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Prophet inequalities and Secretary problems are two classes of problems where online decision-making
meets stochasticity: in the first set of problems the inputs are random variables, whereas in the second
one the inputs are worst-case but revealed to the algorithm (a.k.a. the decision-maker) in random order.
Here we survey some results, proofs, and techniques, and give some pointers to the rich body of work
developing around them.

1 The Prophet Inequality

The problem setting: there are n random variables X1, X2, . . . , Xn. We know their distributions up-
front, but not their realizations. These realizations are revealed one-by-one (say in the order 1, 2, . . . , n).
We want to give a strategy (which is a stopping rule) that, upon seeing the value Xi (and all the values
before it) decides either to choose i, in which case we get reward Xi and the process stops. Or we can
pass, in which case we move on to the next items, and are not allowed to come back to i ever again. We
want to maximize our expected reward. If Xmax := max{X1, X2, . . . , Xn}, it is clear that our reward
cannot exceed E[Xmax]. But how close can we get?1

In fact, we may be off by a factor of almost two against this yardstick in some cases: suppose X1 = 1
surely, whereas X2 = 1/ε with probability ε, and 0 otherwise. Any strategy either picks 1 or passes on
it, and hence gets expected value 1, whereas E[Xmax] = (2− ε). Surprisingly, this is the worst case.

Theorem 1.1 (Krengel, Sucheston, and Garling) There is a strategy with expected reward 1
2E[Xmax].

We now give two proofs of this theorem. For the moment, let us ignore computational considerations,
and just talk about the information theoretic issues.

Proof. (Due to Ester Samuel-Cahn.) Let τ be the median of the distribution of Xmax: i.e., Pr[Xmax ≥
τ ] = 1/2. (For simplicity we assume that there is no point mass at τ , the proof is easily extended to
discrete distributions too.) Now the strategy is simple: pick the first Xi which exceeds τ . Clearly, we
will pick an item with probability exactly 1

2 , but how does the expected reward compare with E[Xmax]?

E[Xmax] ≤ τ + E[(Xmax − τ)+])

≤ τ + E
[ n∑
i=1

(Xi − τ)+
]
.

And what does the algorithm get?

ALG ≥ τ · Pr[Xmax ≥ τ ] +

n∑
i=1

E[(Xi − τ)+] · Pr[
∧
j≤i

(Xj < τ)]

1If we want to find the best strategy, and we know the order in which we are shown these r.v.s, there is dynamic
programming algorithm. (Exercise!)
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≥ τ · Pr[Xmax ≥ τ ] +

n∑
i=1

E[(Xi − τ)+] · Pr[Xmax < τ ]

But both these probability values equal half, and hence ALG ≥ 1/2E[Xmax].

While a beautiful proof, it is somewhat mysterious, and difficult to generalize. Indeed, suppose we are
allowed to choose up to k variables to maximize the sum of their realizations? The above proof seems
difficult to generalize, but the following LP-based one will.

Proof. (Due to Chawla, Hartline, Malec, and Sivan; Alaei.2) Define pi as the probability that element
Xi takes on the highest value. Hence

∑
i pi = 1. Moreover, suppose τi is such that Pr[Xi ≥ τi] = pi,

i.e., the pthi percentile for Xi. Define

vi(pi) := E[Xi | Xi ≥ τi]

as the value of Xi conditioned on it lying in the top pthi percentile. Clearly, E[Xmax] ≤
∑

i vi(pi) · pi.

A Simpler, Weaker Bound. Here’s a simple algorithm that gets value 1/4
∑

i vi(pi) · pi ≥ 1/4E[Xmax].

If we have not chosen an item among 1, . . . , i−1, when looking at item i, pass with probability
half without even looking at Xi, else accept it if Xi ≥ τi.

Say we “reach” item i if we’ve not picked an item before i. The expected value of the algorithm is

ALG ≥
n∑
i=1

Pr[reach item i] · 1/2 · Pr[Xi ≥ τi] · E[Xi | Xi ≥ τi]

=
n∑
i=1

Pr[reach item i] · 1/2 · pi · vi(pi). (1.1)

Since we pick each item with probability 1
2pi, the expected number of items we choose is half. So, by

Markov’s inequality, the probability we pick no item at all is at least half. Hence, the probability we
reach item i is at least one half too, the above expression is 1/4

∑
i vi(pi) · pi as claimed.

The Bound of 2. To improve this algorithm, suppose we denote the probability of reaching item i by
ri, and suppose we reject item i outright with probability 1− qi. Then (1.1) really shows that

ALG ≥
n∑
i=1

ri · qi · pi · vi(pi).

