support this is to have an eBPF program that dynamically adjust
the TX budget at runtime based on system policies.

(3) xsk_wakeup and hardware interrupt capabilities.
The goal of ndo_xsk_wakeup() is to schedule a NAPI instance.
Each driver has to implement its own version of this callback. The
way the first drivers that supported AF_XDP did it was to write to a
memory mapped register of the NIC that caused an interrupt. This
way the NAPI instance was scheduled from the interrupt service

eBPF ’25, September 8–11, 2025, Coimbra, Portugal

0 10 20 30
Time (s)

0
20
40
60
80

100

Pe
rc

en
ta

ge
 (%

)

Kernel cycles
Userspace cycles

(a) softirq

0 10 20 30
Time (s)

0
20
40
60
80

100

Pe
rc

en
ta

ge
 (%

)

(b) kthread

Figure 6: The lack of on-demand interrupts leads to the NAPI instance
executed in softirq being scheduled on the same core of the application, starving
it from clock cycles. With threaded NAPI enabled and pinned to the ISR’s core
the application can use more CPU.

routine (as usual). A lot of NICs do not have this hardware feature2
and resort to calling the function that schedules the NAPI from the
process context of the application that issued the wakeup. Due to
how the subsystem is designed, the polling function will be sched-
uled on the same core of the application. In order to achieve maxi-
mum performance the application and the NAPI instance should
avoid timeshare on the same core as much as possible.
Current options:

• Threaded NAPI pinned to application core: Use threaded NAPI,
which is a mode of operation in which the NAPI poll function
lives in a dedicated kernel thread and pin it to the IRQ line’s
CPU. This ensures wake-ups always occur on the same core,
eliminating migrations. No driver changes are needed, but it
introduces overhead of a kernel thread per queue and lacks
comprehensive public performance evaluations.

• Affinity-aware rescheduling within the driver: At each NAPI
reschedule, check the IRQ line’s affinity mask; if the NAPI
instance is on the wrong core, forcibly reschedule it to the
application’s core. This retains interrupt-based wake-ups
without threaded NAPI, but adds the cost of affinity checks
on every poll and incurs a scheduling delay when moving
NAPI instances.

How in-kernel functionalities can help. To better understand
this trade-off, we employed the same packet generator as in the
previous point, on top of OpenNIC, that does not support MMIO
based on-demand interrupts. We enabled TX completion IRQs, to
have a source of interrupts to keep the NAPI on the interrupt service
routine (ISR) core. Figure 6a illustrates how user-space execution is
periodically starved of CPU cycles, as the softirq executing the NAPI
polling context is scheduled on the same core as the user-space
application, causing momentary drops in the produced throughput.
In cases where NAPI executes on the intended core, it is due to
an interrupt triggering execution on that core. In contrast, Figure
6b shows the performance when using a threaded NAPI instance
pinned to the ISR core, resulting in improved isolation between
kernel and user-space.

Recent efforts have introduced eBPF programmability in the
Linux scheduler [6, 20] make it possible for custom scheduling
policies that may alleviate this problem.

An eBPF-based scheduler could be utilized to prioritize the exe-
cution of the ksoftirqd thread responsible for the NAPI context,

2This is because, as mentioned in point (1), hardware resource limits make it harder to
implement complex functionality while meeting timing.

64 500 1000 1500
Packet size (B)

0
20
40
60
80

100
120

Th
ro

ug
hp

ut
 (M

pp
s)

XSK
DPDK

(a) Single NIC’s queue

64 500 1000 1500
Packet size (B)

0
20
40
60
80

100
120

Th
ro

ug
hp

ut
 (M

pp
s)

XSK
DPDK

(b) Eight NIC’s queues

Figure 7: L2 swap and forwarding benchmark comparing between DPDK
and AF_XDP Sockets (XSK)

64 500 1000 1500
Packet size (B)

0
20
40
60
80

100
120

Th
ro

ug
hp

ut
 (M

pp
s)

XSK
DPDK

(a) Single NIC’s queue

64 500 1000 1500
Packet size (B)

0
20
40
60
80

100
120

Th
ro

ug
hp

ut
 (M

pp
s)

XSK
DPDK

(b) Eight NIC’s queues

Figure 8: Packet drops benchmark comparing between DPDK and AF_XDP
Sockets (XSK)

thereby reducing the latency associated with migrating NAPI in-
stances across CPU cores. This prioritization can improve cache lo-
cality and overall responsiveness, particularly under high-throughput
conditions. Furthermore, the scheduler could enable a dynamic ex-
ecution model for AF_XDP applications, switching between single-
core and dual-core configurations depending on system load. In
the single-core mode, the AF_XDP application and its corresponding
NAPI instance would be co-located on the same core to minimize
context-switching and cache invalidation overhead. Conversely, in
dual-core mode, they could be distributed across cores to leverage
parallelism under high load. Implementing such a model would
require a mechanism to expose execution mode preferences or
runtime decisions to user-space applications, potentially through
extended socket options or eBPF maps.

