It Takes Two to Entangle

Zhanghan Wang"
New York University
New York, NY, United States
zhanghan.wang@nyu.edu

Haibin Lin
ByteDance Seed
Bellevue, WA, United States
linhaibin.eric@gmail.com

Abstract

Distributed machine learning training and inference is com-
mon today because today’s large models require more mem-
ory and compute than can be provided by a single GPU.
Distributed models are generally produced by programmers
who take a sequential model specification and apply several
distribution strategies to distribute state and computation
across GPUs. Unfortunately, bugs can be introduced in the
process, and a distributed model implementation’s outputs
might differ from the sequential model’s outputs. In this
paper, we describe an approach to statically identify such
bugs by checking model refinement, that is, can the sequen-
tial model’s outputs be reconstructed from the distributed
model’s outputs? Our approach, implemented in ENTANGLE,
uses iterative rewriting to prove model refinement. Our ap-
proach can scale to today’s large models and deployments:
we evaluate it using GPT and Llama-3. Further, it provides
actionable outputs that aids in bug localization.

CCS Concepts: « Software and its engineering — Formal
software verification; - Computing methodologies —
Neural networks.

Keywords: Formal Verification, Distributed Deep Learning,
Equality Saturation, Bug Localization

ACM Reference Format:

Zhanghan Wang, Ding Ding, Hang Zhu, Haibin Lin, and Aurojit
Panda. 2026. It Takes Two to Entangle. In Proceedings of the 30th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2 (ASPLOS °26),
March 21-26, 2026, Pittsburgh, PA, USA. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3779212.3790178

“Both authors contributed equally to this research.
*Corresponding authors.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

ASPLOS 26, Pittsburgh, PA, USA.

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2359-9/2026/03
https://doi.org/10.1145/3779212.3790178

Ding Ding’
New York University
New York, NY, United States
dding@nyu.edu

Hang Zhu'
ByteDance Seed
Bellevue, WA, United States
hang.zhu@bytedance.com

Aurojit Panda
New York University
New York, NY, United States
apanda@cs.nyu.edu

1 Introduction

Large machine learning models require more memory than
is available on any single GPU. Furthermore, training them
or using them for inference requires significant compute
capacity, making it infeasible to use a single GPU. Conse-
quently, it is now the norm to deploy these models on multi-
ple GPUs, spread across multiple servers, for training and
inference tasks. The approach taken when implementing a
distributed ML model has a significant impact on resource
efficiency and performance, and thus several distribution
strategies [17, 20, 28, 29, 32, 51] are used when implement-
ing ML models. However, implementing distributed models
requires programmer effort, and bugs can be introduced dur-
ing implementation.

To see why bugs can be introduced, we start by looking
at a common workflow for creating a distributed model im-
plementation: First, an ML model architect specifies a model
architecture as a series of operations. This architecture spec-
ification is sequential, i.e., it is written assuming that the
operations run on a single GPU (or processor) and operate on
local data. Next, an implementer converts the specification
into a distributed version by deciding how to partition model
state and computation. When doing this, the implementer
needs to add communication and transformation operations
to preserve the sequential specification semantics. Unfor-
tunately, an implementer might use incorrect parameters
(e.g., incorrectly specifying padding or offsets, or using the
wrong scaling factor, see §6.2), when adding these additional
operations, or worse forget some, resulting in bugs.

Indeed, our work was motivated by the observation that
at ByteDance several bugs (discussed in §6.2) had been intro-
duced when implementing a distributed version of a recent
model architecture. But our experience was not unique: re-
cent work [14, 20, 50, 52] found similar bugs in open-source
distributed ML implementations.

In this paper, our goal is to identify bugs introduced when
implementing distributed ML models, before they are de-
ployed. To do so, we propose a static approach for checking
model refinement (§3.2): that is, can a sequential model G;’s
outputs be reconstructed from the outputs of a distributed
model implementation G4? In developing this approach, we

https://orcid.org/0009-0006-3234-6155
https://orcid.org/0009-0005-3785-5058
https://orcid.org/0009-0006-2974-9113
https://orcid.org/0000-0003-4879-5335
https://orcid.org/0000-0001-9664-4377
https://doi.org/10.1145/3779212.3790178
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3779212.3790178

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

had to address two core challenges: scalability: ML models
are growing in size and the number of GPUs used by imple-
mentations is also growing, and we aim for approaches that
can be applied to today’s models and implementations; and
usability: we want to provide the users of our approach with
actionable information that can help address bugs.

Our approach, which we have implemented in a tool called
ENTANGLE (§3), uses iterative term rewriting to generate a
relation (§3.2) to map the outputs produced by the imple-
mentation G4 to Gs’s outputs. G, refines G; if ENTANGLE can
find a complete clean relation, i.e., a relation that can be used
to reconstruct all outputs from Gy without requiring addi-
tional computation (beyond what is required to gather and
combine outputs from multiple GPUs). The lack of a clean
relation indicates a bug. ENTANGLE can work with models
and implementations written in PyTorch and other popular
frameworks without requiring significant effort, and is thus
easily applied to existing distributed ML model implementa-
tions.

We address the scalability and usability challenge by adopt-
ing an iterative approach where each operator in G; is pro-
cessed individually (§4.1). Processing a single operator limits
the number of rewritten terms that ENTANGLE has to consider,
and ensures that the runtime grows linearly with model com-
plexity. Our evaluation §6.4 shows that this approach allows
us to check implementations of state-of-the-art models (e.g.,
GPT, Qwen2, Llama-3). It takes ENTANGLE between 10—245
seconds (or less than 5 minutes) to check these models. In
terms of usability, because ENTANGLE processes a single op-
erator at a time, its output aids programmers in localizing
and addressing the bugs it identifies (§6.2).

Furthermore, as we discuss in §3.3, processing individual
G, operators does not affect ENTANGLE’s soundness: ENTAN-
GLE will always report bugs if they exist. However, our ap-
proach is based on observations about how programmers
(and compilers) translate model specifications to distributed
implementations, and ENTANGLE cannot ensure complete-
ness if these observations do not hold, i.e., in some cases
ENTANGLE might raise a false alarm and report that a correct
implementation is buggy. However, we did not encounter
false alarms when using ENTANGLE and evaluating it on
open-source and proprietary models.

2 Background
2.1 Distribution Strategies

We start by reviewing the strategies used to distribute (or
parallelize) machine learning models. The strategies dictate
how the sequential model’s inputs and computation are
partitioned across GPUs, and how outputs from multiple
GPUs should be combined to recover the original sequential
model’s output.

Zhanghan Wang, Ding Ding, Hang Zhu, Haibin Lin, and Aurojit Panda

A correct distribution strategy ensures that if inputs are
partitioned correctly (the input relation holds) then combin-
ing the outputs using the approach provided by the strategy
will recover the original result. This observation motivated
our formulation of the model refinement problem: we check
that there is a mapping from the distributed model’s output to
the sequential model’s output assuming that a user-provided
input mapping is correct.

Data Parallelism (DP). was an early distribution strat-
egy to improve training performance. When using this strat-
egy, each GPU (or rank) runs the same model implementa-
tion, and independently computes gradients. This strategy
requires that training data be partitioned across GPUs (or
ranks), and ensures that aggregating gradients from these
machines (using all-reduce) produces the same training re-
sult as training on a single machine.

Tensor Parallelism (TP) [18, 27], Sequence Parallelism
(SP) [17] and Context Parallelism (CP) [8, 21, 38]. par-
tition one or more operators across multiple GPUs. These
strategies require that input tensors (TP), sequences (SP) or
context (CP) be partitioned across GPUs, and they specify
what operations should be used to combine their outputs.
They ensure that assuming inputs are partitioned correctly,
the combined output is the same (or produces the same re-
sults) as the operator(s) running on a single GPU.

Expert Parallelism (EP). [11, 12] is a distribution strat-
egy targeting mixture-of-experts (MoE) models. These mod-
els consist of multiple experts, and expert parallelism dis-
tributes experts across GPUs. This strategy requires that
inputs be routed to the distributed experts using the same
routing mechanism as would be used in a sequential imple-
mentation, and uses the same operators as the sequential im-
plementation to combine outputs, ensuring that distributed
and sequential models have the same output.

Pipeline Parallelism (PP). is a parallelism approach with
several variants [7, 10, 13], all of which partition the model’s
layers across multiple GPUs. PP requires input batches to
be partitioned into microbatches, and combines the outputs
using gradient accumulation. Similar to TP, it ensures that
the accumulated result is the same as would be expected
from running the model on a single GPU.

As can be observed, all six distribution strategies provide
similar correctness guarantees: if the strategy is correctly
applied to a sequential model G to produce a distributed im-
plementation Gy, and if the strategy’s input relation is used
to map sequential inputs to G;’s inputs, then G;’s outputs
can be used to produce G;’s outputs. Finally, we note that
ENTANGLE makes no assumptions about what distribution
strategy is used, and can be used with any of them (or with
a combination).

It Takes Two to Entangle

2.2 Example Bugs

Next, we briefly illustrate the types of bugs that can be in-
troduced when using a distribution strategy to implement a
sequential model Gs. Later in §6.2 we discuss a larger set of
bugs and evaluate ENTANGLE’s ability to find them.

Incorrectly scaling auxiliary loss. In MoE training, aux-
iliary loss [19, 31] is used to better balance load among ex-
perts by penalizing hot experts. However, when using tensor
parallelism, the auxiliary loss needs to be scaled down by the
number of TP ranks T (that is, be divided by T) to balance
out a subsequent reduce-scatter operation that sums up all
gradients. We observed a bug at ByteDance where an imple-
mentation did not scale down the auxiliary loss, leading to
the distributed implementation producing an auxiliary loss
that was T times larger than expected.

Incompatible configurations for model components.
We also observed a bug at ByteDance when switching an
MoE model implementation from using TP to shard experts
to SP. In this case, the expert weights need to be replicated
across SP ranks rather than sharded, but the bug was that
MoE weights continued to be sharded rather than replicated
when using SP, resulting in incorrect output. To illustrate
why, consider a sequential model that computes X X A, where
X is an input and A are expert weights. SP requires partition-
ing X into X; and X,, while sharding partitions A into A;, A;.
The resulting distributed implementation computes X; X A,
and X, X A,, but these cannot be combined to produce X X A
since the off-diagonal blocks (X; X A; and X, X A;) were never
computed. As we explain in §6.2 this bug did not change the
size of the intermediate data, and thus cannot be caught by
checking types and shapes in the model implementation.

3 Model Refinement

In this section, we define the model refinement problem
that ENTANGLE solves. To do so, we first motivate the model
refinement problem by giving an overview of how users
can use ENTANGLE (§3.1) to find bugs in distributed model
implementations. Next, in (§3.2), we introduce the notation
used in the rest of the paper and formally define the problem.
Finally, in §3.3, we discuss the guarantees that ENTANGLE
provides when checking model refinement.

3.1 Overview

Our goal is to check whether a distributed ML model Gy
refines a sequential model G; that is designed to run on
a single machine (i.e., uses compute and memory from a
single GPU and processor). Note that in most cases, using
G; for training or inference is impractical because no single
machine may have sufficient resources. However, writing a
correct Gg is easier because the model designer does not need
to consider communication or coordination across GPUs and
ranks.