Above, we ensured that qi = ri = 1
2 , and hence lost a factor of 1

4 . But if we could ensure that ri ·qi = 1/2,
we’d get the desired result of 1/2E[Xmax]. For the first item r1 = 1 and hence we can set q1 = 1/2.
What about future items? Note that since that

ri+1 = ri(1− qi · pi) (1.2)

we can just set qi+1 = 1
2ri+1

. A simple induction shows that ri+1 ≥ 1
2—indeed, sum up (1.2) to get

ri+1 = r1 −
∑

j≤i pi/2—so that qi+1 ∈ [0, 1] and is well-defined.

2If you know of an earlier reference, let me know.
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Such a result, that gives a stopping rule whose value is comparable to the E[Xmax] is called a prophet
inequality, the idea being that one can come close to the performance of a prophet who is clairvoyant,
can see the future. The result in Theorem 1.1 was proved by Krengel, Sucheston, and Garling [KS78];
several proofs have been given since. See the survey by Hill and Kertz [HK92] for classical work,
and references in, e.g., [KW12, AKW14] for more recent work. Apart from being a useful algorithmic
construct, the prophet inequality naturally fits into work on algorithmic auction design: suppose you
know that n potential are interested in an item with valuations X1, . . . , Xn, and you want to sell to one
person: how do you make sure your revenue is close to E[Xmax]?

1.1 Discussion and Extensions

1.1.1 The Computational Aspect

If the distribution of the r.v.s Xi is explicitly given, the proofs above immediately give us algorithms.
However, what if the variables Xi are given via a black-box that we can only access via samples?

The first proof merely relies on finding the median: in fact, finding an “approximate median” τ̂ such
that Pr[Xmax < τ̂ ] ∈ (12 − ε,

1
2 + ε) gives us expected reward 1

2+ε/2E[Xmax]. To do this, sample from

Xmax O(ε−2 log δ−1) times (each sample to Xmax requires one sample to each of the Xis) and take τ̂ to
be the sample median. A Hoeffding bound shows that τ̂ is an “approximate median” with probability
at least 1− δ.
For the second proof, there are two ways of making it algorithmic. Firstly, if the quantities are polyno-
mially bounded, estimate pi and vi by sampling. Alternatively, solve the convex program

max

{∑
i

yi · vi(yi) |
∑
i

yi = 1

}
and use the yi’s from its solution in lieu of pi’s in the algorithm above.

Do we need such good approximations? Since getting samples from the distributions may be expensive,
how many samples can we get away with? The paper of Azar, Kleinberg, and Weinberg [AKW14] shows
how to get a constant fraction of E[Xmax] via taking just one sample from each of the Xis.

1.1.2 Extensions: Picking Multiple Items

What about the case where we are allowed to choose k variables from among the n? Proof #2 generalizes
quite seamlessly. If pi is the probability that Xi is among the top k values, we now have:∑

i pi = k. (1.3)

The “upper bound” on our quantity of interest remains essentially unchanged:

E[sum of top k r.v.s] ≤
∑

i vi(pi) · pi. (1.4)

What about an algorithm to get value 1/4 of the value in (1.4)? The same as above: reject each item
outright with probability 1/2, else pick i if Xi ≥ τi. Proof #2 goes through unchanged.

Better: For this case, we can do much better: a result of Alaei shows that one can get within (1− 1√
k+3

) of

the value in (1.4)—for k = 1, this nicely matches the 1/2. One can, however, get a factor of (1−O(
√

log k
k ))

using a simple concentration bound (as in [HKS07]).
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Suppose we reduce the rejection probability to δ. Then the probability that we reach some item i without
having picked k items already is lower-bounded by the probability that we pick at most k elements in the
entire process. Since we reject items with probability δ, the expected number of elements we pick is (1− δ)k.

Hence, the probability that we pick less than k items is at least 1− e−Θ(δ2k), by a Hoeffding bound for sums

of independent random variables. Now setting δ = O(
√

log k
k

) ensures that the probability of reaching each

item is at least (1− 1
k

), and a argument similar to that in Proof #2 shows that

ALG ≥
∑n
i=1 Pr[reach item i] · Pr[not reject item i] · Pr[Xi ≥ τi] · E[Xi | Xi ≥ τi]

=
∑n
i=1(1− 1

k
) · (1−O(

√
log k
k

)) · pi · vi(pi),

which gives the claimed bound of (1−O(
√

log k
k

)).