4 XDP FOR OPENNIC
Wehave implemented a version of theOpenNIC driver that supports
eBPF/XDP and AF_XDP zero-copy, in 1500 LoC [25].

Regarding the challenges outlined in Section 3: (1) the driver
operates with either the RSS mechanism provided by the bare shell
or the custom aRFS module shown in Table 2; (2) we opted to
retain an unbounded TX budget by default, although this parameter
remains configurable within the driver; and (3) while the latest
version of the driver supports affinity-aware rescheduling, we prefer
to run it with threaded NAPI and manually assigned CPU affinities,
as this setup provides greater control and performance consistency.

In this section we report on our implementation’s performance.
Experimentswere conducted onCloudLab [16] infrastructure hosted
at the University ofMassachusetts. The nodewe used is fpga-alveo
which is equipped with dual-socket Intel Xeon Gold 6226R proces-
sors, each operating at 2.90 GHz. Hyper-threading and IRQ bal-
ancing were disabled to ensure consistent performance and reduce
scheduling noise. The system was provisioned with 188 GB of RAM.

eBPF ’25, September 8–11, 2025, Coimbra, Portugal Molè et al.

The node is equipped with a AMD/Xilinx Alveo U280 FPGA, on
which the base shell of OpenNIC[1] was flashed.

We evaluate our implementation on two classes of stress tests:
L2 Mac Address swap and forward in Figure 7 and packet drops rate
in Figure 8. For AF_XDP it was used the xdpsock benchmark utility
[2, 22] for both experiments; for DPDK testpmd was used for the
L2 forwarding and dpdk-pktgen for the RX drop benchmark and as
the line-rate packet generator for all tests. We test the performance
using one and eight NIC’s queues, which is maximum amount
of queues currently supported in the base OpenNIC shell. At low
packet sizes the performance mismatch between DPDK and AF_XDP
is more noticeable and expected as seen in the literature [22, 26].
In single queue benchmarks (Figure 7a and 8a) DPDK outperforms
AF_XDP by a factor of 2× and by 1.5× when using eight queues
(Figure 7b and 8b). By increasing packet sizes, and thus reducing
the how many packets per seconds are needed to reach line rate,
AF_XDP can achieve very similar performance as DPDK, even by
using only one queue.

Our measurements are comparable to prior AF_XDP measure-
ments [22, 26] taken using commercial fixed-function NICs, show-
ing that our implementation performs similarly.

5 RELATEDWORK
The benefits of using AF_XDP in production environments have been
discussed in the context of Open VSwitch [32], an industrial-grade
software switch. In addition to this, the research community and
beyond have proposed the use of AF_XDP to build high-performance
DNS services [10], scalable 5G telecommunication runtime [30, 31],
cloud gateways [33], and more efficient implementation of trans-
port protocols [14, 19]. While all of those works are built on top of
AF_XDP , many others focus on understanding its performancewhen
used in combination with commodity NICs. Specifically, Karlsson
et al. [22] studied the internals of AF_XDP implementation finding
optimizations for better cache locality or simplifying communica-
tion if hardware supports in order delivery of descriptors; Parola
et al. [27] analyzed the suitability of AF_XDP for different edge
network function use-cases; Finally, Castillon du Perron et al. [15]
looked at different configurations of AF_XDP to find the best pa-
rameters for reducing latency.

6 CONCLUSION
AF_XDP demonstrates that hardware support can enable zero-copy
network libraries that are easier to use and deploy. But AF_XDP was
designed to use widely-available NIC features. Our efforts have
enabled and open-sourced [25] AF_XDP support for OpenNIC allow
the community to consider other designs that split NIC and software
functionality differently, and thus offer different tradeoffs. This
work does not raise any ethical issues.

Acknowledgments. We thank our shepherd, Kahina Lazri, and
other anonymous reviewers for their insightful comments. This
work was partially supported by a research grant from NEC Labo-
ratories Europe, and also partially funded by the European Union.
Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union
or the European Health and Digital Executive Agency. Neither the

European Union nor the granting authority can be held responsible
for them.

