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Abstract

3D Gaussian Splatting (3DGS) is an increasingly popular novel
view synthesis approach due to its fast rendering time, and
high-quality output. However, scaling 3DGS to large (or in-
tricate) scenes is challenging due to its substantial memory
requirement, which exceeds the memory capacity of most
GPUs. In this paper, we describe CLM, a system that allows
3DGS to render large scenes using a single consumer-grade
GPU, e.g., RTX4090. It does so by offloading Gaussians to CPU
memory, and loading them into GPU memory only when
necessary. To improve performance and reduce communica-
tion overheads, CLM uses a novel offloading strategy based
on insights into 3DGS’s memory access patterns. This strat-
egy enables efficient pipelining, which overlaps GPU-to-CPU
communication, GPU computation and CPU computation.
Furthermore, CLM exploits these access patterns to reduce
communication volume. Our evaluation shows that the re-
sulting implementation can render a large scene that requires
102 million Gaussians on a single RTX4090 and achieve state-
of-the-art reconstruction quality. The code is open-sourced
at: https://github.com/nyu-systems/CLM-GS
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1 Introduction

Recently, there has been significant interest [3, 5, 8, 23, 40, 51]
in using 3D Gaussian Splatting (3DGS) for novel view synthe-
sis (Figure 1). Given a set of posed images (i.e., images with
position and orientation) for a 3D scene, 3DGS iteratively
trains a scene representation that consists of a large number of
anisotropic 3D Gaussians that capture the scene’s appearance
and geometry. Users can then use the trained scene repre-
sentation to render images from a previously unseen view.
Compared to other novel view synthesis approaches, 3DGS
has faster rendering time while achieving comparable image
quality, thus leading to its surging popularity.

The quality of images rendered using 3DGS depends on
the fidelity of the trained scene representation. Scenes that
capture alarge area or contain intricate details require alarger
number of Gaussians. As a result, 3DGS’s memory footprint
grows as scene size, scene intricacy, or output image resolu-
tion increases. State-of-the-art 3DGS implementations run
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on GPUs, where memory is not plentiful. Therefore, memory
capacity has been a barrier when scaling 3DGS and apply-
ing it to large intricate scenes with high image resolution.
As we explain in §7, prior work on scaling 3DGS either adds
significant cost because they use multiple GPUs [9, 30, 51],
or compromises rendering quality because they reduce the
scene representation’s fidelity [14, 15, 24, 32, 35, 40, 50].

In this paper, we describe CLM, a system that scales 3DGS
without requiring multiple GPUs or hurting rendered image
quality. CLM’s design is based on the insight that the compu-
tation of 3DGS is inherently sparse; i.e. each training iteration
only accesses a small subset of the scene’s Gaussians. Thus, it
is sufficient to load only this subset into GPU memory, while
leaving the remaining Gaussians offloaded to the more plen-
tiful CPU memory. Despite this straightforward insight, as
the GPU-CPU communication incurs significant overhead, it
is challenging to realize the idea of memory offloading with
good performance.

We develop a novel 3DGS-specific offloading strategy for
CLM. Our offloading strategy minimizes performance over-
heads and scales to large scenes by leveraging four observa-
tions (§3) about the 3DGS training pipeline:

(i) The set of Gaussians accessed by each view (aka a train-
ing image) can be computed ahead-of-time, thereby al-
lowing the loading of Gaussians for one iteration to be
overlapped with the computation for the previous iter-
ation to reduce communication overhead (§4.1, §4.2).

(i) There is substantial overlap between the Gaussians ac-
cessed by different views, which allows us to cache the
overlapping Gaussians to reduce the communication
volume during each training iteration (§4.2.1).

(iii) The training process exhibits spatial locality, i.e., views
in the same region tend to access the same Gaussians,
allowing us to schedule training iterations carefully to
maximize overlapped accesses across successive itera-
tions in order to minimize overall communication vol-
ume (§4.2.3).

(iv) We can further use spatial locality to overlap gradient
computation and a substantial portion of the Gaussian
parameter update (§4.2.2).

By exploiting the inherent sparsity in scenes and the four
observations above, CLM can scale to very large scenes: our
evaluation (§6) shows that we can train a large scene with 100
million Gaussians on an a consumer-grade GPU (RTX4090)
while achieving output quality on par with (or better than) the
state-of-the-art systems. Furthermore, we show that CLM’s
3DGS-specific offloading solution incurs modest performance
overheads compared to a baseline without offloading when
rendering small scenes that can fit in the baseline system’s
GPU memory.

The rest of this paper is organized as follows: in §2 we pro-
vide background on novel-view synthesis and 3DGS; in §3 we
detail observations about 3DGS’s memory access patterns; in
§4 we describe CLM’s design and in §5 provide details about
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Figure 1. The novel view synthesis problem: given a set of training
images (with known pose) from a scene, render the image from a novel
view with an unrecorded camera position and orientation.
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Figure 2. 3D Gaussian Splatting Illustration.

our implementation; we evaluate CLM in §6; and present
related work in §7.

2 Background and Motivation

This section gives an overview of the 3DGS algorithm and its
application, discusses its memory bottleneck, and explains
the challenges associated with naive offloading strategies.

2.1 Novel View Synthesis and 3D Gaussian Splatting

Novel View Synthesis (NVS) is the task of rendering an image
of a 3D scene from a previously unseen viewpoint. To do so,
NVS algorithms take as input a set of posed images (Figure 1),
and use this input to construct a scene representation, i.e., a
3D model that captures the scene’s appearance and geometry.
The scene representation is then used to render the desired
image. Modern ML-based NVS approaches all aim to learn
how to reconstruct the scene from input data but differ in how
the scene is represented: 3DGS uses 3D Gaussians [23] while
others have used a mesh [34] or a neural network [36].

e Covariance Spherical Harmonics .
3D Position (Scale+Rotation) (Color) Opacity | Total
#Param 3 3+4 48 1| 59

Table 1. A 3D Gaussian has 59 learnable parameters representing 4
types of attributes.

3DGS represents the scene as a (potentially very large) col-
lection of anisotropic 3D Gaussians, each of which consists
of several dozen parameters representing four types of at-
tributes including position, anisotropic covariance, spherical
harmonic coefficients and opacity, as seen in Table 1. These
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Scene Resolution # Gaussians Memory Demand
Bicycle [6] 4K IM 10 GB
Rubble [45] 4K 40M 50 GB
Alameda [7] 2K 45 M 60 GB
Ithaca [12] 1K 70 M 80 GB
Matrixcity BigCity [31] 1080P 100 M 110 GB

Table 2. This table details the necessary number of Gaussians and
minimum memory requirements during 3DGS training for 3 scenes
with varying resolution and Gaussians quantity. The Rubble, Alameda,
Ithaca and BigCity datasets are much larger than the Bicycle dataset
and demand more memory than a single 24GB RTX 4090 can supply.

learnable parameters of a 3D Gaussian dictate its effects on
arendered scene.

3DGS’ differentiable rendering allows it to use gradient-
based optimization based on minibatch SGD. In particular,
Gaussians are initialized either randomly or using a user-
provided point cloud generated by COLMAP [43]. Then, train-
ing proceeds iteratively. At each training step, one (or a batch
of) camera view is selected from among the views represented
in the training data set. The selected view is rendered (Fig-
ure 2) by @ first selecting the set of Gaussians in the camera’s
frustum (referred to as frustum culling) and then @ raster-
izing them. Afterwards, @ loss is computed by comparing
the rendered image with the groundtruth training image, and
@ backpropagation is run to update the Gaussian attributes.
Periodically, adaptive densification [23-25] is performed to
increase the number of Gaussians in areas with high recon-
struction errors and to prune unnecessary Gaussians.