1.1.3 Extensions: Matroid Constraints

Suppose there is a matroid structureM with ground set [n], and the set of random variables we choose
must be independent in this matroid M.3 The value of the set is the sum of the values of items within
it. (Hence, the case of at most k items above corresponds to the uniform matroid of rank k.) The
goal is to make the expected value of the set picked by the algorithm close to the expected value of the
max-weight independent set.

A result of Kleinberg and Weinberg [KW12] shows an algorithm to picks an independent set whose
expected value is at least half the value of the max-weight independent set, thereby extending the original
single-item prophet inequality seamlessly to all matroids. While their original proof uses a combinatorial
idea, a LP-based proof was subsequently given by Feldman, Svensson, and Zenklusen [FSZ16]. The idea
is again simple: find a solution y to the convex program∑

i vi(yi) · yi.
y ∈ the matroid polytope for M

Now given a fractional point y in the matroid polytope, how to get an integer point (i.e., an independent
set). For this they give an approach called an “online contention resolution” scheme that ensures that
any item i is picked with probability at least Ω(yi), much like in the single-item and k-item cases.

There are many other extensions to prophet inequalities: people have studied more general constraint
sets, submodular valuations instead of just additive valuations, what if the order of items is not known,
what if we are allowed to choose the order, etc. See papers on arXiv, or in the latest conferences for
much more.

Exercises

1. Give a dynamic programming algorithm for the best strategy when we know the order in which r.v.s are revealed
to us. (Footnote 1). Extend this to the case where you can pick k items.

Open problem: is this “best strategy” problem computationally hard when we are given a general matroid constraint?
Even a laminar matroid or graphical matroid?

2. If we can choose the order in which we see the items, show that we can get expected value ≥ (1 − 1/e)E[Xmax].
(Hint: use proof #2, but consider the elements in decreasing order of vi(pi).)

Open problem: can you beat (1− 1/e)E[Xmax]? A recent paper of [AEE+17] does so for i.i.d. Xis.

3Recall that a matroid M = (U,F) is a set U is a collection of subsets F ⊆ 2U such that (1) ∅ ∈ F , (2) if A ∈ F and
B ⊆ A then B ∈ F , and (3) if A,B ∈ F and |A| < |B| then there exists b ∈ B \ A such that A ∪ {b} ∈ F . Sets in F are
called independent sets.
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2 Secretary Problems

The problem setting: there are n items, each having some intrinsic non-negative value. For simplicity,
assume the values are distinct, but we know nothing about their ranges. We know n, and nothing else.
The items are presented to us one-by-one. Upon seeing an item, we can either pick it (in which case
the process ends) or we can pass (but then this item is rejected and we cannot ever pick it again). The
goal is to maximize the probability of picking the item with the largest value.

If an adversary chooses the order in which the items are presented, every deterministic strategy must
fail. Suppose there are just two items, the first one with value 1. If the algorithm picks it, the adversary
can send a second item with value 2, else it sends one with value 1

2 . Randomizing our algorithm can
help, but we cannot do much better than 1

n .

So the secretary problem asks: what if the items are presented in uniformly random order? For this
setting, it seems somewhat surprising at first glance that one can prove the following theorem (knowing
nothing other than n, and the promise of a uniformly random order):

Theorem 2.1 There is a strategy to pick the best item with probability at least 1
e .

Proof. Here’s a simple algorithm and proof showing a probability of 1
4 : ignore the first n/2 items, and

then pick the next item that is better than all the ones seen so far. Note that this algorithm succeeds
if the best item is in the second half of the items (which happens w.p. 1/2) and the second-best item
is in the first half (which, conditioned on the above event, happens w.p. ≥ 1/2). Hence 1

4 . Of course,
rejecting the first half of the items is not optimal, and there are other cases where the algorithm succeeds
that this simple analysis does not account for, so let’s be more careful.

First, our algorithm should never pick an element that is not the best so far. Moreover, if we define

f(i) = Pr[ith item is global best | ith is best so far] =
Pr[ith item is global best ]

ith is best so far
=

1/n

1/i
=
i

n
.

g(i) = Pr[picking global best using optimal strategy from item i onwards],

then g(i) is a non-increasing function (else we could use the strategy for g(i + 1) also for g(i) by just
ignoring item i + 1) and f(i) is increasing. So any optimal strategy should pass at times i where
f(i) < g(i + 1) and pick at other times if we see an element that is best so far. I.e., a strategy of the
type used in the simple proof of 1/4 is optimal (with a different threshold)!