REFERENCES
[1] 2022. AMD OpenNIC Project. https://github.com/Xilinx/open-nic. (2022).
[2] 2022. Bpf-Examples/AF_XDP-example/README.Org at Main · Xdp-

Project/Bpf-Examples. https://github.com/xdp-project/bpf-examples/blob/main/
AF_XDP-example/README.org. (2022).

[3] 2022. Receive Flow Steering (RFS). https://docs.redhat.com/en/documentation/
red_hat_enterprise_linux/6/html/performance_tuning_guide/network-rfs.
(2022).

[4] 2023. NAPI - The Linux Kernel documentation. https://docs.kernel.org/
networking/napi.html. (2023).

[5] 2024. ESnet SmartNIC hardware design repository. https://github.com/esnet/
esnet-smartnic-hw. (2024).

[6] 2024. Sched-Ext/Scx. https://github.com/sched-ext/scx. (2024).
[7] 2025. Accelerated Receive Flow Steering (aRFS). https://docs.redhat.com/en/

documentation/red_hat_enterprise_linux/6/html/performance_tuning_guide/
network-acc-rfs. (2025).

[8] 2025. DPDK: Data Plane Development Kit. https://www.dpdk.org/about/. (2025).
[9] 2025. Fabric testbed. https://portal.fabric-testbed.net/. (2025).
[10] 2025. Improving DNSdist performance with AF_XDP. https://blog.powerdns.

com/improving-dnsdist-performance-with-af_xdp. (2025).
[11] AMD. 2024. Content Addressable Memory (CAM). https://www.amd.com/en/

products/adaptive-socs-and-fpgas/intellectual-property/ef-di-cam.html. (2024).
[12] AMD/Xilinx. 2023. The Nanotube Compiler and Framework. https://github.com/

Xilinx/nanotube. (2023).
[13] Björn Töpel. 2018. AF_XDP: Introducing Zero-Copy Support. https://lwn.net/

Articles/756549/. (2018).
[14] Zhongjie Chen, Qingkai Meng, ChonLam Lao, Yifan Liu, Fengyuan Ren, Minlan

Yu, and Yang Zhou. 2025. eTran: Extensible Kernel Transport with eBPF. In
Symposium on Networked Systems Design and Implementation (NSDI). USENIX.

[15] Killian Castillon du Perron, Dino Lopez Pacheco, and Fabrice Huet. 2024. Under-
standing Delays in AF_XDP-based Applications. (2024). arXiv:cs.NI/2402.10513
https://arxiv.org/abs/2402.10513

[16] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The De-
sign and Operation of CloudLab. In Annual Technical Conference (ATC). USENIX.

[17] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Pop-
uri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure Accel-
erated Networking: SmartNICs in the Public Cloud. In Symposium on Networked
Systems Design and Implementation (NSDI). USENIX.

[18] Dimitra Giantsidi, Julian Pritzi, Felix Gust, Antonios Katsarakis, Atsushi Koshiba,
and Pramod Bhatotia. 2025. TNIC: A Trusted NIC Architecture: A hardware-
network substrate for building high-performance trustworthy distributed sys-
tems. In International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS). ACM.

[19] Tianyi Huang and Shizhen Zhao. 2023. Accelerating QUIC with AF_XDP. In Inter-
national Conference Algorithms and Architectures for Parallel Processing (ICA3PP).
Springer-Verlag.

[20] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse, Barret Rhoden,
Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner, and Christos Kozyrakis. 2021.
ghOSt: Fast & Flexible User-Space Delegation of Linux Scheduling. In Symposium
on Operating Systems Principles (SOSP). ACM.

[21] Intel. 2025. https://www.intel.com/content/www/us/en/developer/articles/
technical/cloud-native-data-plane-leverage-af-xdp-kubernetes.html. (2025).

[22] Magnus Karlsson and Björn Töpel. 2018. The path to DPDK speeds for AF XDP.
In Linux Plumbers Conference.

[23] Hugo Krawczyk. 1995. New Hash Functions for Message Authentication. In
Advances in Cryptology (EUROCRYPT). Springer.

[24] Greg Kroah-Hartman. 2024. CVE-2024-39293: Revert "xsk: Support redirect to any
socket bound to the same umem". https://lore.kernel.org/linux-cve-announce/
2024062548-CVE-2024-39293-d42a@gregkh/. (2024).

[25] Marco Molè. 2025. OpenNIC Driver with AF_XDP Support. https://github.com/
system-fab/onic-afxdp. (2025).