2.2 Challenges of training 3DGS on a consumer GPU

The memory barrier to scaling 3DGS. State-of-the-art
3DGS implementations [23, 49, 51] run on GPUs for perfor-
mance. However, representing a complex scene using 3D
Gaussians requires a significant amount of memory, more
than what is available on most GPUs. To estimate 3DGS’ mem-
ory consumption, we observe that the model states (i.e., the
set of Gaussians representing the scene) consume a majority
of the memory used during rendering. As shown in Table 1,
each Gaussian has 59 parameters, each of which results in four
4-byte floating point numbers stored during training: the pa-
rameter itself, its gradient, and two additional versions as the
optimizer state [23, 28]. Thus, for a scene with N Gaussians,
the model state alone requires N X 59 X 4 X 4 bytes, which
can easily exceed the memory capacity of consumer-grade
GPUs. For example, RTX 4090 with 24GB can only store the
memory state of up to 26 million Gaussians, even if we ignore
the memory consumption of the activation state and various
other temporary buffers. Table 2 lists the number of Gaussians
required to achieve good rendering quality for well-known
NVS datasets. Except for the smallest scene (Bicycle), all other
larger and more complex scenes such as Rubble, Alameda,
Ithaca, and MatrixCity BigCity cannot be trained on a single
consumer-grade GPU such as RTX 4090.
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Figure 3. Runtime decomposition of one batch in naive offloading. It
leads to overheads in communication and CPU Adam computation.

Challenges of offloading. Existing work addresses the
memory barrier of 3DGS through multi-GPU training or
Gaussian pruning. Both approaches have shortcomings: us-
ing multiple GPU training significantly raises training cost,
while Gaussian pruning not only degrades quality (see §7
for more details) but also fails to handle very large scenes,
where even a pruned model may exceed GPU memory capac-
ity. In contrast, our work develops an orthogonal approach
by offloading Gaussians to CPU memory.

A simple approach to address this problem would be to
use a technology such as Unified Virtual Memory that uses
CPU memory to augment GPU memory, and swaps data in
from main memory when required by the GPU. While this
is indeed simple it has significant overheads [10], and would
thus not suffice for our use case.

Work on deep-learning, e.g. Zero-Offload [41], has shown
that it is possible to train a large model without impacting
quality by offloading the gradients, optimizer states and op-
timizer computation to CPU. Thus, one can ask whether a
similar offloading approach would work for 3DGS. Figure 3
shows how such a Zero-offload inspired approach could work
for 3DGS: in each training step, first, all Gaussians are trans-
ferred from CPU memory to GPU memory; next, the forward
and backward computation are carried out on the GPU; and
finally, gradients are sent back to the CPU where the Adam
optimizer [27] is run to update Gaussian parameters.

However, naively applying Zero-offload leads to two prob-
lems: First, as Figure 3 shows, naive offloading incurs signifi-
cant performance overhead due to CPU-GPU communication
and the additional time required to run Adam on the CPU.
However, naive offloading lacks the means to effectively hide
such overhead by overlapping GPU computation with commu-
nication and CPU computation. Second, as naive offloading
loads all Gaussians to the GPU, its GPU memory requirement
remains proportional to the number of Gaussian such that
large scenes cannot fit on a single GPU.

3 Our approach: sparsity-guided offloading

Our approach addresses the challenges we discussed above by
storing some Gaussians parameters in pinned main memory,
and loading them to GPU memory on demand. We reduce
the overheads from offloading by taking advantage of several
unique characteristics of 3DGS.

3DGS computation is very sparse. 3DGS’s computation
is sparse, in that only a fraction of the scene’s Gaussians are
used when rendering a view (during training or inference).
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Figure 4. Frustum Culling: Gaussians outside of camera frustum will
not be accessed when rendering the camera’s view. Further, the Gaus-
sians accessed when rendering a view are in the same region, i.e., the
process exhibits spatial locality. Our approach uses these observations
to improve performance and reduce GPU memory requirements. This
results in a sparse memory access pattern to gaussians parameters. This
also shows that 3DGS rendering has the property of spatial locality.

This is because each view is associated with a camera pose
and only those Gaussians within the camera’s frustum can
contribute to the rendered image, as illustrated by Figure 4. In
fact, 3DGS’s rendering workflow explicitly computes the set
of Gaussians within the frustum before processing them for
a given view before processing them (shown in Figure 2 @).
We have found that a single view accesses a very small frac-
tion (less than 1%) of a large scene’s Gaussians. We quantify
this by calculating the sparsity p’ for view i in a scene as p’ =
%, where S; is the set of Gaussians in view i’s and N to be the
totalnumber of Gaussians. Figure 5 shows the CDF of p; for the
datasetsin Table 2. As can be seen, larger scenes exhibit higher
sparsity (aka smaller p). This is expected because, while the
number of Gaussians scale as a function of scene size, the vol-
ume enclosed by the camera frustum is independent of scene
size. For the largest scene (Matrixcity BigCity), we found that
the average view only accessed 0.39% of Gaussians, and the
maximum number of Gaussian’s accessed by a view is 1.06%.
We leverage sparsity by using 3DGS’ frustum culling logic
to identify the subset of Gaussians needed to process each
view (and thus the microbatch) in advance, and only transfer
those needed to the GPU.
Sparsity patterns across views exhibit spatial locality.
Different views (for the same scene) have different but over-
lapping sparsity patterns. In other words, for views i and
J» Si #8; and the number of Gaussians in the intersection,
|SiNS;l, is dependent on how much spatial locality exists be-
tween these views based on their camera positions and angles.
We exploit spatial locality to optimize data transfer be-
tween CPU and GPU in two ways: 1) we compute each mi-
crobatch’s sparsity pattern in advance and schedule micro-
batches carefully to increase overlapped access (§4.2.3), and
2) we cache Gaussians used by successive microbatches on
the GPU (§4.2.1), thus reducing communication overheads.
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Figure 5. Empirical cumulative distribution functions (CDF) for the
sparsity in Bicycle, Rubble, Alameda, Ithaca, and BigCity.

Sparsity patterns can be computed using partial Gauss-
ian information. In existing 3DGS implementations, all
Gaussian parameters are stored in a single tensor which is
used to perform frustum culling on the GPU. Doing so re-
quires all Gaussians to be loaded into GPU memory in order
to determine a view’s sparsity pattern, which contradicts our
earlier design choice to only load those necessary Gaussians.
To address this problem, we develop an approach (§4.1) that
stores some of the attributes (position, rotation and scale)
of all Gaussians on the GPU. As we explain in the next sec-
tion, this approach is practical because these attributes take
relatively little memory.

4 System Design

Selection Critical 3 Non-Critical Working Adam

Attributes (GPU) & Attributes (CPU) Set Finished
Frustum ; ielini
Microbatch Pipelinin
Prev Culling Order P 9 Next
Batch H § -~ Batch
Input Scheduling Input: @
T T T D e e e e :\\
)
! 1
I Stream 0 | BWD 2 | | FWD 3 | | BWD 3 | | FWD 4 | :
! 1
! 1
| =+ Stream 1 | LD Param 3 | | ST Grad 2 || LD Param 4 | | ST Grad 3 | :
! 1
1
H CPU Thread | CPU Adam Updates Completed Parameters | 1
1
1
! i

Figure 6. The workflow of a training step in CLM. For a batch of images,
CLM first performs frustum culling for each image, then schedules their
rendering order, and finally uses micro-batch pipelining to overlap
communication (on GPU stream 1) and Adam optimizer update (on
the CPU) with GPU rendering (on GPU stream 0). “FWD” and “BWD”
refer to the forward and backward passes of the i-th microbatch, “LD”
and “ST” refer to loading Gaussian parameters from CPU and storing
the gradients to CPU. The numbers (1,2,3) next to these operations
indicate the microbatch ID. The area of shading on attributes denotes
the proportion that is active as working set.

We now describe CLM, a 3DGS system that allows large
or highly detailed scenes to be trained/rendered on a sin-
gle consumer-grade GPU. Our design extends effective GPU
memory capacity by offloading Gaussian parameters and
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optimizer computation to the CPU, while leveraging the ob-
servations from the previous section (§3) to reduce overhead
from GPU-CPU communication and CPU computation (§2.2).
Our current implementation of CLM is built on CUDA, but
the design itself is agnostic to the rendering backend and can
be ported to the Vulkan platform [26].