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

matmul —| matsub

matmul C D matsub
B N 1
1 reduce
scatter
C2 5 F,
matmul matsub
B2 /‘fy GID

Figure 1: An example of a sequential model G and its distributed
implementation G that is distributed on 2 ranks. G5 produces one
output F, while G4 produces two outputs F; and Fy. Proving that G4
refines G; requires finding an expression p such that F = p(Fy, F2).

To use ENTANGLE, a user provides Gs and G4, which are
specified as computation graphs (Figure 1). Additionally, the
user also provides a clean input relation (defined below) R;
that maps G;’s input tensors (A, B and E in Figure 1) to
Gy’s input tensors (A, Aj, By, By, Eo, E1). From these inputs,
ENTANGLE produces a clean output relation R, that maps Gs’s
outputs (F) to G4’s outputs (Fy, Fy).

From the output relation R,, the user can determine whether
Gy refines G by checking whether R, is complete, that is,
does R, contain mappings for all of G’s outputs. A complete
R, implies that all of Gs’s outputs can be derived from G;’s
output without significant computation. On the other hand,
an incomplete R, means that G; cannot be used to compute
at least one of Gy’s outputs.

Finally, the user can use a complete R, to translate outputs
from a deployed G, to Gs’s output.

3.2 Formal Definition and Terminology

Notation Explanation

I(G), O(G) Set of inputs, outputs of graph G.

I(v), O(v) Set of inputs, outputs of node v.

X+—Y An expression maps elements in set X to Y.
1

XY An expression cleanly maps from set X to Y.

R Relation as a set of tensor-expression pairs.

R; Clean relation of inputs.

R, Clean relation of outputs.

R, Clean relation of outputs of node v.

Table 1: Notations used throughout the paper.

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

The model refinement problem requires computing how the
sequential model G;’s outputs can be reconstructed from the
outputs of the distributed implementation G4: given model
G; and G4 and a clean input relation (defined below) R; map-
ping G’s inputs to G4’s inputs, solving the model refinement
problem requires finding a complete clean output relation
R, that maps all of G,’s output tensors to tensors in Gg. If
no R, can be found, model refinement fails, indicating a bug.

In this paper (and in ENTANGLE), we represent the model
G; and G, as computation graphs. A computation graph is
a directed acyclic graph whose vertices are operators (i.e.,
computation or communication kernels) and whose edges
are tensors. Further, each computation graph G has a set of
inputs I(G) and a set of outputs O(G)'. We use T(G) to refer
to all tensors in a computation graph. Our algorithm requires
considering the inputs and outputs of each operator, and we
use I(v) (or O(v)) to refer to v’s input (or output). In §5, we
discuss how ENTANGLE can extract computation graphs from
implementations in popular frameworks including PyTorch.

A relation R from computational graph G to G’ is a set
of tensor-expression pairs: R = {(t,p) | t € T(G) and t =
p(T(G’))}. An expression is a symbolic description of a com-
putation, and applying expression p to an input x evaluates
the expression by substituting x for inputs where appropri-
ate. We use the notation X — Y to represent an expression
mapping elements in the set X to Y.

The input relation R; (provided by users) and output re-
lation (required as an output) are relations from G; to Gy,
R = {(t.p) | t € I(Gy) and t = p(I(Gy))} and R, = {(t, p) |
t € O(Gs) and t = p(O(Gy))}. Each element in R; (or R,)
provides a mapping from G;’s inputs (or outputs) to G;’ in-
puts (or outputs). Note that a relation might provide several
mappings for the same tensor t, allowing us to model dis-
tributed implementations that replicate inputs.

We define an output relation R, as complete if it contains
mappings for all outputs from G;, that is, R, is complete iff
Yo € O(Gs) 3(o, p) € R,.

A clean expression p is one that consists of two types of op-
erations: (i) operations including slice, concatenate and trans-
pose that rearrange tensor elements, e.g., by permuting them
or masking elements in certain positions; (ii) reduction oper-
ations including reduce-sum that perform collective commu-
nication and combine tensors distributed across nodes. We
use the notation X (lean, Y to represent a clean expression
from set X to Y. A clean output relation R, is a relation that
contains only clean expressions, i.e., Y(t, p) € Ry, p is clean.

We restrict R, so that it contains only clean expressions
because needing complex computation to reconstruct Gs’s
outputs from G, indicates a bug: Programmers apply par-
allelism strategy (§2) to create an implementation G, that

For convenience, in our diagrams we represent inputs and outputs as edges
that only connect to one vertex.

Zhanghan Wang, Ding Ding, Hang Zhu, Haibin Lin, and Aurojit Panda

is equivalent to the sequential model Gs. Combining dis-
tributed outputs requires communication and aggregation
operations (which clean operations are allowed to perform),
but any computation beyond this indicates that G, is either
incomplete or buggy.

3.3 Assumptions and Guarantees

Finally, we list the assumptions made by ENTANGLE when
solving the model refinement problem, and discuss the guar-
antees that it provides.

Assumptions: We make two assumptions about G5 and
Gy: First, we assume that the same set of optimizations (e.g.,
kernel fusion or using optimized kernels such as FlashAt-
tention [6]) is applied to both the specification G, and the
implementation G,4. Second, we assume that if G, correctly
refines G, then Gy’s outputs can be reconstructed by re-
arranging or combining G;’s outputs (this assumption is
precisely captured by our definition of clean relations). The
second assumption is based on our use case: programmers
build G4 to implement G, and thus additional computation
to map G;’s outputs to G;’s indicate a bug.

Guarantees: ENTANGLE is sound: that is, if ENTANGLE says
that G4 refines Gg, then there exists a clean output relation R,
using which Gs’s outputs can be reconstructed from tensors
in G4. This is because ENTANGLE explicitly searches for such
an R,, and returns the relation it finds. Thus, ENTANGLE’s
output acts as a certificate of soundness.

ENTANGLE is not complete: it can falsely report a bug for
a correct G4. This is because ENTANGLE depends on several
assumptions to scale its performance, and it might not find
a clean relation if the model or implementation violate these
assumptions. Specifically, ENTANGLE assumes that:

1. The same optimizations are applied to G5 and G4. This
might be violated if a programmer or tool optimizes
Gy directly, e.g., by replacing multiple operators by a
fused kernel.

2. G4 and G perform operations in the same order. As we
explain in the next section, this assumption allows us
to iteratively verify model refinement, and thus scale
to large models.

3. Ifan operator vy € G, refines operator s € Gs (i.e.,v5’s
outputs can be computed using v,’s outputs), then v4’s
inputs can be mapped to v;’s inputs or outputs. This
assumption, which we state more formally in §4.3.1,
enables an optimization (§4.3.1) that allows ENTANGLE
to iteratively consider subgraphs of G; when searching
for R,, the clean output relation mapping G4’s outputs
to Gs’s outputs.

These assumptions are motivated by our goals: ENTANGLE
aims to find bugs introduced when applying parallelization
strategies to create distributed model implementations. Thus,
bugs introduced by other optimization strategies, e.g., op-
erator fusion or reordering are out of scope. However, note

It Takes Two to Entangle

def compute_out_rel(G_s, G_d, R_i):

1

2 sort_vs = topological_sort(G_s)

3 R = R_i

4 for v_s in sort_vs:

5 R_v = compute_node_out_rel(v_s, G_d, R)

6 if not R_v.contains(0(v_s)):

7 raise RefinementError("Could not map
outputs for operator", v_s)

8 R = R U R_v

9 R_o = {(t_s, expr(T)) | (t_s, expr(T)) € R, t_s

€ 0(G_s), T C 0(G_d)}
10 return R_o

Listing 1: Algorithm to compute the relations between output
tensors of G5 and Gy inductively. We describe the underlined
function in §4.1.

that this does not limit our utility: as we describe in §5, we
use the same approach to capture both the G and G, pro-
vided as input to ENTANGLE. Thus, our implementation can
be used with any compilers or framework that applies the
same optimizations to both. Thus far, we have not run into
cases where these assumptions were violated.

4 ENTANGLE’s Approach

ENTANGLE’s approach to computing the clean output re-
lation (Listing 1) R, is iterative: it processes each operator
v € Gs (We use v € G to refer to an operation v in compu-
tation graph G) in topological order (line 2) and computes

a clean output relation R, (line 5) containing expressions
clean

O(v) — T(G,) that map v’s outputs to G4’s tensors. If R,
is not a complete relation, i.e., it does not contain mappings
for all of v’s outputs, then ENTANGLE raises an error indi-
cating that G; does not refine G (line 6). The error includes
the identity of the operator v whose outputs could not be
mapped cleanly to G4, enabling bug localization.

On the other hand, if R, is a complete relation, ENTANGLE

1
updates R, a relation containing clean maps T(Gy) N

T(Gq) found thus far, by adding the mappings contained in

R, (line 8). Finally, once all operators have been processed,

1
it filters R to produce the clean relation R, of O(Gs) N

0O(Gy) (line 9).

The relation R is also provided as an input to the function
(Line 5) that computes operator v’s output relation R,. We
describe this function in the next section (§4.1), and the algo-
rithm needs to map I(v) (I(v) C T(Gs)) into T(Gy). It uses
the relation R for this purpose. Processing operators in topo-
logical order ensures that this mapping is always feasible: it
ensures that the operator being processed either uses tensors
in I(G,4) which can be mapped using the user-provided ex-
pression R; that we use as R’s initial value (line 3) or using the
output of previously processed operators whose outputs have
been mapped by previous calls to compute_node_out_rel.

The correctness of our approach requires that any tensor
in G (whether input, intermediate, or output) can be mapped
to one or more tensors in G4 by a clean expression: If this
requirement is violated, the algorithm would not find a R, for

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

E
A, \
matmul | D. | matsub :
B N 1
1 reduce
A scatter
(& 5 F,
matmul matsub
B /‘{7 GID

Figure 2: We want to compute the relation between C and all
tensors (A1, B1, C1, D, E1, F1, A2, B, Ca, Ez, F) in G4. The edges are
marked with what output tensor is passed to the next node as
the input. All tensors here have two dimensions. Assume we
have the input relation R;: (A, ap : concat(Aj, Ag, dim=1)), (B, fo :
concat (B, By, dim=0)).

some operator v € Gs. Our assumption that optimizations
(including kernel fusion) applied to G; must also be applied
to G, ensures that this requirement holds for our inputs.

We illustrate this process using the computation graphs
in Figure 1: initially the algorithm sets R = R; and pro-
cesses the matmul operation by finding the relations R¢ =
{(C,ReduceSum(Cy, Cy)), (C,Concat (D1, D,))} (line 5 returns
all mappings for C). that maps the intermediate tensor C
to tensors in G4. Next, ENTANGLE updates R = R;|JR¢
and processes the matsub operation, and finds the relation
Rr = {(F, Concat(F;, F,,dim = 0))}. Because F is Gs’s only
output, ENTANGLE emits RF as its output.

4.1 Computing the Output Relation for an Operation

Next, we detail how ENTANGLE computes the clean output
relation R, for an operator v € G given an input relation R

that contains mappings I(v) (clean, T(Gy).

Informally, compute_node_out_rel works as follows: (i) it
uses the input relation R (provided as input) to produce the
expression p, that can be used to compute v’s outputs using
tensors in T(Gy); (ii) it uses lemmas (§4.2.1) to rewrite and
find the set of all expressions (§4.2.2) P, that are equivalent to
Py (including p,); (iii) it uses information from G, to rewrite
and find all equivalent expressions to those appearing in
P,, and adds those to P,; and (iv) it uses the set of clean
expressions in P, to construct and return the desired output
relation R,,.