[26] Jalal Mostafa, Suren Chilingaryan, and Andreas Kopmann. 2023. Are Kernel
Drivers Ready For Accelerated Packet Processing Using AF_XDP?. In Conference
on Network Function Virtualization and Software Defined Networks (NFV-SDN).
IEEE.

https://github.com/Xilinx/open-nic
https://github.com/xdp-project/bpf-examples/blob/main/AF_XDP-example/README.org
https://github.com/xdp-project/bpf-examples/blob/main/AF_XDP-example/README.org
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-rfs
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-rfs
https://docs.kernel.org/networking/napi.html
https://docs.kernel.org/networking/napi.html
https://github.com/esnet/esnet-smartnic-hw
https://github.com/esnet/esnet-smartnic-hw
https://github.com/sched-ext/scx
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-acc-rfs
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-acc-rfs
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/6/html/performance_tuning_guide/network-acc-rfs
https://www.dpdk.org/about/
https://portal.fabric-testbed.net/
 https://blog.powerdns.com/improving-dnsdist-performance-with-af_xdp
 https://blog.powerdns.com/improving-dnsdist-performance-with-af_xdp
https://www.amd.com/en/products/adaptive-socs-and-fpgas/intellectual-property/ef-di-cam.html
https://www.amd.com/en/products/adaptive-socs-and-fpgas/intellectual-property/ef-di-cam.html
https://github.com/Xilinx/nanotube
https://github.com/Xilinx/nanotube
https://lwn.net/Articles/756549/
https://lwn.net/Articles/756549/
http://arxiv.org/abs/cs.NI/2402.10513
https://arxiv.org/abs/2402.10513
https://www.intel.com/content/www/us/en/developer/articles/technical/cloud-native-data-plane-leverage-af-xdp-kubernetes.html
https://www.intel.com/content/www/us/en/developer/articles/technical/cloud-native-data-plane-leverage-af-xdp-kubernetes.html
https://lore.kernel.org/linux-cve-announce/2024062548-CVE-2024-39293-d42a@gregkh/
https://lore.kernel.org/linux-cve-announce/2024062548-CVE-2024-39293-d42a@gregkh/
https://github.com/system-fab/onic-afxdp
https://github.com/system-fab/onic-afxdp

eBPF ’25, September 8–11, 2025, Coimbra, Portugal

[27] Federico Parola, Roberto Procopio, and Fulvio Risso. 2021. Assessing the per-
formance of XDP and AF_XDP based NFs in edge data center scenarios. In
International Conference on Emerging Networking EXperiments and Technologies
(CoNEXT). ACM.

[28] Luigi Rizzo. 2012. netmap: a novel framework for fast packet I/O. In Annual
Technical Conference (ATC). USENIX.

[29] Rami Rosen. 2013. Linux Kernel Networking: Implementation and Theory. Apress.
[30] Bhavishya Sharma, Shwetha Vittal, and A Antony Franklin. 2023. FlexCore:

Leveraging XDP-SCTP for Scalable and Resilient Network Slice Service in Future
5G Core. In APNet. ACM.

[31] Nishanth Shyamkumar, Piotr Raczynski, Dave Cremins, Michal Kubiak, and
Ashok Sunder Rajan. 2022. In–Kernel Fast Path Performance For Containers

Running Telecom Workload". https://netdevconf.info/0x16/sessions/talk/
inkernel-fast-path-performance-for-containers-running-telecom-workload.
html. (2022).

[32] William Tu, Yi-Hung Wei, Gianni Antichi, and Ben Pfaff. 2021. Revisiting the
Open vSwitch Dataplane Ten Years Later. In Special Interest Group on Data
Communication (SIGCOMM). ACM.

[33] Qianyu Zhang, Gongming Zhao, Hongli Xu, Zhuolong Yu, Liguang Xie, Yang-
ming Zhao, Chunming Qiao, Ying Xiong, and Liusheng Huang. 2022. Zeta: A
scalable and robust East-West communication framework inLarge-Scale clouds.
In Symposium on Networked Systems Design and Implementation (NSDI). USENIX.

https://netdevconf.info/0x16/sessions/talk/inkernel-fast-path-performance-for-containers-running-telecom-workload.html
https://netdevconf.info/0x16/sessions/talk/inkernel-fast-path-performance-for-containers-running-telecom-workload.html
https://netdevconf.info/0x16/sessions/talk/inkernel-fast-path-performance-for-containers-running-telecom-workload.html

	Abstract
	1 Introduction
	2 Background
	2.1 AF_XDP
	2.2 OpenNIC

	3 Challenges Supporting AF_XDP
	4 XDP for OpenNIC
	5 Related Work
	6 Conclusion
	References