CLM trains a scene representation as shown in Figure 6:
First, it selects a batch of training images and views, and
then uses frustum culling (§4.1) to compute the set of Gaus-
sians S; required by each view i in the batch. We refer to
these as in-frustum Gaussians. Next, it divides a batch into
several microbatches to enable microbatch pipelining. More
importantly, it uses frustum culling’s output to determine
the order in which microbatches are processed to maximize
spatial locality (§4.2.3). Finally, each microbatch is processed
in a pipelined fashion to overlap both communication and
CPU computation with GPU computation. More concretely,
when processing a microbatch, CLM loads into GPU memory
those in-frustum Gaussians, using Gaussian Caching (§4.2.1)
to avoid redundantly loading any Gaussian that is used by
two consecutive microbatches. CLM then executes the for-
ward and backward training pass on the GPU and transfers
gradients back to the CPU, where a concurrent CPU thread
executes the Adam optimizer and updates the Gaussian pa-
rameters. As Figure 6 shows, the CPU-GPU communication
for loading in-frustum Gaussians for microbatch i overlaps
with the backward GPU computation for microbatch i — 1;
and the GPU-CPU communication for transferring gradients
of microbatch i overlaps with the forward GPU computation
for microbatch i+ 1. For those Gaussians that are last updated
by a microbatch, CLM performs their corresponding Adam
updates on CPU, which overlaps with the forward/backward
GPU computation done by subsequent microbatches (§4.2.2).

4.1 Attribute-Wise Offload

As we discussed previously in §3, the frustum culling step is
run on the GPU and requires access to some attributes (e.g.,
position) of all Gaussians in the scene. As our goal is to scale
to scenes whose Gaussians (by which we mean all attributes)
do not fit in GPU memory, we cannot load all Gaussians into
GPU memory before running the frustum culling step.

We address this by observing that frustum culling accesses
a small subset of each Gaussian’s attributes: For each Gauss-
ian, the frustum culling algorithm checks the intersection
between the view frustum and the Gaussian. When comput-
ing intersection, the algorithm only needs information on
the Gaussian’s position, scale, and rotation. This is because
intersection does not depend on the Gaussian’s color (deter-
mined by the spherical harmonics) or opacity. In particular,
during frustum culling, 3DGS determines whether a Gaussian
is in-frustum by computing the intersection between the view
frustum and the Gaussian’s ellipsoid (which is derived from
its scale and rotation) and checking whether it is within 3 stan-
dard deviations (30) of the Gaussian’s distribution. Culling
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within 30 is standard practice in existing 3DGS implementa-
tions [23, 49]. We refer to the attributes required for frustum
culling as selection-critical attributes, and the rest of the at-
tributes as non-critical attributes.

We observe that the selection-critical attributes constitute
less than 20% (10 out of 59 floats) of a Gaussian’s memory
footprint (Table 1). Thus, CLM keeps the selection-critical at-
tributes for all Gaussians in GPU memory;, i.e., they are never
swapped out to CPU memory, and no additional CPU-GPU
communication is necessary for frustum culling. Non-critical
attributes are stored in CPU memory, and loaded into GPU
memory only when required.

4.2 Microbatch Pipelining

3DGS training uses minibatch gradient descent. In contrast
to existing 3DGS systems that process a whole batch at a time,
our design divides each batch into several minibatches to use
pipelining and gradient accumulation [22, 38]. In our setting,
a batch consists of multiple images and a microbatch consists
of a single image. We start the forward pass for microbatch
i+1 as soon as the backward pass for microbatch i completes.

CLM'’s use of microbatch pipelining reduces GPU memory
requirements: each forward and backward pass processes
a single image at a time, reducing the amount of activation
memory required. More importantly, as shown in Figure 6,
microbatch pipelining allows CLM to overlap communication
for one microbatch with the computation for another, thereby
hiding communication overhead. CLM uses double-buffering
to ensure that communication and computation can be safely
overlapped. While the use of double-buffering increases mem-
ory requirements, the additional memory requirements are
independent of scene and batch size.

We further improve basic microbatch pipelining by incor-
porating three domain specific optimizations, which are de-
scribed next: (a) Precise Gaussian Caching (§4.2.1); (b) Over-
lapped CPU Adam (§4.2.2); and (c) Pipeline Order Optimiza-
tion (§4.2.3).

4.2.1 Precise Gaussian Caching. Our first optimization
builds on the observation that some of the Gaussians accessed
by microbatch i and i+ 1 are the same because of spatial lo-
cality. Since the frustum culling step has already computed
in-frustum Gaussians for each microbatch, CLM uses this
information to reduce the number of Gaussians loaded into
GPU memory from CPU memory: when loading Gaussians
for microbatch i+1, it copies the intersecting Gaussians (aka
those in S;NS;1) from microbatch i’s Gaussian parameter
tensors (which are already in GPU memory), and only loads
those Gaussians not in the intersection from CPU memory.
Note that copying Gaussians in this way does not require ad-
ditional memory beyond what is already allocated for double
buffering.
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Figure 7. Illustration of overlapping CPU Adam with batch size 2.
The upper half of this image illustrates the overhead caused by CPU
Adam, while the lower half demonstrates the benefits of overlapping
CPU Adam. Within the diagram, F; represents the set of Gaussians
that have just finalized before microbatch i and are ready to update
their parameters using Adam. For example, F; includes Gaussians that
are not affected by any images in the batch. F|pascn| consists of the
Gaussians touched in the last microbatch, which cannot be overlapped.

We also use the same approach to avoid redundant copies
when transferring gradients from GPU memory to CPU mem-
ory: after microbatch i has finished, we only transfer the
gradients that are not going to be updated by microbatch
i+1,i.e., gradients for Gaussians in the set S;\S;NSi1. We
copy the rest of the gradients for Gaussians S; N S;;; into
microbatch i+1’s gradient buffer to be accumulated.

4.2.2 Overlapped CPU Adam. At the end of each batch,
3DGS training uses the Adam optimzer [27] to combine the
computed gradients and update Gaussian parameters. We
observe that many Gaussian updates can be finalized early
before the last microbatch. In other words, in a batch of size B,
the last microbatch (i) that accesses (and thus updates) some
Gaussian g might be i < B. In this case, it is safe to use Adam to
update Gaussian g before the whole batch completes. Doing
such early update is desirable because CLM performs Adam
update on the CPU, which can be overlapped with the forward
and backward GPU computation of subsequent microbatches.
CLM implements this optimization (Figure 7): When schedul-
ing abatch, for each Gaussian g, it computes the microbatch L
at which g is finalized by computing Ly =max{i|g€ S;} (L =0
if gis not accessed by a batch). At the end of every microbatch
Jj, CLM uses CPU Adam to update all Gaussians g whose L, = j.
Only those Gaussians that are finalized in the last microbatch
(Ly=B) do not have their CPU Adam computation overlapped.

4.2.3 Pipeline Order Optimization. The order in which
microbatches are processed within a batch does not affect
correctness. This is because gradients calculated for individ-
ual microbatches are accumulated over the full batch before
applying optimizer update, and thus the same final update is
computed for a batch regardless of its microbatch ordering,.
However, the order of microbatches determines the effec-
tiveness of Gaussian caching and overlapped CPU Adam. If
the microbatch schedule leads to a large overlap between
Gaussians accessed by consecutive microbatches (i.e., when
Si+1NS; is large for all i), Gaussian caching can eliminate
more communication. Similarly, if the schedule results in a
larger number of Gaussians finalized in earlier microbatches,
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more of the CPU Adam computation can be overlapped. There-
fore, CLM tries to find a microbatch schedule that maximizes
the effectiveness of both optimizations.