We illustrate this process by applying it to the matmul
operator (Figure 2) in our running example. Because matmul
is the first operator in G, compute_node_out_rel receives
R = R; as input. The computation proceeds as follows:

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

1 def compute_node_out_rel(v, G_d, R):
2 P_v = set()

3 base_expr = v(I(v))

4

5

Step 1: replace tensors of I(v_s) with the
expressions in R.

6 P_v = rewrite_t_to_expr(base_expr, R)

7 exprs_stepl = P_v

8

9 # Step 2: rewrite expressions in exprs_step]l
based on the given lemmas.

10 for expr in exprs_stepl:

11 P_v = P_v U rewrite_using_lemma(expr)

12 exprs_step2 = P_v

13

14 # Step 3: rewrite expressions in exprs_step2 by
replacing the sub-expressions with tensors.

15 T_rel = {teT(Gy) |
t is an input of an expression appearing in R}

16

17 # R_G_d is a relation of all tensors in T(Gg)
that can be computed using tensors in T_rel
(including by applying multiple operators).

18

19 R_G_d = expressible_using_tensors(G_d, T_rel)

20 for expr in exprs_step2:

21 P_v = P_v U rewrite_expr_to_t(expr, R_G_d)

22

23 # Step 4: filter the expressions and only keep
clean ones

24 R_v={(t_s,expr)|t_se€0(v_s),expreP_v,expr is clean}

25 return R_v

Listing 2: Algorithm to compute the relations between output
tensors of v_s and all the input/output tensors of a node set G_d.
R is the relations between the input tensors of v and G_d. The
underlined functions are described in §4.2.2.

(i) The algorithm uses input mappings for A and B to pro-

duce p, : matmul(ag, fy) (Where g : concat(A;, Az, dim =

1) and f : concat(Bj, Bz, dim = 0))).

(if) Next, the algorithm applies the block matrix lemma
to rewrite p, and find the equivalent expression p} :
sum(ay, f1) (o : matmul(Ay, By) and B : matmul(As, By))
). Another lemma also applies to reduce scatter, but we
omit it for clarity.

(iii) The algorithm uses G, to find additional rewritings for
each p € P,. In this example, it uses the observation
that C; = matmul(Ay, B;) and C; = matmul(A,, B,) to
rewrite p} to the equivalent expression p? : sum(Cy, Cy).
After this step, P, includes {p,, p, p2} (along with ad-
ditional terms from considering reduce-scatter).

(iv) Finally, the algorithm filters P, to find clean mappings.
In this case p? is a clean mapping, and the algorithm re-
turns R, = {(C, sum(Cy, C,)), (C, Concat(D;, D;))}, the
later of which was computed by considering the reduce-
scatter operation.

4.1.1 Computing R,. Listing 2 shows the algorithm used
to compute R, for an operator v € G given the relation R of
mappings computed by previous calls to this function. As
we discussed above, our approach uses iterative expression
rewriting to compute R,. We describe the rewrite functions

Zhanghan Wang, Ding Ding, Hang Zhu, Haibin Lin, and Aurojit Panda

(which are underlined in the listing) in §4.2.2, and present
the overall algorithm below:

First, ENTANGLE computes v’s output (line 3) in terms of
G;’s tensors, and uses the relation R to express this output
in terms of tensors in T(G,) (lines 5—7), and initializes the
set P, with these expressions. It then applies lemmas to find
equivalent expressions, and adds them to P, (lines 9—12).

Next, it adds to P, any expressions produced by rewriting
the elements in P, in terms of tensors in T(Gy) (lines 14—
21). Observe that the only tensors in G, that can appear in
P, must also appear in R because applying lemmas cannot
produce an expression accessing additional tensors from
Gg. On line 15, we compute this set as T_rel. Therefore,
to improve efficiency, ENTANGLE creates a relation R_G_d
(line 19) that map tensors in T_rel to T(G,), and then use
R_G_d to rewrite the relations in P, (line 21). Finally, it filters
P, to produce its output R, (line 24).

4.2 Rewriting Expressions and Terms

4.2.1 Lemma. Expression rewriting is a core part of EN-
TANGLE’s approach. We depend on rewrite rules that we
refer to as lemmas to identify ways to rewrite an expression.
As we discuss in §5 ENTANGLE includes lemmas for com-
mon operations in PyTorch’s ATen library. Some models rely
on optimized kernels or uncommon operators, and we also
require users to provide lemmas for this. We evaluate the
number of additional lemmas required and the associated
effort in §6.5.

An ENTANGLE lemma states under what conditions an

expression can be rewritten to another. In our exposition, we

Cmn (T
represent a lemma as py,; (T,,) ——(—)—> pn(T,) This lemma

states that the expression p,,(T;,) and p,(T,) are equivalent
if Cp, (Tyy,) is true. Consequently, if Cy, (T,;,) holds, then our
algorithm will treat p, (T, as a valid rewriting of p,, (Tp,). It
is easy to see if under condition C,, p;, can be rewritten to
Pn, there must be some condition C,, under which expression
pn can be rewritten as py,. Our algorithm assumes that both
conversions are available for each lemma, in practice one
can generally be derived from the other.

4.2.2 Rewriting using EGraphs. Given an operator v €
Gs, ENTANGLE computes the clean output relation R, by
rewriting expressions using lemmas and mapping in the
input relation R. We use EGraphs (and the egg [46] library)
to implement rewriting. Our use of egg is standard: we repre-
sent expressions (p above) as ENodes and lemmas as rewrite
rules; we run saturation, and then use the resulting EClasses
(containing equivalent relations) in our rewriting functions.
ENTANGLE uses the following three rewriting functions
(listing 2), all of which return a set of expressions:
e rewrite_on_lemma, to find all expressions that can
be produced by using lemmas to rewrite the expres-
sion p. When processing p, this function looks at the

It Takes Two to Entangle

14 # Step 3: rewrite expressions in exprs_step2 by
replacing the sub-expressions with tensors.
15 T_rel = {t € T(Gy) |
t is an input of an expression appearing in R}
16 R_explored = set()
17 while true:

18 # Distinct from R_G_d, R_d only contains tensors
in T(Ggq) that can

19 # be computed using a single operator, all of
whose inputs are in T_rel.

20 R_d = {(t,p:t+——>T_rel) |
t is direct children of T_rel,p € G4}

21 if R_d € R_explored:

22 break

23 R_d = R_d - R_explored

24 R_explored = R_explored U R_d

25 for expr in exprs_step2:

26 P_v = P_v U rewrite_expr_to_t(expr, R_d)

27 T_rel = T_rel U {t|t is the input of a clean

expression in P_v}
Listing 3: The optimized version of algorithm that should replace
the step 3 (line 18-27) in Listing 2.

EClass corresponding to p and all its subexpressions,
and return all expressions equivalent to p.

e rewrite_t_to_expr, which takes as input a relation

R and an expression p, and rewrites variables in p us-
ing the expressions in R. If a tensor ¢ is present in p
and (1, p;) € R, then this function generates a new ex-
pression by replacing every occurrence of ¢ in p with
pr. In our running example, this function is called with
the expression matmul(A, B), and a relation contain-
ing the tuples (A, &y : concat(Ay, Az, dim = 1)) and
(B, By : concat(Bj, By,dim = 1)), and produces the
expression matmul(ao, f).
Note this function finds and returns all rewriting, so
if two tensors t and u occur in p, and both (¢, p;) € R
and (u, p,) € R then this function will produce three
new expressions from p: (i) one where ¢ is replaced by
py; (ii) one where v is replaced by p,; and (iii) finally
one where both t and v are replaced. The function will
return a set containing all three rewritings and p.

e rewrite_expr_to_t, which takes as input a relation
R and an expression p, and replaces sub-expressions
of p with tensors appearing in R when possible. If p; is
a subexpression of p and (s, ps) € p then this function
creates a new expression by rewriting all occurrences
of ps in p with s. In our running example this function
is responsible for rewriting the expression sum(ay, f1)
(a7 : matmul(Ay, By) and f; : matmul(A, B;))) to
sum(Cy, C;) when given a relation R containing the
mappings (Cy, a1) and (Cy, az).

Similar to rewrite_t_to_expr, this function finds
and returns all possible rewritings.

4.3 Optimizations

4.3.1 Optimizing Exploration. The size of R_G_d (line 21)
has a significant effect on the time taken to process a single
operator: ENTANGLE needs to construct this relation when

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

processing an operator, and it relates to the size of the EGraph
used for rewrites. Therefore, we use two observations to fur-
ther reduce its size.

Observations. Consider operators vs € G5 and vy € Gg.
We observe that in most cases, if v5’s outputs can be cleanly
mapped to v,;’s outputs, then one of the following two con-
ditions holds for all tensors ¢ € I(vy): (i) There exists a clean
expression that operates on ¢t and maps to a tensor in I(vs);
or (ii) There exists a clean expression that operates on ¢t and
maps to a tensor in O(vs).

The first condition covers the case where all of v;’s inputs
can be mapped to inputs of v, which indicates that they likely
compute related values. The second condition covers the case
where a previous operator (v,) already produces output that
can mapped to v’s output, but additional operators are used
to further process (e.g., using reduce-scatter it or padding)
this output and produce other equivalent outputs. Our goal is
to collect all equivalent outputs, necessitating this condition.

Our core observation is that if v has inputs that are not
related to vs then v,’s outputs are unlikely to cleanly map to
vs’s outputs. Note that these observations hold because of
our assumption that the same optimizations were applied to
both G, and G, (§3.1). Furthermore, if an input violates this
observation, ENTANGLE will lose completeness (i.e., it might
falsely report a bug) but soundness will not be affected (i.e.,
it will not incorrectly report that model refinement holds).

Using these observations. Listing 3 shows how we mod-
ify line 14—line 21 in Listing 2 to reduce the size of the G4
subgraph considered.

The optimization maintains the set T_rel of tensors in G4
related to o’s inputs or outputs. This set initially contains
all tensors t € T(G,) that appear in the input relation R
(line 15). Because we explore the computational graph in
topological order, this initial set contains all tensors t € G4
such that there is an expression that cleanly maps them to
v’s inputs.

ENTANGLE then uses an iterative process to find rewritings
within the subgraph of G, that meets the observations:

ENTANGLE uses R_d to rewrite expressions found in step
2 (line 26) and adds them to P_v. ENTANGLE also adds any
tensors t € G, that appear in newly added clean expressions
in P_v, and proceeds to the next iteration.

During this process, ENTANGLE tracks the relations it has
considered in each iteration (line 24), and terminates the pro-
cess when no additional tensors that meet our observations
are identified.

To illustrate how the optimized algorithm works in prac-
tice, we revisit the example in Figure 2. Initially, T_rel con-
tains A;, Az, By, and B,, which are captured in R.

In the first iteration, we consider C; and C, form G4, and
add (Cl, matmul(Al, Bl)) and (Cz, matmul(Az, Bz)) to R_d.
After rewriting, we observe that both C; and C; appear as

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

inputs to the clean expression C = sum(Cy, C;), and are thus
related to v’s outputs and are added to T_rel.