Scheduling of microbatch computation is aided by the ob-
servation that 3DGS exhibits spatial locality (§3). As such, any
schedule that maximizes Gaussian overlap between consec-
utive microbatches must process all views in the same region
in close temporal proximity. Further, Gaussians are finalized
once all views in aregion have been rendered. Thus, schedules
that maximize overlap also tend to finalize a large number
of Gaussians early. Given this observation, we compute a
good schedule by formulating the scheduling problem as an
instance of the Traveling Salesman Problem (TSP) [16]: we
treat each microbatch as a node in the graph, and the distance
between two microbatches i and j is given by the symmetric
difference between the Gaussians accessed by each (|S; S|
which gives the number of Gaussians that do not overlap).
TSP computes the shortest Hamiltonian path through this
graph, which by construction is the schedule that maximizes
overlap. Our implementation uses stochastic local search with
a greedy heuristic [11] to quickly generate an optimal solu-
tion; see Appendix A.1 for details about our formulation and
the greedy search algorithm.

5 Implementation

We implemented CLM by extending Grendel [51], an existing
3DGS training framework. Our extensions added the offload-
ing approach described in the previous section and incorpo-
rated the rasterization kernels of gsplat [49] into Grendel. We
discuss important details about the implementation below.

5.1 Pre-rendering Frustum Culling

In current implementations of 3DGS[23][49], the frustum
culling step is fused to the rendering kernels. These rendering
kernels process all Gaussians as input, but only utilize those
that intersect with the Frustum. The intersected Gaussians are
computed implicitly by cuda threads and registers, without
being explicitly stored in GPU memory. In large scenes with
low p, the majority of input Gaussians are not in-frustum and
hence result in substantial wasted GPU computation. Storing
intermediate activations for non-in-frustum Gaussians also
wastes GPU memory. The backward pass also performs un-
necessary computation because it calculates gradients for the
entire Gaussian input tensor, even though only in-frustum
Gaussians have non-zero gradients.

In our implementation, we perform frustum culling to ob-
tain in-frustum Gaussians indices S; and store them in GPU
memory before rendering. This allows us to explicitly elim-
inate unnecessary Gaussians from the input to the rasteriza-
tion kernels, thus decreasing the input size by p;, reducing N
to |S;|. Doing so reduces both GPU memory and computation
usage.
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Pre-rendering frustum culling is a simple engineering method
that can also be applied to traditional GPU-only training with-
out offloading. The evaluations in Section 6.3 demonstrate that
this engineering technique reduces memory usage and signif-
icantly enhances throughput when training a highly sparse
scene. We will also show that CLM remains highly effective
even after eliminating the influence of this engineering trick.

5.2 Selective Loading Kernel

After computing indices for the in-frustum Gaussians, we use
a custom kernel to load parameters from CPU memory. As in-
frustum Gaussians are spread over CPU memory because of
the sparse access pattern, naively copying them individually
using cudaMemcpy (or cudaMemcpyAsync) underutilizes CPU-
GPU communication bandwidth. Instead, our implementation
stores offloaded Gaussian attributes in pinned CPU memory
that can be accessed directly from CUDA code running on the
GPU without and we develop a selective loading kernel which
loads (over PCle) the in-frustum Gaussian parameters from
CPU memory to GPU registers and then stores the register
values into GPU memory. Since all of the communication is
initiated from the GPU, this kernel avoids CPU-GPU coor-
dination. In addition, the same kernel is also used to copy
cached Gaussians from GPU memory for processing.

To further improve communication efficiency, we concate-
nate and pad attribute tensors when storing them in CPU
memory so that all attributes of a Gaussian are stored in con-
tiguous memory and are cache-line aligned. The selective load-
ing kernel splits Gaussians attributes when loading them into
GPU memory and concatenates those in-frustum Gaussian
attributes together. Implementing splitting and concatenation
logic in the same kernel reduces computational overheads.

We also develop a similar kernel to efficiently transfer gra-
dients from the GPU to CPU memory.

5.3 Separate Communication Stream

For pipelined execution of microbatches, we employ two
CUDA streams: one for computation, and the other for com-
munication. As illustrated in Figure 6, the parameters loading
and gradients storing are interleaved in the communication
stream, analogously to the 1F1B pipelining method for train-
ing neural networks described in [18]. We add CUDA events
to correctly synchronize operations across streams, making
sure that in-frustum gaussians parameters are loaded before
executing the microbatch and gradients are offloaded after
finishing the backward pass. We increase the communication
stream priority over the computation stream to prevent delays
in executing the communication kernel by GPU. These delays,
as we observed, impede subsequent microbatch processing
and ultimately slow down the overall training process.

The kernel responsible for gradient offloading needs a mi-
nor adjustment to support gradient accumulation in pipelin-
ing. In the gradient offloading kernel, rather than directly
storing gradients’ values to CPU memory, it first fetches the
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previously accumulated gradients, adds them within cuda
registers, and then stores the sum back in CPU memory.
Our pipeline approach involves prefetching parameters
for the upcoming microbatch while postponing gradient of-
floading from the prior one. We use double buffer to achieve
this, which can raise memory usage. However, with our single
communication stream and 1F1B setup, along with precise
timing in managing creation and deallocation, we prevent the
coexistence of double buffers for previous microbatch gradi-
ents and upcoming microbatch parameters. This effectively
controls the additional memory usage from double buffer.

5.4 Thread for CPU Adam update

Our CPU Adam implementation extends the Zero-offload
[41] implementation to allow updating a subset of Gaussians
(which have completed gradients at each call). We execute
CPU Adam on a dedicated thread CPU thread. To allow con-
current execution, we release the Python GIL lock within the
CPU adam thread, allowing the primary Python thread to
continue processing. A signal buffer in CPU pinned memory
is used to synchronize the GPU communication stream and
the CPU Adam thread. Specifically, the GPU communication
stream sets the gradient completion signal via DMA after the
gradient transfer kernel finishes, while the CPU Adam thread
waits on the signal buffer before performing the Adam update
after the microbatch.

6 Evaluation

In this section, we evaluate CLM and the following are the

highlights of our results:

e CLM enables 3DGS training of models up to 6.1x larger
through CPU offloading, compared to GPU-only train-
ing baselines.

e CLM enhancesreconstruction quality by training larger
model, achieving PSNR 25.15 for BigCity[31] using 102
million Gaussians. In contrast, the GPU-only training
reaches a PSNR of 23.93, using only 15 million Gaus-
sians to avoid running out of memory.

e CLM has modest offloading overhead. It achieves 86%-
97% of the throughput of an enhanced GPU-only base-
line on RTX 2080 Ti and 55%-90% on RTX 4090. Com-
pared to naive offloading, CLM is 1.38 to 1.92 faster.

6.1 Setting and Datasets

Testbeds. We run our evaluation on two testbeds: One is a
machine with an AMD Ryzen Threadripper PRO 5955WX
16-core CPU, 128 GB RAM, and a 24 GB NVIDIA RTX 4090
GPU connected over PCle 4.0. The other is a machine with
Intel Xeon E5-2660 v3 20-Core CPU, 256 GB RAM, and a 11
GB NVIDIA RTX 2080 Ti GPU connected over PCle 3.0.
These two settings allow us to evaluate CLM under differ-
ent computation and communication speed. In particular, the
RTX 2080 Ti has about 7x fewer FLOPs (cuda core) than the
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RTX 4090, and PCle 3.0 has 2x less bandwidth than PCle 4.0.
Therefore, in our experiments, the 2080 Ti GPU testbed is
more likely to be compute bound.

Datasets. Our evaluation uses the datasets presented in Ta-
ble 3. These datasets cover a variety of scene sizes (which
roughly correlate with the number of images), image resolu-
tion, and scene types that collectively represent diverse work-
loads. Specifically, the scene size affects both the Gaussian
model size and the degree of sparsity p inrendering; resolution
affects both GPU rendering speed and activation memory us-
age; additionally, the scene topology determines the sparsity
patterns. Together, they provide a comprehensive evaluation
of our system. We detail the preparation of the datasets in the
Appendix A.2.

Scene #Images Resolution Scene Type BS
Bicycle [6] 200 4K Yard 4
Rubble [45] 1600 4K Aerial 8
Alameda [7] 1700 2K Indoor

Ithaca365 [12] 8200 1K Street 16
MatrixCity BigCity [31] 60000 1080P Aerial 64

Table 3. Scenes used in our evaluation: Our selection includes scenes
of different sizes, resolutions, and types, representing a diverse range
of workload characteristics. We set the training batch size (BS) in our
experiments to correspond with their scene sizes.