In the next iteration, using the updated T_rel, which in-
cludes C; and C,, we identify the new tensors D; and D,
that satisfy our conditions, and we check again whether the
expressions can be rewritten using D; and D,. This second
check yields the clean expression C = concat(D;, D,). How-
ever, because Ej, E; are not related to either A, B or C, they
are not in T_rel. Therefore, they, and tensors computed us-
ing them (Fy, Fz) will not be included in R_d, and thus not be
considered in this case.

4.3.2 Optimizing Term and Expression Rewriting. We
also found that naively using EGraphs would produce a
large number of rewritten expressions, most of which did
not aid in proving model refinement. For example, a lemma
of the form x — reshape(reshape(x)) can be applied to
every tensor ¢, and thus produce a large number of rewritten
expressions. However, these expressions are generally not
useful: reshape is its own inverse, and programmers would
not needlessly add extra computation. Thus, we rely on two
optimizations to reduce the number of unnecessary rewritten
expressions that are produced:

Constrained Lemmas. Some lemmas, e.g., the lemma
Xla : ¢] = concat(X[a : b],X[b : c]) can produce many
rewritten expressions because any integer a < b < ¢ is
valid. The same is true for the reshape lemma discussed
above. However, both lemmas are necessary, these rewrites
might be required to prove model refinement, and we cannot
remove them. Instead, we add an additional constraint to
these lemmas: we require that the target expression or a
subexpression (e.g., reshape(x), or both X[a : b] and X[b :
c]) already appear as ENodes, i.e., they already appear as
expression in the computational graph.

Pruning Equivalent Expressions. Our second optimiza-
tion does not limit the set of rewritten expressions, but in-
stead limits the set added to a relation R. In particular, ap-
plying lemmas can produce several equivalent expressions,
e.g., concat(X[16 : 32],X[32 : 48]) and X[16 : 48]. The
equivalence of these expressions is dictated entirely by the
rewrite lemmas, and does not depend on any mappings pro-
vided by the user. We observe that given one such expression,
rewrite_on_lemma (§4.2.2) can generate all others. There-
fore, when maintaining relations (e.g., P, and R,) we only
add the simplest version of each set of equivalent expres-
sions: we pick the expression with the smallest number of
nested expressions. The reduction in the size of the relation
reduces memory requirement and improves performance,
without any impact on our tools soundness or completeness.

4.4 Checking User Expectations on Refinement

We found that in some cases, ENTANGLE users did not just
want to check that a refinement existed between G and Gy

Zhanghan Wang, Ding Ding, Hang Zhu, Haibin Lin, and Aurojit Panda

but also that a particular refinement function sufficed. We
support this usage by reducing the problem to the model
refinement problem and then using ENTANGLE as normal.
In particular, users specify their expectation by providing
functions f; and f; that express the desired refinement using
tensor expressions, e.g., f; = concat(ty, t;) would indicate
that tensors t; and ¢, in Gy can be concatenated to produce
G;s’s output. Given this input, ENTANGLE needs to determine

whether f;(O(Gs)) z f1(O(Gy)). It does so using the fol-
lowing process. First, it adds f;(O(Gs)) and f3(O(Gy)) to
the input graphs G and Gy, producing G; and G. It then
uses the refinement-checking algorithm to compute the out-
put relation Rj, between O(G;) and O(G)). Finally, it checks
whether R] contains the identity relation, i.e., if R shows
that O(G;) = O(G)). If so, user expectations are met; other-
wise, we have identified an error. Three of the bugs (bugs
5, 8 and 9) we report on in the evaluation (§6) involve cases
where a model did not meet user expectations.

5 Implementation and Usage Experience

We implemented ENTANGLE in 9000 lines of Python, and the
relation inference algorithm in about 7800 lines of Rust code.
Of the 7800 lines of Rust, 4100 are used to specify lemmas for
PyTorch’s ATen library [39] and to validate the lemmas (e.g.,
by checking correct shapes and types). Our implementation
includes a combination of new lemmas, and ones ported from
TASO [15] and Tensat [49]. The lemmas we implemented
de novo were based on input constraints specified in the
PyTorch documentation and on mathematical definitions.

Capturing the Computational Graph. . Our implemen-
tation relies on existing tools to capture a model’s computa-
tional graph. We require that the resulting graph be repre-
sented as torch.fx style graph representations, and use ATen
IR [39] for common operators. As we mentioned previously
(§3.3), we capture both G, and G4 using the same model setup
(including program arguments and environment variables)
and only varying parallelism size. This ensures that the same
set of compiler optimizations are applied to both, and our
assumptions (§3.3) hold for the inputs.

For most of our evaluation, we used models written using
PyTorch, and used TorchDynamo [2] to capture computa-
tional graphs. TorchDynamo outputs graphs in the required
format.

One of our evaluations used a model implemented us-
ing AWS’s NeuronX framework that builds on HLO and is
compatible with XLA. In this case, we used XLA to gener-
ate the computation graph, and then wrote a utility (in 377
lines of Python code) that translated the output to our inter-
mediate format. A similar approach can be adopted when
analyzing graphs written in other frameworks including
TensorFlow [1] and JAX [5].

It Takes Two to Entangle

// An example of universal lemmas, in the format:

1

2 // "<lemma name>" => "<p,(T,n)>" => "<p,(T,)>"

3 "<matmul-first-concat-commutative>" =>

4 "(matmul (concat ?AQ ?A1 @) ?B)"

5 => "(concat (matmul ?A@ ?B) (matmul ?A1 ?B) @)"

7 // An example of conditioned lemmas, in the format:
8 // "<lemma name>" => "<p,,(T,,)>" => |egraph,subst]| {

9 // <customized functions returning p,(T,)> }

10 "<slice-concat-commutative>" =>

11 "(slice (concat ?t1 ?t2 ?dim1) ?dim2 ?begin ?end)"

12 => |egraph, subst| {

13 let [diml1, dim2] = get_vals!(

14 egraph,subst ,["?2dim1","?dim2"]);

15 if dim1 != dim2 {

16 format! ("(concat (slice ?t1 ?diml ?begin ?end) (
slice ?t2 ?dim1 ?begin ?end 1) ?dim2)")

17 } else {

18 // Other branches when diml == dim2.

19 ... // omitted

20 }

21}

Listing 4: Lemma Examples (simplified for readability). The
expressions are defined using nested tuples, with first element
as operator name and rest as parameters.

Writing Lemmas. . Our implementation supports two
types of lemmas: universal lemmas that can always be used
(i.e., lemmas for which condition Cp,(T,;,) = true), and condi-
tioned lemmas that have a non-trivial condition. Both types
of lemmas are written using an embedded DSL, but differ-
entiating between the two allows us to reduce developer
effort: universal lemmas can be expressed in one or two lines
of code, while conditioned lemmas requires more lines. We
show examples of both in Listing 4: Lines 3—5 shows the
universal lemma stating that matmul is commutative. Lines
10—21 show a conditioned lemma about when a combina-
tion of the slice and concat operators are commutative:
the rules in this case need to consider the input dimensions,
thus necessitating the use of a conditioned lemma.

Handling Symbolic Scalars. .In the computational graphs
we capture, tensors do not carry actual data values; instead,
they contain only metadata such as shape and data type
information. However, certain operators, such as select,
can extract individual elements from a tensor, and these ex-
tracted scalars can be used to compute the tensor shapes.
In TorchDynamo, such scalars are represented as symbolic
scalars.

To correctly handle these scalars and apply the rewrites,
we sometimes need to reason not only about equality, but
also about inequality: for example, some lemmas like the com-
mutativity of concat(Xj, X, dim)[a : b] can have different
rewriting results depending on the equality (or inequality)
of the shapes of X; and X3, and the values of a and b. Con-
sequently, we need to be able to compare these even if they
are symbolic. However, symbolic scalars cannot be directly
compared, so we cannot use EGraph for this. Therefore, we
encode these scalars using SMT-LIB [4].

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

Specifically, each scalar in the EGraph is associated with
metadata that is either a concrete value or a symbolic identi-
fier. Whenever symbolic comparisons are required, we use
SMT-LIB to resolve them using user-specified constraints.
This allows ENTANGLE to verify end-to-end verification over
computational graphs that include symbolic values. In the
models we have used ENTANGLE with only simple operations
(e.g., addition) are used on symbolic scalars. Consequently,
we have found that using SMT solvers to reason about equal-
ity or inequality in this cases is feasible, and does not raise
concerns about undecidability or performance.

6 Evaluation
Our evaluation focuses on addressing four questions:

e Can ENTANGLE report bugs efficiently in an informa-
tive way when they occur (§6.2)?

e How fast can ENTANGLE complete an end-to-end ver-
ification (§6.3)? And how well does ENTANGLE scale
with respect to the number of parallelism sizes and the
layers of models (§6.4)?

e When a user invokes new operators, how much effort
is required to complete the operator definition and
corresponding lemmas (§6.5)?

e What lemmas are used when checking model refine-
ment for different models (§6.6)?

6.1 Experiment Setup

Hardware Setup. We evaluated ENTANGLE on ¢6525-25g
nodes in CloudLab [9]. Each machine has a 16-core AMD
EPYC 7302P CPU running at 3GHz, and 128 GB memory. We
ran our experiments on Ubuntu-22.04.

Workload Setup. We evaluate ENTANGLE using the mod-
els shown in Table 2. Most of our evaluations only con-
sider the forward pass of the model. The exception is the
ByteDance’s internal model, where we consider both the
forward and the backward pass. This is not because of EN-
TANGLE’s limitation (the approach and our implementation
can check both passes) but rather due to limitations in cap-
turing sufficient detail from both passes. In particular, when
checking a complete graph, i.e., both the forward and back-
ward pass, a user must provide a single graph that includes
both passes or input relations that can be used to map the
inputs of one with the other graph. However, limitations
in the TorchDynamo make it so that getting such an input
requires manual effort: TorchDynamo produces a separate
forward and backward pass, and does not relate their inputs.
We added input relations or the ByteDance’s internal model,
but did not do so for the other models in the interest of time.
Furthermore, for two of the models, Qwen2 and Llama-3, we
only had access to inference scripts, and could not use these
to instantiate a version designed for training.

We evaluated four commonly used distribution strategies:
TP, SP, EP and gradient accumulation. However, as noted

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

Framework Model Optimization
ByteDance ByteDance

Framework Model TP, SP, EP
Megatron-LM GPT? TP, SP

vLLM Qwen2 TP
Huggingface’s Regression model gradient
transformers with MSE? accumulation
Transformers-Neuron Llama-3 TP

Table 2: A summary of frameworks, models, and optimization
strategies.

previously, our approach does not make assumptions about
the distribution strategy and can be applied to others.

We did not evaluate DP and PP, both of which are popu-
lar, because of limitations of the graph capturing tool. For
example, in Megatron-LM, DP is optimized with contiguous
buffers, which are initialized before the model runs and are
not exposed to TorchDynamo. Similarly, PP relies on interme-
diate leaf tensors for which it computes gradients, and this
is forbidden by TorchDynamo and results in a disconnected
graph [40, 41].

6.2 Case Study

One of our goals in designing ENTANGLE was to provide users
with actionable information when model refinement cannot
be proved. We assess this by reproducing 9 real-world bugs
and showing how they aid in localizing the problem. Of the
bugs we report on, 5 are from ByteDance and 4 are from open
source projects. Of these bugs, one in the ByteDance model
was found by our tool, and the others had been previously
identified.