Baseline. We choose Grendel-GS [51] as our baseline. Al-
though Grendel-GS is a multi-GPU training system, we run
in its single-GPU mode to take advantage of its efficient train-
ing framework. We use GSplat’s CUDA kernels' [49] as the
rendering backbone for its memory efficiency by setting the
corresponding flag in the Grendel-GS training framework.
We refer to this GPU-only implementation as “baseline”.
Enhanced Baseline. Additionally, we build an enhanced ver-
sion of the baseline by adopting CLM’s pre-rendering frustum
culling feature (§5.1) to avoid unnecessary kernel computa-
tion. This version is closer to CLM’s kernel implementation,
and thus provides a better baseline for evaluating CLM’s of-
floading overhead. We refer to this GPU-only variant as “en-
hanced baseline”.

Naive Offloading. We implement the naive offloading strat-
egy (see §2.2 and Figure 3) on Grendel [51]. The implemen-
tation uses pinned memory for GPU-CPU communication
as in CLM. It also utilizes the same CPU Adam as CLM (§5.4)
and adopts CLM’s pre-rendering frustum culling technique
for efficient kernel computation. Additionally, it trains each
batch one image at a time with gradient accumulation to re-
duce activation memory usage. By comparing with this naive
offloading, we can quantify how CLM’s various offloading
techniques can improve performance.

Hexu Zhao et al.

6.2 Memory Efficiency

CLM is able to push the model size trainable on a single GPU
by up to 6.1 times compared to the enhanced baseline?. Larger
models enhance the quality of reconstruction, achieving state-
of-the-art PSNR for the BigCity scene with 102 million Gaus-
sians.

Larger model training made possible. Figure 8 shows the
maximum model size that could be trained before encounter-
ing an OOM error on each testbed. We can see that CLM allows
larger model sizes to be trained across all scenes. Specifically,
the GPU-only baseline can support a maximum of 7.2 M and
16.4 M Gaussians on RTX 2080 Ti and RTX 4090, respectively,
before running out of memory. The enhanced baseline avoids
storing the activations of Gaussians unused in rendering via
pre-rendering frustum culling (§5.1), thereby postponing the
OOM point to 7.9 M and 18.4 M Gaussians, respectively. Using
CPU memory, naive offloading can support up to 20.6 M and
46 M Gaussians before exhausting GPU memory. In contrast,
CLM supports up to 47 M and 102.2 M Gaussians—up to 6.1x
larger than the enhanced GPU-only baseline, and 2.3x larger
than naive offloading.

CLM requires less memory than naive offloading because
it does not load all Gaussian parameters to GPU memory
before each rendering step. The difference in the maximum
supported model sizes by CLM on 2080 Tivs 4090 (e.g.,47 M vs.
102.2 M Gaussians for BigCity) roughly reflect their GPU mem-
ory capacities (11 GB vs. 24 GB). We also observe that the max-
imum trainable model size is dependent on the scene. In partic-
ular, scenes that have higher resolution (see Table 2) or worse
sparsity (i.e., high p, as shown in Figure 5)—such as Bicycle,
Rubble—require more activation memory, leaving less mem-
ory available for Gaussian parameters compared to scenes like
Ithaca and BigCity, which have lower resolution and lower p.
Larger models improve reconstruction quality. This ex-
periment assesses the importance of scalability model sizes
using the BigCity scene[31], a city-scale benchmark covering
25.3 km? with extensive details. We train models consisting of
6.4M,12.8 M, 15.3 M, 25.6 M, 51.1 M, and 102.2 M Gaussians,
doubling the size incrementally. Among these, the 15.3 M
model is the largest one that can be trained by the GPU-only
baseline on the 24 GB RTX 4090 testbed before running out
of memory. We train each of these models for 500,000 steps
using CLM and evaluate the reconstruction quality using peak
signal-to-noise ratio (PSNR), where a higher PSNR indicates
better reconstruction quality (aka the rendered image is closer
to the ground truth). Figure 9 shows that CLM improves re-
construction quality by allowing larger models to be trained
using additional CPU memory. With a model size of 102.2 M
Gaussians, CLM achieves a PSNR of 25.15. In contrast, the

These CUDA kernels consume over 95% time in 3DGS training.
2We enable the PyTorch’s expandable_segments feature in all experiments
to minimize the impact of GPU memory fragmentation.
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Figure 9. Scalability on BigCity. X axis (log scale) is the model size
presented in million Gaussians. Y axis (linear) is the PSNR evaluated
on rendered images. Each data point is trained using CLM on a single
24GB RTX 4090 GPU for 500000 steps. This shows CLM enables scaling
to 102 million Gaussians and achieve a state-of-the-art PSNR of 25.15.

GPU-only baseline is limited to 15.3 M Gaussians and yields
alower PSNR of 23.93.

Breakdown of GPU memory consumption. We examine
different systems’ GPU memory consumption statistics when
training the Rubble and BigCity scenes. We use model sizes
15.3 M, 30.4 M, and 45.2 M Gaussians for Rubble; and 15.3 M,
46.0 M, and 102.2 M for BigCity, corresponding to the max-
imum supported model sizes of the baseline, naive offloading
and CLM, respectively (see Figure 8).

For the Rubble scene (see Figure 10a), during the training
of the 15.3 M model where all four systems operate with-
out running out of memory, the baseline consumes the most
GPU memory, whereas CLM requires the least. The enhanced
baseline and naive offloading fall somewhere in the middle.
The two baselines consume the same amount of model state
memory, with a small difference in "others" because the pre-
rendering frustum culling (§5.1) in the enhanced baseline
removes redundant activation states. For the 30.4 M and 45.2
M models, the baselines encounter GPU OOM. In contrast,
both naive offloading and CLM support the training of the 30.4
M model, illustrating the advantages of GPU memory saving
through offloading. Despite keeping some selection-critical
attributes of all Gaussians on the GPU, CLM uses less GPU
memory than naive offloading, which offloads all attributes
to CPU memory. This is because naive offloading transfers
all attributes of all Gaussians to the GPU before each ren-
dering, which consumes larger GPU memory. While CLM
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(b) BigCity
Figure 10. Memory usage breakdowns for Rubble using varying model
sizes on the 4090 testbed. Each bar is composed of two parts: model states
(bottom) and others (upper). CLM consumes the least GPU memory,
thus avoiding OOM.

significantly cuts down memory for Gaussian model states,
it slightly elevates the “others” memory usage. This is due
to the double buffer design in our pipelining (§5.3) which en-
ables parameters prefetching and delayed gradient offloading.
All of the above observations can be drawn similarly for the
BigCity scene in Figure 10b. The primary difference is that
BigCity has a smaller p and lower resolution compared to
Rubble, leading to model states memory dominating activa-
tion memory. Consequently, offloading model state in BigCity
results in a more substantial overall memory reduction.
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Figure 11. The training throughput of CLM vs. naive offloading. For
each scene-testbed pair, we use the largest model size supported by
naive offloading from Figure 8 to avoid OOM. CLM achieves up to 1.92x
(BigCity) and 1.90x (Bicycle) speedup on RTX 2080 Ti and RTX 4090,
respectively.

6.3 Performance

We compare CLM’s training performance to that of naive of-
floading to evaluate the effectiveness of CLM’s design choices.
We also quantify CLM’s offloading overhead by comparing
its performance to GPU-only baselines. We measure perfor-
mance by training throughput, calculated as the number of
images processed per second during training.
CLM vs. naive offloading. We evaluate CLM’s performance
compared to naive offloading on both testbeds. Our evalua-
tion covers all scenes in Table 3. For each scene, we use the
largest model size that could be trained using naive offloading
on the given testbed (Figure 8). As can be seen in Figure 11,
CLM achieves significant speedup over naive offloading. In
particular, for the largest scene BigCity, CLM is 1.92x faster
than naive offloading when run on the 2080 Ti, and 1.58x
faster on the 4090. As can been observed, CLM’s speedups
differ between the two testbeds. As RTX 2080 Ti has roughly
7 times fewer FLOPS than the 4090, the GPU computation
takes longer on the 2080 Ti, allowing CLM to overlap and
hide more of the offloading overhead than on the RTX 4090.
This effect is particularly observable in large scenes such as
BigCity with high offloading overheads, thus CLM has larger
improvements when run on a slow GPU than on a faster GPU.
CLM vs. GPU-only training. We evaluate the performance
of CLM compared to GPU-only baselines. To avoid OOM, for
each scene in Table 3, we use the maximum model size that
can be trained using the baseline (Figure 8).

As shown in Figure 12, CLM achieves similar or much bet-
ter throughput than the naive baseline on both testbeds. The
unexpected improvement compared to the baseline is due
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Figure 12. The training throughput of CLM training vs. GPU-only
baselines. For each scene-testbed pair, we use the largest model size
supported by the baselines as assessed in Figure 8 to prevent OOM.
Comparing CLM to enhanced baseline eliminates the effect of pre-
rendering frustum culling. On RTX 2080 Ti, CLM reaches 86% (BigCity)
to 97% (Ithaca) of the enhanced baseline’s throughput; on RTX 4090, it
achieves 55% (Ithaca) to 90% (Bicycle).

to CLM’s use of pre-rendering frustum culling as explained
in §5.1. This technique enables more efficient computation
in scenes with low p (e.g., BigCity) by culling more points,
resulting in notable performance improvements.

We can evaluate CLM’s offloading overheads more fairly
by comparing to the enhanced baseline, which also uses (and
benefits from) pre-rendering frustum culling. As can be seen
in Figure 12, CLM achieves 86% (BigCity) to 97% (Ithaca) of
the enhanced baseline’s throughput on the RTX 2080 Ti, and
55% (Ithaca) to 90% (Bicycle) on the RTX 4090. The slowdown
occurs for CLM because the communication and CPU Adam
computation cannot be fully overlapped with GPU computa-
tion. As expected, the offloading overheads depend on both
testbed and scene characteristics. Among the two testbeds,
we observe larger overheads on the RTX 4090 than the RTX
2080 Ti because the longer GPU computation time on the
2080 allows CLM to more effectively overlap communication
and CPU Adam computation. In terms of scenes, we find that
scenes that require more GPU computation (e.g., because
they have higher resolution) or where less communication
is required (e.g., because of lower p) have smaller overheads,
because communication and CPU Adam computation can
be more effectively overlapped. For example, the Rubble and
Bicycle scenes which are at 4K resolution have a slowdown
of less than 20% compared to the enhanced baseline, while
Ithaca which has the lowest resolution among the scenes we
evaluated (Table 2) has a slowdown of 45%.
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Running time breakdown. To identify the source of CLM’s
speedup over naive offloading, we profile the runtime break-
downs for the Rubble and BigCity scenes on RTX 4090 testbed,
as shown in Figure 13. We have the following observations. (1)
We observe significant communication and CPU Adam over-
heads in naive offloading, as discussed in §2.2. In both scenes,
two overheads together account for more than 50% of the
training time. (2) In this figure, CLM’s pipeline running time
takes into account both communication and computation, as
their runtime cannot be well separated. And we observe that
CLM’s pipeline runtime is notably shorter than the combined
computation and communication duration in naive offloading.
The overall acceleration results from overlapping communi-
cation with computation, along with reduced communication
volume by transferring only in-frustum Gaussians. We also
observe that CLM’s pipeline time, which includes both com-
putation and communication, is only marginally longer than
the naive offloading’s computation-only time. This indicates
that CLM’s communication overhead on top of computationis
very small. (3) The effect of overlapping CPU Adam differs de-
pending on the scenes. Figure 13 illustrates that CLM reduces
CPU Adam latency more in Rubble than in BigCity through
overlapping. This disparity arises because, first, CPU Adam
requires more time in BigCity due to the increased number of
Gaussians. Second, the lower resolution of BigCity means that
its computation time is shorter than that of Rubble (see Figure
11), thus making it harder for CPU Adam to overlap. The lesser
overlap of CPU Adam in BigCity explains why CLM does not
achieve the greatest speedup compared to naive offloading in
BigCity, despite its lowest p among all scenes. (4) Lastly, Fig-
ure 13 shows that the scheduling overheads in CLM involved
in determining in-frustum Gaussian indices and computing
the microbatch order based on TSP are marginal.

Communication volume reduction. To better understand
the communication overhead of CLM, we collect the aver-
age communication volume per training batch, as shown in
Figure 14. The experiments for each scene use the maximum
model size of naive offloading from Figure 8b. We compare
CLM against naive offloading, and conduct ablation studies.
Specifically, we evaluate a CLM variant without Gaussian
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Strategy Description

Random Order
Camera Order

Shuffle views uniformly at random.

Sort views by their camera-center coordinate along the
scene’s principal axis.

GS Count Order Sort descending by the number of Gaussians visible in
each view. Prioritizing views with more Gaussians allows
CPU Adam to update more Gaussians earlier, reducing its
overhead.

TSP Order (CLM)  Use TSP to find an order which maximizes Gaussian over-

lap between successive views.

Table 4. Ordering strategies evaluated in our ablation study. The
“Random Order” and “Camera Order” are straightforward; while both
“GS Count Order” and “ISP Order” rely on view-Gaussian visibility
information and thus require additional processing.

=
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Figure 14. Average communication volume as measured by bytes
transferred from CPU to GPU per training batch. “Naive Offloading”
denotes the communication volume for naive offloading without any
optimization. “No Cache” denotes the volume for CLM without Gauss-

ian Caching and Order Optimization. The remaining four correspond
to the ordering strategies detailed in Table 4.
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Caching (No Cache), as well as three variants with Gaussian
Caching enabled, each of which uses a different ordering strat-
egy: “Random Order”, “Camera Order” and “GS Count Order”,
as described in Table 4. In contrast, CLM uses TSP order (see
Section 4.2.3). These ablations help clarify how both caching
and rendering order affect communication volume during
training. We report the size of parameters transferred from
CPU to GPU memories in GB.

Figure 14 shows that CLM consistently decreases com-
munication by 37% (Alameda) to 82% (BigCity) over naive
offloading. In BigCity, the technique of selectively loading
in-frustum Gaussians by itself significantly decreases commu-
nication (79%), whereas Gaussian Caching offers small benefit,
i.e. CLM has 12% additional reduction over “No Cache”. Thisis
because BigCity has a very low p (§5), resulting in fewer Gaus-
sians shared between two images for caching. Conversely,
in scenes where each image contains a greater proportion
of all Gaussians, like Bicycle, the use of Gaussian Caching
yields more significant benefits, i.e. CLM has 33% additional
reduction over “No Cache”. We also observe that the TSP order
consistently results in the lowest communication volume by
maximizing cache reuse across microbatches. The greatest
reduction is seen on the Ithaca scene — 34% lower than “Ran-
dom Order”, 25% lower than “GS Count Order”, and 19% lower
than “Camera Order”.