As we explained in §4, if ENTANGLE cannot find R,, it
returns the operator v € G where its search terminated.
Users can inspect v, its input relations, earlier operators, and
any user expectations (§4.4) to understand and identify the
source of the problem. We summarize the bugs we found in
table 3. Due to space constraints, we present details about
each bug in appendix A.

6.3 Verification Time for Different Models

Next, we evaluate time taken by ENTANGLE to compute the
output relation and check model refinement. We used EN-
TANGLE with the models listed in Table 2. The distributed
implementation we used had parallelism size set to 2 (i.e., if
the model used TP and SP, we would use 2 TP ranks and 2
SP ranks), and we checked a single model layer. Checking
a single model layer suffices, since all layers have the same
operations. Further, we have empirically found that a par-
allelism size of 2 suffices for finding most bugs. Finally, as

2This is the example GPT training script[36] in the Megatron-LM repository.
3This is a test case from Huggingface’s transformers repository [35].

Zhanghan Wang, Ding Ding, Hang Zhu, Haibin Lin, and Aurojit Panda

we discussed above, because of limitations when capturing
computational graphs, for models other than ByteDance’s
internal model, we only checked the forward pass.

We report times in Figure 3 for all models other than the
HuggingFace’s regression model. The Huggingface model
was small, and took less than a second. For the remaining
models, we observe that verification takes less than 2 min-
utes for any model (we add the times for ByteDance-Fwd
and ByteDance-Bwd because they represent two passes of
the same model), demonstrating that ENTANGLE can be used
while implementing distributed models. Second, we observe
that as expected, the verification times are positively corre-
lated with the number of operators used by the model.

6.4 Scalability

Next, we evaluated ENTANGLE’s scalability by measuring ver-
ification time as we vary the degree of parallelism and the
number of layers (which increases the number of operators).
For this evaluation, we used the GPT model and Llama-3.
We distributed the GPT model using tensor parallelism (TP),
sequence parallelism (SP) and vocabulary parallelism (VP,
which is similar to TP) and the Llama-3 model with TP. We
used the same degree of parallelism for all types of paral-
lelism.

Figure 4 shows the result in terms of verification time as
a function of parallelism size and number of layers. We find
that using ENTANGLE remains practical even as the number
of operators and parallelism degree increases, showing that
it is practical to use our approach in current and emerg-
ing deployments. We found that increasing the degree of
parallelism has a bigger impact on verification time than
increasing the number of layers, but we found that the times
remained reasonable up to degree 8. This is because increas-
ing degree of parallelism increases the width of the graph.
While verification time is linear in graph depth, the increased
width increases the cost of each step, leading to superlinear
increase in time.

Further, as we observed above, we have also found that
for the distribution strategies we used, increasing the degree
of parallelism does not produce additional bugs.

6.5 Adding Operators and Lemmas

Our implementation (§5) already includes lemmas for com-
monly used operators in PyTorch’s ATen library. As we show
in §6.6, these operators are commonly used. But models also
use optimized kernels that fuse operators or are optimized
for particular hardware. Furthermore, other IRs, e.g., HLO,
provide operators whose semantics might differ from ATen’s
operators.

When verifying models that use operators outside the
ATen library, ENTANGLE requires users to provide lemmas
that capture the operators semantics. In Figure 5 we quantify
the number of new lemmas required to verify the models

It Takes Two to Entangle

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

Framework | Description 501
1: Incorrect offset in RoPE with SP ézz
2: Incorrect scaling for auxiliary loss with TP 3
ByteDance - - —— - &2
3: Mismatched padding and slicing in data processing 104
Framework - -
4: Incompatible configurations for model components oL I ‘ ‘
FP] : . edance ama-. en
5: Missing aggregation for a layernorm weight R A i
Huggingface o
trargfforgr;ners 6: Wrong scaling in gradient accumulation [25, 48] Figure 3: End-to-end verification time

across different models. The number in

Megatron-LM | mis-configuration [42]

7: Missing all-reduce in parallel linear layer due to

parentheses are the total number of op-
erators in Gg and G4 graphs. The "Fwd"

8: Missing all-reduce in optimizer for MoE router with TP+SP [30]

and "Bwd" are the forward and backward

graphs of ByteDance proprietary model.

Transformer- o . - .
. 9: Missing all-reduce in optimizer for layernorm with SP [26]
Engine
Table 3: Bugs Summary
20 100
#of Layers #of Layers
2130 ;] =% 2200) =% s
£ 1001 g .
E 100 E 10 9 3 50
3 5 100 g
e 50 e 5052
1 2

=3
=)

Parallelism Size Parallelism Size

(a) GPT (b) Llama-3
Figure 4: Scalability on verifying parallelized models. For Llama-3,
there is no data for parallelism size as 6, because some component
cannot be evenly partitioned by 6.

we evaluated against (Table 2) and effort required to create
these lemmas.

We quantify effort in two ways: lines of code (shown in the
CDF Figure 5b), and lemma complexity. We measured lemma
complexity by counting the number of operators appearing
in the lemma. For example, consider the lemma:

Cond (X1,X2,W
RMSNorm(concat (X, Xy, dim = 0), W) et X,

concat(RMSNorm(X;, W), RMSNorm(X,, W), dim = 0)

Two operators appear on the left hand side (RMSNorm and
concat) while three appear on the right, and we would assign
this lemma a complexity of 5. For each model, we report the
average complexity of all lemmas that were added.

These measurements show that when using ENTANGLE,
users need to add a small number of lemmas. Lemmas can
be written in a few (< 40) lines of code, and most lemmas are
simple. In practice, we found that adding lemmas was not a
burden, and thus conclude that the need to add lemmas for
optimized operators does not impede ENTANGLE’s usability.

6.6 Lemma Application Analysis

Finally, we analyzed the frequency with which different lem-
mas were used when using ENTANGLE to check different
models. Figure 6 shows a heatmap of the number of times

1717

6 65

GPT Qwen2 Llama Bytedance 10 20 30
Model LOC

(a) #of operators and lemmas (b) CDF of LOC per lemma.
and average of #of operators per
lemma.

Figure 5: The efforts to support customized operators.

each lemma is used. We observe the following from the
heatmap:

e Lemmas about operators that can appear in clean ex-
pressions, including slice, and concat are the most
commonly used.

e While models that use HLO (Llama-3) require some
additional lemmas, they allow us to reuse many of
the popular lemmas, including slice, reshape and
concat that are developed in the context of ATen.

e The different GPT rows show that increasing degree
of parallelism increase the number of times that lem-
mas must be applied. This matches our observation
about scalability (§6.4): increasing parallelism has a
significant impact on verification time.

7 Related Work

Verification for ML model transformations. Prior work
has looked at verifying the equivalence between two ML
models. Much of this work has been done in the context of
superoptimizing ML compilers: Tensat [49] uses EGraphs to
prove equivalence; TASO [15] encodes the equivalence prob-
lem in first order logic and uses an SMT solver to check equiv-
alence between models after optimization; TensorRight [3]
uses rewriting rules to generate bounded proof obligations
that can be discharged more efficiently using SMT solvers;
and Mirage [47] and PET [43] use a probabilistic approach

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA. Zhanghan Wang, Ding Ding, Hang Zhu, Haibin Lin, and Aurojit Panda

GPT(2) - l
GPT@ -HHEED 10
GOR | [[[[b | | [] L | e
Qwen2(4) - | [| [| [| [[|
Llama-3(4) - A

(‘) i 2‘ g ~‘1 % (; % é ‘; l‘ll l‘l 1‘2 1‘3 1‘4 1‘5 1‘(\ 1‘7 I‘X 1“) 2‘1] 2‘1 2‘7_ 2‘3 2‘4 2‘5 2‘(\ 2‘7 2‘8 2“) 3‘” 3‘1 3‘2 3‘3 3‘4 3‘5 3‘(\ 3‘7 S‘X 3“) 4‘0 4‘1 4‘2 4‘3 4‘4 4‘5 4‘() 4‘7 4‘8 4‘9 S‘li 5‘1 5‘2 5‘3 5‘4 5‘5 5‘6 5‘7 S‘X 5“) (w‘li (\‘l (;2 (7‘3 ()‘4 (\‘5 (!‘6 6‘7 (\‘X ()“) 7‘0 7‘|

cccececcecc e c ccocoec c ¢ c c c c c c c c ccoec ccoec c vVVvVvoy h h hhhhhhh
Figure 6: The heatmap shows (in log scale) the number of times each lemma is used for different models, under different parallelism
settings. The numbers in parenthesis on the Y-axis represent the degree of parallelism. The x-axis shows lemma IDs, and lemmas marked

with ¢ concern operators that can appear in clean expressions, those marked with v concern operators from vLLM, and those marked with h

concern HLO operators.

that evaluates the two models on different inputs to check
equivalence. The approaches adopted by superoptimizing
compilers are generally less scalable than ENTANGLE’s ap-
proach, and most compilers only consider rewritings of small
subgraphs (e.g., consisting of at most a few tens of nodes).
The lack of scalability is because of the different setting that
they target: Our scalability builds on the assumption that
the output of each operator v € G can be mapped to one
or more tensors in G4. But many optimizations, including
kernel fusion, that superoptimizing compilers are designed
to automate violate this requirement. Consequently, they
cannot use ENTANGLE’s iterative approach to scale.

Two recent projects, TrainVerify [23] and Aerify [52] have
focused on identifying bugs introduced when parallelizing
ML models. Source codes (and details about all optimizations)
are available for neither, and therefore we did not compare
to either in our evaluation.

Of these, TrainVerify [23] uses an SMT-based approach to
verify element-wise equivalence between output tensors. Op-
erating at the element level introduces scalability concerns,
which TrainVerify addresses by using shape-reduction tech-
nique to reduce the size of tensors, and by partitioning the
input graph. However, to partition the graph, TrainVerify
needs to identify equivalent intermediate tensors. For most
frameworks, including Megatron-LM and DeepSpeed, these
equivalences must be identified manually, and thus using
TrainVerify requires additional user effort beyond what is
required when using ENTANGLE.

Aerify [52] is more closely related: similar to ENTANGLE, it
uses EGraphs to verify semantic equivalence between mod-
els. Our work differs in two crucial ways: (a) Aerify’s def-
inition of semantic equivalence requires that both models’
outputs belong to the same EClass, i.e., they must be equal.
This is a stronger condition than what is required by model
refinement: we do not require Gy the produce output that is
equal to Gs’s output (indeed, this is not the case for many of
the implementations we found), but rather that one’s output
can be mapped to the other. (b) Aerify tries to verify both
model optimization and distribution, and similar to verifiers
for superoptimizing compilers, our iterative approach cannot
be used when reasoning about optimization. Finally, Aerify
suggests heuristic model partitioning as a way to scale to
larger models, but the use of heuristics often impacts sound-
ness. By contrast, ENTANGLE is sound.

Fuzz Testing. Prior work has also proposed using fuzz
testing [16, 22, 24, 44, 45] to evaluate model equivalence. Un-
like static analysis based approaches, fuzz testing can scale
to large models. However, fuzz testing cannot guarantee
soundness. By contrast, verification approaches such as EN-
TANGLE can provide soundness guarantees, albeit at the cost
of scalability.

Optimizing ML Compilers. Our approach relies on term
and expression rewriting. Expression rewriting is central
to most ML compilers, including TASO [15], Mirage [47],
TensorRT [37], PET [43], and Mirage [47]. Most of these
compilers either develop their own graph substitution al-
gorithms for expression rewriting (TASO, Mirage, etc.), use
sketches [33] (TVM, etc.), use expression templates (Taso,
TVM, Mirage, etc.), or use a combination. These approaches
do not generate all rewritings for an expression, and thus
cannot be readily used by ENTANGLE. Tensat [49] is a rewrite
of Taso using EGraphs, and thus uses a similar expression
rewriting strategy as ENTANGLE.

8 Conclusion

Distributing ML model state and computation across mul-
tiple GPUs is a necessity today: model sizes continue to
increase, as does the amount of data and compute necessary
to train them and use them. We started work on this project
because we observed that implementing a distributed model
often involved many missteps: bugs would be introduced but
go unnoticed in the implementation phase, and would only
be noticed during training or later. Formal verification has
been used to address similar problems in other domains, e.g.,
cryptography and networking. But ML differs from these do-
mains in scale: most existing ML models are very large. This
led us to design ENTANGLE, an approach that uses iterative
expression rewriting to check model refinement, and iden-
tify bugs introduced when implementing distributed models.
The use of iterative expression rewriting allows ENTANGLE
to scale to today’s models.

Acknowledgments

We thank Jinkun Lin, Jinyang Li and Shivaram Venkatraman
for comments on early drafts. We thank the anonymous
ASPLOS reviewers and our shepherd for helping us improve
this work and how it is presented in this paper. This work

It Takes Two to Entangle

was funded in part by the National Science Foundation under
award CNS-2145471, and gifts from Google and the Stellar
Foundation.

References
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

et al. 2016. TensorFlow: a system for large-scale machine learning.
In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (Savannah, GA, USA) (OSDI’16). USENIX
Association, USA, 265-283.

[2] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh

[10

[11

—

=

=

—

Jain, Michael Voznesensky, Bin Bao, Peter Bell, David Berard, Evgeni
Burovski, Geeta Chauhan, Anjali Chourdia, Will Constable, Alban
Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong,
Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalam-
barkar, Laurent Kirsch, Michael Lazos, Mario Lezcano, Yanbo Liang,
Jason Liang, Yinghai Lu, C. K. Luk, Bert Maher, Yunjie Pan, Christian
Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen
Suk, Shunting Zhang, Michael Suo, Phil Tillet, Xu Zhao, Eikan Wang,
Keren Zhou, Richard Zou, Xiaodong Wang, Ajit Mathews, William
Wen, Gregory Chanan, Peng Wu, and Soumith Chintala. 2024. Py-
Torch 2: Faster Machine Learning Through Dynamic Python Bytecode
Transformation and Graph Compilation. In Proceedings of the 29th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2 (La Jolla, CA, USA)
(ASPLOS ’24). Association for Computing Machinery, New York, NY,
USA, 929-947. doi:10.1145/3620665.3640366

Jai Arora, Sirui Lu, Devansh Jain, Tianfan Xu, Farzin Housh-
mand, Phitchaya Mangpo Phothilimthana, Mohsen Lesani, Praveen
Narayanan, Karthik Srinivasa Murthy, Rastislav Bodik, Amit Sabne,
and Charith Mendis. 2025. TensorRight: Automated Verification of
Tensor Graph Rewrites. Proc. ACM Program. Lang. 9, POPL, Article 29
(Jan. 2025), 32 pages. doi:10.1145/3704865

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2016. The Satisfia-
bility Modulo Theories Library (SMT-LIB). www.SMT-LIB.org.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson,
Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. 2018. JAX:
composable transformations of Python+NumPy programs. http://github.
com/jax-ml/jax

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
2022. FlashAttention: Fast and memory-efficient exact attention with
io-awareness. NeurIPS 35 (2022), 16344-16359.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, et al.
2025. DeepSeek-V3 Technical Report. arXiv:2412.19437 [cs.CL] https:
//arxiv.org/abs/2412.19437

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Ka-
dian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Amy Yang, Angela Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783 (2024).

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson,
Kirk Webb, et al. 2019. The design and operation of CloudLab. In
USENIX ATC.

Shiging Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen
Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue Xia, et al. 2021.
DAPPLE: A pipelined data parallel approach for training large models.
In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 431-445.

William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch trans-
formers: scaling to trillion parameter models with simple and efficient
sparsity. J. Mach. Learn. Res. 23, 1, Article 120 (Jan. 2022), 39 pages.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

Jiaao He, Jiezhong Qiu, Aohan Zeng, Zhilin Yang, Jidong Zhai, and
Jie Tang. 2021. FastMoE: A Fast Mixture-of-Expert Training System.
arXiv:2103.13262 [cs.LG] https://arxiv.org/abs/2103.13262

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. 2019. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. Advances in neural information processing
systems 32 (2019).

Bytedance Inc. 2024. https://volcengine.github.io/veScaleWeb/blog/
mlsys2024.html

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Za-
haria, and Alex Aiken. 2019. TASO: optimizing deep learning computa-
tion with automatic generation of graph substitutions. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles (Huntsville,
Ontario, Canada) (SOSP ’19). Association for Computing Machinery,
New York, NY, USA, 47-62. doi:10.1145/3341301.3359630

Haitian Jiang, Shaowei Zhu, Zhen Zhang, Zhenyu Song, Xinwei
Fu, Zhen Jia, Yida Wang, and Jinyang Li. 2025. TTrace: Light-
weight Error Checking and Diagnosis for Distributed Training.
arXiv:2506.09280 [cs.DC] https://arxiv.org/abs/2506.09280

Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee,
Michael Andersch, Mohammad Shoeybi, and Bryan Catanzaro. 2022.
Reducing Activation Recomputation in Large Transformer Models.
arXiv:2205.05198 [cs.LG] https://arxiv.org/abs/2205.05198

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence
McAfee, Michael Andersch, Mohammad Shoeybi, and Bryan Catan-
zaro. 2023. Reducing activation recomputation in large transformer
models. Proceedings of Machine Learning and Systems 5 (2023).
Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen,
Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and
Zhifeng Chen. 2020. GShard: Scaling Giant Models with Condi-
tional Computation and Automatic Sharding. arXiv:2006.16668 [cs.CL]
https://arxiv.org/abs/2006.16668

Zhiqi Lin, Youshan Miao, Quanlu Zhang, Fan Yang, Yi Zhu, Cheng Li,
Saeed Maleki, Xu Cao, Ning Shang, Yilei Yang, Weijiang Xu, Mao Yang,
Lintao Zhang, and Lidong Zhou. 2024. nnScaler: Constraint-Guided
Parallelization Plan Generation for Deep Learning Training. In 18th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 24). 347-363.

Hao Liu, Matei Zaharia, and Pieter Abbeel. 2023. Ring At-
tention with Blockwise Transformers for Near-Infinite Context.
arXiv:2310.01889 [cs.CL] https://arxiv.org/abs/2310.01889

Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit
Panda, and Lingming Zhang. 2023. NNSmith: Generating Diverse
and Valid Test Cases for Deep Learning Compilers. In Proceedings of
the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (Vancouver,
BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 530-543. doi:10.1145/3575693.3575707

Yunchi Lu, Youshan Miao, Cheng Tan, Peng Huang, Yi Zhu, Xian
Zhang, and Fan Yang. 2025. TrainVerify: Equivalence-Based Ver-
ification for Distributed LLM Training. arXiv:2506.15961 [cs.DC]
https://arxiv.org/abs/2506.15961

Weisi Luo, Dong Chai, Xiaoyue Run, Jiang Wang, Chunrong Fang, and
Zhenyu Chen. 2021. Graph-based Fuzz Testing for Deep Learning
Inference Engines. In Proceedings of the 43rd International Conference
on Software Engineering (Madrid, Spain) (ICSE "21). IEEE Press, 288-299.
doi:10.1109/ICSE43902.2021.00037

Benjamin Marie. 2024. https://github.com/huggingface/trl/issues/2175
Tim Moon and Megatron-LM Team. 2025. https://github.com/NVIDIA/
TransformerEngine/pull/1528

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGres-
ley, Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi
Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al. 2021. Efficient

https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3704865
http://github.com/jax-ml/jax
http://github.com/jax-ml/jax
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2103.13262
https://arxiv.org/abs/2103.13262
https://volcengine.github.io/veScaleWeb/blog/mlsys2024.html
https://volcengine.github.io/veScaleWeb/blog/mlsys2024.html
https://doi.org/10.1145/3341301.3359630
https://arxiv.org/abs/2506.09280
https://arxiv.org/abs/2506.09280
https://arxiv.org/abs/2205.05198
https://arxiv.org/abs/2205.05198
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2310.01889
https://arxiv.org/abs/2310.01889
https://doi.org/10.1145/3575693.3575707
https://arxiv.org/abs/2506.15961
https://arxiv.org/abs/2506.15961
https://doi.org/10.1109/ICSE43902.2021.00037
https://github.com/huggingface/trl/issues/2175
https://github.com/NVIDIA/TransformerEngine/pull/1528
https://github.com/NVIDIA/TransformerEngine/pull/1528

ASPLOS 26, March 21-26, 2026, Pittsburgh, PA, USA.

large-scale language model training on gpu clusters using megatron-
Im. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1-15.

[28] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick
LeGresley, Mostofa Patwary, Vijay Anand Korthikanti, Dmitri Vain-
brand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar
Phanishayee, and Matei Zaharia. 2021. Efficient Large-Scale
Language Model Training on GPU Clusters Using Megatron-LM.
arXiv:2104.04473 [cs.CL] https://arxiv.org/abs/2104.04473

[29] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.

2020. ZeRO: Memory Optimizations Toward Training Trillion Parame-

ter Models. arXiv:1910.02054 [cs.LG] https://arxiv.org/abs/1910.02054

RookieHong and Megatron-LM Team. 2023. https://github.com/

NVIDIA/Megatron-LM/issues/599

[31] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis,
Quoc Le, Geoffrey Hinton, and Jeff Dean. 2017. Outrageously
Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer.
arXiv:1701.06538 [cs.LG] https://arxiv.org/abs/1701.06538

[32] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. 2020. Megatron-LM: Training
Multi-Billion Parameter Language Models Using Model Parallelism.
arXiv:1909.08053 [cs.CL] https://arxiv.org/abs/1909.08053

[33] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia,

and Vijay Saraswat. 2006. Combinatorial sketching for finite programs.

In ASPLOS. 404-415.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and

Yunfeng Liu. 2023. RoFormer: Enhanced Transformer with Rotary

Position Embedding. arXiv:2104.09864 [cs.CL] https://arxiv.org/abs/

2104.09864

[35] The Huggingface Team. 2025. https://github.com/huggingface/
transformers/blob/main/tests/trainer/test_trainer.py

[36] The Megatron-LM Team. 2025. https://github.com/NVIDIA/Megatron-
LM/blob/main/examples/run_simple_mcore_train_loop.py

[37] The NVIDIA Team. 2016. https://developer.nvidia.com/tensorrt

[38] The NVIDIA Team. 2024. https://docs.nvidia.com/megatron-core/
developer-guide/latest/api-guide/context_parallel.html

[39] The PyTorch Team. 2023. https://pytorch.org/docs/stable/torch.
compiler_ir.html

[40] The PyTorch Team. 2023. https://github.com/pytorch/pytorch/issues/
109505

[41] The PyTorch Team. 2023. https://github.com/pytorch/pytorch/issues/
10786 1#issuecomment-1696058500

[42] trintamaki and Megatron-LM Team. 2024.