Effectiveness of different ordering-strategies. In Table 5a,
we compare the average training throughput (measured in
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Method Bicycle Rubble Alameda Ithaca BigCity
Random Order 3.95 6.23 7.52 12.36 40.89
Camera Order 3.94 6.27 7.58 12.67 40.94
GS Count Order 4.06 6.65 8.01 12.50 40.80
TSP Order 4.03 6.64 8.24 12.77 40.74
(a) Training throughput (img/s)
Method Bicycle Rubble Alameda Ithaca BigCity
Random Order 147.457 137.27 178.59 208.34 21.85
Camera Order 150.831 144.87 171.32 305.71 21.05
GS Count Order  119.383 81.27 141.91 268.62 21.93
TSP Order 147.457 127.11 186.75 406.79 23.36

(b) CPU Adam trailing time (ms)

Table 5. Average training throughput and CPU Adam trailing time
under different ordering strategies (see Table 4). The trailing time is
calculated as the time spent by CPU Adam after the last gradient has
been transferred from the GPU to the CPU. The more sophisticated
strategies, “TSP Order” and “GS Count Order”, deliver the highest
end-to-end throughput. “GS Count Order” incurs the least CPU Adam
trailing time; while Figure 14 shows that “TSP Order” achieves the
greatest reduction in communication volume.

processed images per second) across four ordering strategies
in Table 4: “Random Order”, “Camera Order”, “GS Count Or-
der” and “TSP order”. The experiments for each scene use the
maximum model size supported by naive offloading from Fig-
ure 8b on the 4090 testbed. We also report the corresponding
communication volumes in Figure 14 and CPU Adam “trail-
ing time” in Table 5b. We calculate “trailing time” as the time
from when the last gradients are transferred to CPU memory
to when CPU Adam finishes for the batch. Overall, smart
reordering consistently improves training throughput over
the default “Random Order”, with the most significant gain
observed on the Alameda scene—achieving a 10% speedup.
In contrast, BigCity shows minimal variation across orders
in terms of communication volume, CPU Adam trailing time,
and thus overall throughput. Among the strategies, “TSP Or-
der” and “GS Count Order” achieve the highest throughput.
“TSP Order” consistently minimizes communication volume,
while “GS Count Order” reduces CPU Adam trailing time by
rendering images that use more Gaussians earlier. An non-
intuitive observation is that, for the Ithaca scene, the naive
“Random Order” exhibits lower CPU Adam trailing time than
“GS Count Order”. This is because its communication is sig-
nificantly slower than the other strategies (see Figure 14).
The slower transfer allows more opportunity to overlap with
CPU-side computation, thereby reducing its trailing time.

6.4 Hardware Utilization

GPU utilization. We compare the GPU utilization of CLM
against naive offloading by profiling using Nsight Systems
[39] on the RTX 4090. We collect the SMs Active metric at
10 kHz from Nsight Systems in the GPU_METRICS table. The
values range from 0 to 100 and reflects the percentage of SMs
with active warps in flight. A value of 0 indicates that all SMs
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Testbed Bicycle Rubble Alameda Ithaca BigCity
RTX 2080 Ti 6.0 8.2 8.4 13.4 17.5
RTX 4090 14.1 17.2 16.1 28.4 37.8

Table 6. Pinned memory usage (in GB) of CLM for each scene using
the maximum model size reported in Figure 8.

are idle. Figure 15 presents the Cumulative Distribution Func-
tion (CDF) of the GPU idle rate, computed as 100 - SMs Active.
The x-axis denotes the idle rate, while the y-axis represents
the percentage of time. The area under the curve corresponds
to the expected value of SMs Active during training, reflect-
ing average GPU utilization. For each scene, both CLM and
naive offloading are profiled for the same duration—spanning
more than 100 batches. We use the maximum model size
for naive offloading from Figure 8b. We observe that CLM
consistently achieves better GPU utilization, as indicated by
higher curves. Additionally, scenes with higher resolution
(e.g., Bicycle and Rubble) exhibit better utilization compared
to lower-resolution scenes (e.g., Ithaca and BigCity), confirm-
ing the intuition that higher-resolution rendering is more
computational intensive.
Pinned memory usage. Pinned memory is a limited re-
source, so we report CLM ’s usage on the two testbeds in Ta-
ble 6, using the corresponding maximum model sizes shown
in Figure 8. Even for the largest BigCity model, pinned mem-
ory usage peaks at 17.5 GB on the RTX 2080 Ti testbed and 37.8
GB on the RTX 4090—under 10% of the RTX 2080 Ti testbed’s
256 GB RAM and 30% of the RTX 4090 testbed’s 128 GB RAM,
respectively. This efficiency stems from pinning only param-
eter and gradient tensors (which require GPU DMA) in CLM,
while optimizer and auxiliary states remain unpinned. We
observe no system performance degradation from this usage.
We further report CPU cores, PCle bandwidth and GPU
memory bandwidth utilization in Appendix A.4.

7 Related Works

Current Approaches to Scaling 3DGS. Several approaches
have been suggested to decrease the GPU memory usage of
3DGS. First, systems like [9, 30, 51] use the aggregate mem-
ory of multiple GPUs to distribute 3DGS training. However,
the need for multiple GPUs and high-performance intercon-
nects adds significant costs, putting these approaches out of
reach for most users. Second, some approaches prune Gaus-
sians [14, 15, 17, 40, 50] that do not contribute significantly to
the rendered image. Although pruning methods are effective
at reducing memory overheads, they can potentially hurt fi-
delity [17, 50] when Gaussians are pruned aggressively. Our
approach is orthogonal, and does not affect fidelity. Further-
more, for very large scenes, even a pruned model might not
fitin a single-GPU’s memory, making it necessary to combine
pruning with approaches such as ours. Furthermore, most of
these approaches prune Gaussians after training, and thus can-
not be used to scale 3DGS training. Third, divide-and-conquer
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Figure 15. CDF of GPU Idle Rate (100 - SMs Active) Across Scenes for CLM vs. Naive Offloading. Higher curves indicate more time spent at lower
idle rates, reflecting better GPU utilization. CLM consistently achieves higher GPU utilization across all scenes.

methods [24, 32, 35] partition scenes into smaller regions, pro-
cess each partition in isolation, and finally reconstruct views
by combining results from multiple partitions. But Gaussians
at partition borders are likely to be used by multiple parti-
tions, and in practice this leads to rendering inconsistencies
at partition boundaries and lower reconstruction quality. Fur-
thermore, these techniques are often more complex to use
because of additional hyperparameters to tune.

CPU offloading in other ML training system. As the size
of ML models increases, the limitations of GPU memory have
led to a greater use of CPU offloading techniques for ML
training. For example, [21, 41, 42] focus on DNN training in
general, while [4, 37] specialize in recommendation systems,
[2, 46] in GNNs, and [48] in LLMs, all of which optimize for
workloads distinct from 3DGS. Their focused workloads in-
volve tensor operations, such as GEMM; whereas 3DGS is
unique differentiable rendering pipeline. There are no studies
that have successfully applied these offloading techniques
to 3DGS training. In contrast, we demonstrate the feasibility
of offloading in 3DGS and introduce tailored designs for im-
proved efficiency. UGache [44] optimizes the sparse access
to CPU-based embedding tables, which is common in the of-
floaded training for the GNN and the recommendation system.
Our Gaussian attributes in CPU memory akins to embedding
table and is also accessed sparsely. However, UGache assumes
that the embedding table is read-only, which is not applicable
in 3DGS training. Moreover, UGache overlooks aspects such
as spatial locality that are present in 3DGS, thereby missing
some opportunities for optimization.

Other 3DGS Training System. Recent studies have devel-
oped other hardware and software systems to improve 3DGS
Training. GauSPU [47], GScore [29] and MetaSapiens [33],
ACR [13] design hardware accelerators specifically for the ren-
dering pipeline in 3DGS training. However, these accelerators
are mainly optimized for speed or energy efficiency. Unlike
these, CLM emphasizes optimizing GPU memory efficiency.
Additionally, our offloading methods may complement these
accelerators by allowing a novel view synthesis task to utilize
them for speed improvement while using our techniques for
extra memory capacity.

8 Discussion and Future Work

Finally, we discuss how CLM can be generalized to other ren-
dering methods and backends, and future directions that use
spatial data structures to further aid with scaling.