//github.com/NVIDIA/Megatron-LM/commit/

5fffdfc737f14297bc3781dfc9e273199d 1df52e#diff-

855adbcea94c997a151e12312a282117853f541a11989febe40db2ad 12fa38c6

Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang,

Liyan Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao

Jia. 2021. PET: Optimizing Tensor Programs with Partially Equiva-

lent Transformations and Automated Corrections. In 15th USENIX

Symposium on Operating Systems Design and Implementation (OSDI

21). USENIX Association, 37-54. https://www.usenix.org/conference/

osdi21/presentation/wang

[44] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang.
2020. Deep learning library testing via effective model generation. In
ESEC/SIGSOFT FSE. ACM, 788-799.

[45] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang.
2020. Deep learning library testing via effective model generation.
In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for
Computing Machinery, New York, NY, USA, 788-799. doi:10.1145/
3368089.3409761

[30

=

[34

flan

https:

[43

[t}

Zhanghan Wang, Ding Ding, Hang Zhu, Haibin Lin, and Aurojit Panda

[46] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt,
Zachary Tatlock, and Pavel Panchekha. 2021. egg: Fast and exten-
sible equality saturation. Proc. ACM Program. Lang. 5, POPL, Article
23 (Jan. 2021), 29 pages. doi:10.1145/3434304

[47] Mengdi Wu, Xinhao Cheng, Shengyu Liu, Chunan Shi, Jianan Ji, Kit
Ao, Praveen Velliengiri, Xupeng Miao, Oded Padon, and Zhihao Jia.
2024. Mirage: A Multi-Level Superoptimizer for Tensor Programs.
arXiv:2405.05751 [cs.LG] https://arxiv.org/abs/2405.05751

[48] Zhaofeng Wu. 2021. https://github.com/huggingface/transformers/
issues/14638

[49] Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max
Willsey, Sudip Roy, and Jacques Pienaar. 2021. Equality Saturation
for Tensor Graph Superoptimization. arXiv:2101.01332 [cs.Al] https:
//arxiv.org/abs/2101.01332

[50] Xiao Yu, Haoxuan Chen, Feifei Niu, Xing Hu, Jacky Wai Keung,
and Xin Xia. 2025. Towards Understanding Bugs in Distributed
Training and Inference Frameworks for Large Language Models.
arXiv:2506.10426 [cs.SE] https://arxiv.org/abs/2506.10426

[51] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng
Chen, Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo,
Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. 2022. Alpa: Au-
tomating Inter- and Intra-Operator Parallelism for Distributed Deep
Learning. arXiv:2201.12023 [cs.LG] https://arxiv.org/abs/2201.12023

[52] Kahfi Soobhan Zulkifli, Wenbo Qian, Shaowei Zhu, Yuan Zhou, Zhen
Zhang, and Chang Lou. 2025. Verifying Semantic Equivalence of Large
Models with Equality Saturation. In The 5th Workshop on Machine
Learning and Systems (EuroMLSys’25) (Rotterdam, Netherlands). New
York, NY, USA.

https://arxiv.org/abs/2104.04473
https://arxiv.org/abs/2104.04473
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://github.com/NVIDIA/Megatron-LM/issues/599
https://github.com/NVIDIA/Megatron-LM/issues/599
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://github.com/huggingface/transformers/blob/main/tests/trainer/test_trainer.py
https://github.com/huggingface/transformers/blob/main/tests/trainer/test_trainer.py
https://github.com/NVIDIA/Megatron-LM/blob/main/examples/run_simple_mcore_train_loop.py
https://github.com/NVIDIA/Megatron-LM/blob/main/examples/run_simple_mcore_train_loop.py
https://developer.nvidia.com/tensorrt
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/context_parallel.html
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/context_parallel.html
https://pytorch.org/docs/stable/torch.compiler_ir.html
https://pytorch.org/docs/stable/torch.compiler_ir.html
https://github.com/pytorch/pytorch/issues/109505
https://github.com/pytorch/pytorch/issues/109505
https://github.com/pytorch/pytorch/issues/107861#issuecomment-1696058500
https://github.com/pytorch/pytorch/issues/107861#issuecomment-1696058500
https://github.com/NVIDIA/Megatron-LM/commit/5fffdfc737f14297bc3781dfc9e273199d1df52e#diff-855adbcea94c997a151e12312a282117853f541a11989febe40db2ad12fa38c6
https://github.com/NVIDIA/Megatron-LM/commit/5fffdfc737f14297bc3781dfc9e273199d1df52e#diff-855adbcea94c997a151e12312a282117853f541a11989febe40db2ad12fa38c6
https://github.com/NVIDIA/Megatron-LM/commit/5fffdfc737f14297bc3781dfc9e273199d1df52e#diff-855adbcea94c997a151e12312a282117853f541a11989febe40db2ad12fa38c6
https://github.com/NVIDIA/Megatron-LM/commit/5fffdfc737f14297bc3781dfc9e273199d1df52e#diff-855adbcea94c997a151e12312a282117853f541a11989febe40db2ad12fa38c6
https://www.usenix.org/conference/osdi21/presentation/wang
https://www.usenix.org/conference/osdi21/presentation/wang
https://doi.org/10.1145/3368089.3409761
https://doi.org/10.1145/3368089.3409761
https://doi.org/10.1145/3434304
https://arxiv.org/abs/2405.05751
https://arxiv.org/abs/2405.05751
https://github.com/huggingface/transformers/issues/14638
https://github.com/huggingface/transformers/issues/14638
https://arxiv.org/abs/2101.01332
https://arxiv.org/abs/2101.01332
https://arxiv.org/abs/2101.01332
https://arxiv.org/abs/2506.10426
https://arxiv.org/abs/2506.10426
https://arxiv.org/abs/2201.12023
https://arxiv.org/abs/2201.12023

A Bug Descriptions

We describe the bugs we evaluated in (§6.2) including their
root cause and how ENTANGLE reports them.

A.1 Bugs observed in ByteDance

G, BA
slice [0:2048 apply_rotar
full_cos L] cos LOELLH s
sin Relations
""""""""""""" A, TTTTTTTTTTTTTTTTTTTT cos e full_cos
Gd BOO 0
cos + full_cos,
Rank 0 lice [0:1024 I t
anko o slice [1 Co%}’ apply_rotary| C, Ar> concat(AgA, dim=1)
sing
A
B 1

1

Rank 1 Zfice [0:1024][555~>{apply_rotary
full_cos,)4 C,

sin,
1024:2048
Figure 7: The sub-graphs for the RoPE Bug. Some key relations
listed on the right side.

Bug 1: Incorrect off set in RoPE with SP. When sequence
parallelism is enabled, the RoPE embedding [34] takes a
partition of the original sequence as its input. Consequently,
each SP rank should take a different part of the pre-computed
cos and sin tensors. When developing this model, a developer
had correctly set the corresponding offset in the code used
for the forward pass. However, because the backward pass
was implemented using torch.autograd. Function and the
developer forgot to also set the corresponding offset in its
backward method (Figure 7), resulting in an implementation
bug.

ENTANGLE detect this bug when trying to infer a clean
relation for the RoPE operator’s output O(v). The user de-
bugs this by checking the input relation I(v) of the operator,
which shows that the cos tensor in I(v) can only be related to
the tensor before they are sliced (full_cos; and full_cos; in
Figure 7). This is unexpected, because sequence parallelism
requires partitioning these tensors and the cos should also
map to concat(cosg, cosy, dim = 0). Tracing back a step fur-
ther to understand why the mapping between the cos tensor
and the sliced tensors is missing, the user can see that the
slice offsets are incorrect, thus localizing the problem.

Bug 2: Incorrect scaling for auxiliary loss with TP. We
mentioned this bug in §2.2: During MoE training, auxiliary
loss [19, 31] is used to penalize hot experts and improve load
balancing. When using TP, the loss should be divided by TP
size T to balance out a subsequent reduce-scatter operation
that sums up the gradient. Otherwise, the final aggregated
gradients can be T times the expected one.

In this case, ENTANGLE can map outputs for the auxiliary
loss update. However, it fails to find a mapping for a sub-
sequent matmul operation that multiples the gradient with

another tensor. The bug would require dividing the gradi-
ent by TP size to be equivalent, but division is not a clean
expression. In this case, the user works backwards from the
matmul operator to identify the missing division.

Bug 3: Mismatched padding and slicing in data pro-
cessing. The Al1Gather operation that we use at ByteDance
requires that the input tensor from senders have the same
shape. Thus, when adopting SP, a developer needs to pad
tensors to meet this requirement, and subsequently use the
slice operator to drop the padding. A bug was introduced
when a developer used inconsistent parameters for the padding
and slice operators, which resulted in some non-padding el-
ements being dropped and padded elements being retained.

ENTANGLE detects this bug while inferring clean relation
for a subsequent baddbmm operation. In particular, given
the operator o’s input relation I(v), ENTANGLE could not
find a clean output relation O(v). The ENTANGLE user can
inspect both the baddbmm operation and the previous slice
operation that produces its inputs to discover that the slice
operation had dropped required element. This allows the
user to compare parameters for the slice and pad operators,
and thus address the problem.

Bug 4: Incompatible configurations for model com-
ponents. This bug in ByteDance’s model was identified by
our tool during this evaluation, and we previous discussed
it in §2.2. In brief, a developer used SP to parallelize a MoE
model, which requires replication the experts’ weights. Un-
fortunately, the developer did not correctly configure some
model components, and the expert weights were sharded.
This led to a bug: if the sequential model computed X X AX B,
the buggy implementation would compute X; X A; X By and
X, X Ay X By, where X1, X3, A1, Ay, By, By are partitions of
X, A and B, respectively. Furthermore, the resulting output
still matches the input’s hidden dimension size (because the
output is still the same size as X X A X B), and thus the re-
sulting model can be trained. However, the implementation
behaves differently from the sequential specification: it never
computes the off-diagonal blocks X; X A, and X, X A;, and
they do not contribute to the final output.

ENTANGLE detects this bug when trying to map the first
matmul’s output (i.e., X X A) because its output cannot be
mapped to any tensor in the implementation. Given this in-
formation, the user investigates the operator’s input relation
and find that input A is incorrectly partitioned.

Bug 5: Missing aggregation for a layernorm weight.
We observed a bug when deploying a custom distributed op-
timizer. The developer added a layernorm operation before
computing the key tensor in an attention layer, but did not
register the layernorm operation’s weight with the SP group
optimizer. This meant that the layernorm weights were not

considered during all-reduce, and thus the gradients com-
puted by this implementation differed from those computed
by the sequential model.

This is a case where user expectations (§4.4) played a role:
it is possible to map G4’s outputs to G;’s, but these mappings
are unexpected. We provided ENTANGLE with an appropriate
fs and fy, and ENTANGLE reported an error when checking
refinement given these expectations.