Support for other rendering backends and methods.
CLM is backend-agnostic because it determines where to store
data (offloading), how to transfer it (overlapping), and when to
render each image (pipelining and ordering), without depend-
ing on the specific rendering procedure. This decoupling en-
ables seamless integration with APIs such as Vulkan and alter-
native rendering approaches like ray tracing, without requir-
ing changes to CLM ’s scheduling or offloading logic. Further-
more, the core pipeline naturally extends to a broader class of
point-based differentiable rendering techniques, such as 2D
Gaussian Splatting [20] and 3D Convex Splatting [19], due to
their similar reliance on sparse data access patterns induced
by frustum culling. However, CLM cannot generalize to non-
point-based novel view synthesis methods, like NeRF[36].
Integration of spatial data structures. As scenes grow
larger and more complex, the number of Gaussians increases
significantly. Although naive frustum culling—iterating over
every Gaussian—is not a yet bottleneck in our current eval-
uation, it could eventually become one as its time complexity
scales linearly with the number of Gaussians. Future work
could explore integrating spatial acceleration structures, such
as bounding volume hierarchies (BVHs), to organize Gaus-
sians more efficiently and thereby improving frustum culling
performance by skip non-intersected regions.

Portability to other GPUs. Our CLM implementation relies
on two CUDA features of NVIDIA GPUs: pinned memory for
direct memory access (DMA) and multi-streaming to overlap
data transfer with computation. Both pinned-memory DMA
and multi-streaming are standard features in modern GPUs
(e.g.,in AMD ROCm[1]), and thus do not fundamentally limit
portability.

9 Conclusion

Our goal in designing CLM was to allow 3DGS to be used with
larger scenes, without needing to compromise on rendering
quality or pay for multi-GPU training. We were able to meet
our goals because of the inherent sparsity of 3DGS’s computa-
tion and its memory access pattern, that allowed us to overlap
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GPU-CPU communication, GPU computation and CPU com-
putation. Our approach does not depend on details of how
views are rasterized or what kernels are used, and therefore it
can be applied to other novel view synthesis or ML methods
that exhibit similar computation and memory access patterns.
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A Appendix
A.1 Search for TSP solution

We formulate the training image reordering task into a TSP
problem, in which each training order corresponds to a tour
in the TSP instance. We implement a Stochastic Local Search
with well-established greedy heuristics (2-opt and 3-opt [11]
in our case). Our algorithm starts with an initial feasible
tour, and then iteratively improves the tour by applying local
greedy swapping. Our initialized tour is as follows: starts from
arandomly chosen city and repeatedly selects the nearest un-
visited city as the next destination. In the initialized tour, the
nodes are connected by edges to form a chain. During every
iterative improvement, we select 2 or 3 edges and remove
these edges and reconnect the segments in a new way that
reduces the tour length. We perform swaps until no further
improvement is found or an adjustable time limit is reached. In
our experiments, we use 1 ms as the time limit which is empir-
ically sufficient for us to find an optimal solution (compared to
DP-based method). The impressive results could be attributed
to the relatively small batch size (the number of nodes in TSP)
and oursisavariant of the TSP known as the metric TSP, which
is typically easier to address empirically. The metric TSP man-
dates that the distance function is symmetric and fulfills the tri-
angle inequality, which the symmetric distance complies with.

A.2 Dataset Preparation

3DGS training requires a camera pose for each image. The
Bicycle[6],Rubble[45], Alameda[7], and Matrixcity [31] datasets
initially support novel view synthesis and come with cam-
era poses. However, the Ithaca dataset, initially designed for
autonomous driving, does not include camera poses, so we
use colmap [43] to generate camera poses and the point cloud
(used for initializing Gaussians) ourselves.

The matrixcity dataset [31] comprises sub-scenes of vary-
ing sizes and offers two perspectives: aerial and street. For
our evaluation, matrixcity BigCity refers to the largest one
among the aerial views scenes.

We conducted experiments on all scenes at their native
resolutions, without image downsampling.

A.3 Fragmentation decreases the
available memory for accommodating Gaussians

Given most 3DGS training pipeline (and ours) are built on py-
torch, another factor that limits available memory for training
is memory fragmentation due to the Pytorch Cache Alloca-
tor. The PyTorch Cache Allocator manages GPU memory by
maintaining a pool of allocated memory blocks to reduce the
overhead of frequent memory allocations and deallocations.
Although this approach improves speed in many scenarios, it
can lead to fragmentation over time, especially in workloads
with varying allocation sizes. 3DGS exactly exhibits varying
activation states during training, and their model states are
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frequently densified and pruned, leading to substantial frag-
mentation challenges. This fragmentation further reduces
available GPU memory, hindering the accommodation of ad-
ditional Gaussian parameters.

A.4 Additional Hardware Utilization

Scene Metric Naive offloading (%) CLM (%)
Bicycle CPU Util 18.68 68.98
DRAM Read 9.61 16.72
DRAM Write 7.64 12.55
PCIe RX 12.62 20.85
PCle TX 14.18 14.20
Rubble CPU Util 21.47 64.83
DRAM Read 10.29 15.86
DRAM Write 7.79 11.52
PClIe RX 12.38 20.94
PCle TX 13.59 14.09
Alameda CPU Util 22.64 76.80
DRAM Read 7.27 10.61
DRAM Write 6.03 8.34
PCle RX 14.47 30.88
PCle TX 16.07 20.53
Ithaca CPU Util 24.97 82.44
DRAM Read 8.01 12.37
DRAM Write 5.17 7.37
PCIe RX 16.78 17.61
PCle TX 19.11 12.57
BigCity CPU Util 25.24 61.95
DRAM Read 8.84 16.14
DRAM Write 2.89 5.17
PCle RX 15.37 10.13
PCIe TX 16.97 7.13

Table 7. Hardware Utilization of CLM and Naive Offloading Across
Five Scenes on RTX 4090. CPU Util refers to CPU cores utilization.
DRAM Read/Write indicate GPU memory bandwidth utilization. PCIe
RX represents PCle CPU-to-GPU direction utilization, and PCIe TX
represents GPU-to-CPU direction utilization. All values are percentages
of utilization, ranging from 0 to 100. In each row, the bold figure is the
one with the higher utilization.

We additionally report the utilization of CPU cores, GPU
DRAM bandwidth and PCle bandwidth for both CLM and
naive offloading across all scenes on RTX 4090, as shown in
Table 7. To obtain CPU utilization, we extract thread schedul-
ing events from Nsight Systems” SCHED_EVENTS table, which
logs timestamps for entering and leaving each CPU core. We
calculate the percentage of time each core has a thread in
flight, then average across all cores to obtain overall CPU uti-
lization. Additionally, we collect other metrics at a sampling
rate of 10 kHz from Nsight Systems’ GPU_METRICS table: DRAM
Read Bandwidth,DRAM Write Bandwidth,PCIe RX,andPCIe
TX. These metrics reflect the read and write bandwidth uti-
lizations for both GPU Memory and PCle, respectively. All
utilization values are percentages, ranging from 0 to 100.



CLM : Removing the GPU Memory Barrier for 3D Gaussian Splatting

For CPU core utilization, CLM consistently achieves higher
usage than naive offloading. This is because CLM overlaps
CPU-side Adam optimization—the primary CPU workload—
with GPU computation and communication. In contrast, naive
offloading leaves most CPU cores idle while the GPU is com-
puting or transferring Gaussians between CPU and GPU mem-
ory.

For DRAM bandwidth, CLM consistently exhibits higher
utilization than naive offloading. This is because both ap-
proaches perform the same amount of memory access (as the
rendering operations are the same), but CLM consistently runs
faster, resulting in higher bandwidth utilization over time.

For PCle utilization, CLM generally shows higher values
than naive offloading, except in Ithaca’s PCIe TX and BigC-
ity’s PCIe RX and PCIe TX.In these 3 cases, naive offloading
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transfers significantly more data than CLM in each batch
(see Table 14), leading to higher utilization. Notably, CLM
achieves higher PCle utilization in most other cases despite
transferring less data. We also observe that PCIe RX (CPU-
to-GPU) utilization in CLM is consistently higher than PCIe
TX (GPU-to-CPU), due to gradient accumulation in CLM: old
gradients are loaded from CPU pinned memory to each CUDA
kernel via DMA, summed with new gradients, and written
back. This results in bidirectional PCle usage during gradient
offloading, whereas parameter loading is unidirectional from
CPU to GPU. Lastly, overall PCle utilization is low, because
the CPU/GPU may be busy and not sending data, and the
transfers may be too sparse to fully saturate the bandwidth
even when PCle is active.
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