A.2 Bugs in Open-source Frameworks

Bug 6: Wrong scaling in gradient accumulation. This
bug was first reported in 2021 [48] but was misattributed to
numeric errors. It was re-reported and finally addressed in
2024 [25]. The bug manifests when gradient accumulation
is enabled: gradient accumulation is an approach that splits
a batch into multiple min-batches, thus allowing the use
larger batch sizes. This approach is similar to the distribution
strategies considered above, though the goal is to increase
the batch size rather than the number of GPUs. We can
also easily obtain a model without gradient accumulation
(corresponding to Gs) and one with (corresponding to Gy),
allowing us to use ENTANGLE.

When using gradient accumulation, the programmer must
scale the loss computation for correctness. Otherwise, the
computed loss is much larger than would be expected. We
evaluated ENTANGLE's ability to find this bug by creating a
simple regression that uses MSE loss.

ENTANGLE detected this bug because the accumulated loss
in G4 cannot cleanly represent the loss in G; without com-
putation because the loss needs to be scaled by number of
accumulation steps in each batch.

Bug 7: Missing all-reduce in parallel linear layer due
to mis-configuration. This is a bug previously reported
in Megatron-LM [42]: when the TP size is larger than 1 the
framework did not synchronize gradients from a parallel lin-
ear layer with an all-reduce. This leads to the wrong gradient
being compute. Mathematically, the output of the parallel
linear layers are X; X A; and X, X A, (where tensors X and
A have been partitioned into Xj, X; and Aj, A,) instead of
the desired value X x A (which would require computing
X1 XA +X, X Az)

In ENTANGLE, this bug manifests in a subsequent parallel
matmul operator: the operator multiplies the linear layers
output with a tensor B that has been partitioned into two
tensors By and B;. However, the bug in the linear layer means
that some elements, e.g., X, X A; X By and Xj X A; X B, are
not computed. Consequently, the matmul output does not
contain elements required to map to the output from G, and
ENTANGLE cannot find a clean relation.

Bug 8: Missing all-reduce in optimizer for tensor and
sequence parallelized MOE router. This was another bug
in Megatron-LM [30] that occurred when both TP and SP
are enabled fro a MOE model, and weights for the router

module were not synchronized due to a configuration model
when finalizing the gradients.

This was another case where user expectations (§4.4)
played a role: we could find a refinement from G;’s out-
puts to Gy, but the refinement relations in R, differ from the
approach adopted by Megatron-LM to combine weights for
the router module.

Bug 9: Missing all-reduce in optimizer for sequence
parallelized layernorm. The final bug occurs in Trans-
formerEngine, and was caused when the developers of that
framework implemented a new API for LayerNorm and RM-
SNorm [26]. The developers accidentally forgot to use all-
reduce to aggregate weights when sequence parallelism was
enabled.

This bug was another case where ENTANGLE observed a
violation of user intent: ENTANGLE can find a refinement
R, (which uses an all-reduce) but the user expects that no
additional operations are necessary, allowing us to identify
the problem.

B Artifact Appendix
B.1 Abstract

This artifact provides the complete codes to infer tensor
relations and verify equivalence. We also provides input
computation graphs for the open-source frameworks, but
we choose not to publish the graphs of the ByteDance’s
proprietary models.

With the artifact, one will be able to reproduce for the
open-source models:

e (Figure 3) End-to-end verification time across different
models (GPT, Qwen2 and Llama-3)

o (Figure 4) Scalability on verifying parallelized models

e (Figure 5) Lemmas complexity statistics

o (Figure 6) Heatmap showing the number of times each
lemmas is used for different models

Please always refer to the README.md in the Github
repository for updated information.

B.2 Artifact check-list (meta-information)

e Compilation: Requires Rust (cargo) to compile.
Run-time environment: Ubuntu-22.04

Hardware: We use a ¢6525-25g node in CloudLab [9] for
evaluation, which has EPYC 7302P CPU and 128GB memory.
If you have access to CloudLab, you can directly use the
profile https://www.cloudlab.us/p/rdma-prefetch/Entangle.
But the codes should also work on any other CPU machines
with at least 32GB memory.

e Execution: Only need to run a single script to setup and
several Python commands to run the experiments.
Metrics: Running time cost, LOC.

Output: Result data along with visualization similar to
Figure 3, Figure 4, Figure 5 and Figure 6, where results of
models from ByteDance are excluded.

o Experiments:

https://github.com/nyu-systems/Entangle/blob/main/README.md#artifact-evaluation
https://www.cloudlab.us/p/rdma-prefetch/Entangle

— (Figure 3) End-to-end verification time across different
models

— (Figure 4) Scalability on verifying parallelized models.

— (Figure 5) Lemmas complexity statistics (which requires
manual counting and the results are put in the visualiza-
tion script in advance).

— (Figure 6) Heatmap showing the number of times each
lemmas is used for different models.

e How much disk space required (approximately)?: 32GB

e How much time is needed to prepare workflow (ap-
proximately)?: Environment setup requires about 5 min-
utes.

e How much time is needed to complete experiments

(approximately)?: 60 minutes if using the same hardware.

e Publicly available?: The repository is available on Github

(https://github.com/nyu-systems/Entangle).

e Code licenses: Apache-2.0
e Archived (provide DOI)?: https://doi.org/10.5281/zenodo.
17924206

B.3 Description

B.3.1 How to access. Therepository is available on Github
(https://github.com/nyu-systems/Entangle).

B.3.2 Hardware dependencies. We recommend using
CloudLab to reproduce the results. And we provide a profile
(https://www.cloudlab.us/p/rdma-prefetch/Entangle) for it.
But the artifact should run on any CPU machine with at least
32GB memory.

B.3.3 Software dependencies. To get best performance,
we recommend Ubuntu 22.04, with Python 3.12 and newest
Rust installed. Any other Linux distribution, WSL or MacOS
should also work.

B.4 Installation

B.4.1 Option 1 (Recommended): Using CloudLab. If
you are using CloudLab, we provide a CloudLab profile and
a single script to automatically set up the environment. You
can find the profile here (https://www.cloudlab.us/p/rdma-
prefetch/Entangle).

After starting an experiment with this profile, login to the
shell and setup it following steps below:

1. Download the setup script https://github.com/nyu-
systems/Entangle/blob/main/setup.sh to the "$SHOME"
directory.

2. Run "source $HOME/setup.sh" to activate the Rust
and Python environment in current shell session.

This script will

. install Rust (cargo) and uv

. clone the repository to "/opt/tiger/Entangle”
. set up the Python environment with uv

. build and installs Entangle

AW N =

B.4.2 Option 2: Manual Setup. Assuming Python 3.12
and Rust are installed. Then clone the repository and run
the commands in Listing 5

Assuming Python>=3.12 and Rust (cargo) installed.

Assuming you are at root directory of the repository.
pip install -e . # here is a dot at the end.

cd egger && cargo build --release

Listing 5: Manual Installation

B.5 Experiment workflow

The workflow is also described in README.md. Please run
the experiments in the "examples" directory.

B.5.1 Step 1. Model Verification Experiments. We pro-
vided bug-free model verification experiments for all the
models except the ByteDance’s proprietary one. Run the
commands in Listing 6 sequentially below to start the exper-
iments:

Assume you are in directory “examples®
python run_all.py gpt --all

python run_all.py gwen2 --all

python run_all.py aws_llama --all

Listing 6: Model Verification Experiments

If you see output messages like "Refinement verification
succeeded for .." in your terminal after each run, it means the
verification is successful. Details about the output directory
can be found in README.md.

B.5.2 Step 2. Bug Detection Experiments. We provided
all the graphs for bug detection experiments except those
from the ByteDance’s proprietary model. Run the following
commands sequentially below to start the experiments:

Assume you are in directory “examples®

Bug 6 in paper

python ./run_all.py grad_accumulation

Bug 7 in paper

python ./run_all.py missing_allreduce_under_wrong_config
Bug 8 in paper

python ./run_all.py missing_switchmlp_allreduce

Bug 9 in paper

python ./run_all.py missing_layernorm_allreduce

Listing 7: Bug Detection Experiments

These runs are expected to raise errors. If you see either
of the errors raised below, then you reproduce the result:

o entangle.sgraph.egraph.CannotFindPostconditions: Failed,

check the conditions above.
e entangle.tools.egg.FailedImplyingEquivalence: User ex-
pectation violated.

B.5.3 Step 3. Visualization. To visualize the result from
Appendix B.5.1, run the command in Listing 8

Assume you are in directory ~examples=
python visualization.py

Listing 8: Visualization Command

Appendix B.6 introduces how to evaluate and compare
the result figures.

https://github.com/nyu-systems/Entangle
https://doi.org/10.5281/zenodo.17924206
https://doi.org/10.5281/zenodo.17924206
https://github.com/nyu-systems/Entangle
https://www.cloudlab.us/p/rdma-prefetch/Entangle
https://www.cloudlab.us/p/rdma-prefetch/Entangle
https://www.cloudlab.us/p/rdma-prefetch/Entangle
https://github.com/nyu-systems/Entangle/blob/main/setup.sh
https://github.com/nyu-systems/Entangle/blob/main/setup.sh
https://github.com/nyu-systems/Entangle/blob/main/README.md#artifact-evaluation
https://github.com/nyu-systems/Entangle/blob/main/README.md#21-model-verification

B.6 Evaluation and expected results

Ideally, you should be able to reproduce all the evaluation
results except those involved ByteDance’s models. The visu-
alization result figures will be saved to the directory "exam-
ples/figures", including

e one_layer_time.pdf: the end-to-end verification time
results (Figure 3). The performance results can vary
when using different hardwares.

o GPT_scalability.pdf, Llama-3_scalibility.pdf: the
scalability results (Figure 4), where you should see a
bit super-linear time cost increasing with the parallel
degrees and linear time cost increasing with the model
sizes.

e number_of_ops_and_lemmas.pdf: the number of
operators and lemmas used (Figure 5a), where you
should see the same number as the one in the paper
(except that data of ByteDance’s proprietary models
are removed).

e lemma_loc.pdf: the CDF of LOC of the lemmas (Fig-
ure 5b), where you should see a similar trend as the one
in the paper (you will see some differences since we
only include open-sourced models/framworks here).

e lemma_applied_count_heatmap.pdf: the heatmap
of lemma application counts (Figure 6), where you
should see something very similar to the one in the

paper.

	Abstract
	1 Introduction
	2 Background
	2.1 Distribution Strategies
	2.2 Example Bugs

	3 Model Refinement
	3.1 Overview
	3.2 Formal Definition and Terminology
	3.3 Assumptions and Guarantees

	4 Entangle's Approach
	4.1 Computing the Output Relation for an Operation
	4.2 Rewriting Expressions and Terms
	4.3 Optimizations
	4.4 Checking User Expectations on Refinement

	5 Implementation and Usage Experience
	6 Evaluation
	6.1 Experiment Setup
	6.2 Case Study
	6.3 Verification Time for Different Models
	6.4 Scalability
	6.5 Adding Operators and Lemmas
	6.6 Lemma Application Analysis

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Bug Descriptions
	A.1 Bugs observed in ByteDance
	A.2 Bugs in Open-source Frameworks

	B Artifact Appendix
	B.1 Abstract
	B.2 Artifact check-list (meta-information)
	B.3 Description
	B.4 Installation
	B.5 Experiment workflow
	B.6 Evaluation and expected results