OK, so if we reject the first τ items, then the probability we succeed in picking the global best is

n∑
t=τ+1

Pr[tth item is global best ] · Pr[ best of first t− 1 items in first τ positions ]

=

n∑
t=τ+1

1

n
· τ

t− 1
=
τ

n
(Hn−1 −Hτ−1).

This is g(τ + 1). So the first position where f(τ) = τ
n ≥ g(τ + 1) is given by the smallest τ such that

1 ≥ Hn−1 −Hτ−1, i.e., τ ≈ n/e for large n, and hence g(τ + 1) ≈ 1/e.

In keeping with the theme of this lecture, we now give an alternate proof that uses a convex-programming
view of the process. We will write down an LP that captures some properties of any feasible solution,
optimize this LP and show a strategy whose success probability is comparable to the objective of this
LP! The advantage of this approach is that it then extends to adding other constraints to the problem.
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Proof. (Due to Niv Buchbinder, Kamal Jain, and Mohit Singh.) Let us fix an optimal strategy. By
the first proof above, we know what it is, but let us ignore that for the time being. Let us just assume
w.l.o.g. that it does not pick any item that is not the best so far (since such an item cannot be the
global best).

Let pi be the probability that this strategy picks an item at position i. Let qi be the probability that
we pick an item at position i, conditioned on it being the best so far. So qi = pi

1/i = i · pi.
Now, the probability of picking the best item is∑

i Pr[ith position is global best and we pick it ]

=
∑

i Pr[ith position is global best ] · qi =
∑

i
1
nqi =

∑
i
i
npi. (2.5)

What are the constraints? Clearly pi ∈ [0, 1]. But also

pi = Pr[ pick item i | i best so far] · Pr[i best so far]

≤ Pr[ did not pick 1, . . . , i− 1 | i best so far] · (1/i) (2.6)

But not picking the first i− 1 items is independent of i being the best so far, so we get

pi ≤
1

i
(1−

∑
j<i

pj).

Hence, the success probability of any strategy (and hence of the optimal strategy) is upper-bounded by
the following LP in variables pi:

max
∑

i
i
n · pi
i · pi ≤ 1−

∑
j<i pj

pi ∈ [0, 1].

Now it can be checked that the solution pi = 0 for i ≤ τ and pi
τ
n( 1

i−1 −
1
i ) for τ ≤ i ≤ n is a feasible

solution, where τ is defined by the smallest value such that Hn−1 −Hτ−1 ≤ 1. (By duality, we can also
show it is optimal!)

Finally we can get a stopping strategy whose success probability matches that of the LP. Indeed, solve
the LP. Now, for the ith position if we’ve not picked an item already and if this item is the best so far,
pick it with probability ipi

1−
∑
j<i pj

. By the LP constraint, this probability ∈ [0, 1]. Moreover, removing

the conditioning shows we pick an item at location i with probability pi, and a calculation similar to
the one above shows that our algorithm’s success probability is

∑
i ipi/n, the same as the LP.

2.1 Discussion and Extensions

2.1.1 Extension: Game-Theoretic Issues

Note that in the optimal strategy, we don’t pick any items in the first n/e timesteps, and then we pick
items with quite varying probabilities. If the items are people interviewing for a job, this gives them an
incentive to not come early in the order. Suppose we insist that for each position i, the probability of
picking the item at position i is the same. What can we do then?

Let’s fix any such strategy, and write an LP capturing the success probabilities of this strategy with
uniformity condition as a constraint. Suppose p ≤ 1/n is this uniform probability (over the randomness
of the input sequence). Again, let qi be the probability of picking an item at position i, conditioned on
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it being the best so far. Note that we may pick items even if they are not the best so far, just to satisfy
the uniformity condition; hence instead of qi = i · p as before, we have

qi ≤ ip.

Moreover, by the same argument as (2.6), we know that

qi ≤ 1− (i− 1)p.

And the strategy’s success probability is again
∑
qi/n using (2.5). So we can now solve the LP

max
∑

i
1
n · qi

qi ≤ 1− (i− 1) · p
qi ≤ i · p
qi ∈ [0, 1], p ≥ 0

Now the Buchbinder et al. [BJS14] paper shows the optimal value of this LP is at least 1−1/
√

2 ≈ 0.29;
they also give a slightly more involved algorithm that achieves this success probability.

2.1.2 Extension: Multiple Items

Now back to having no restrictions on the item values. Suppose we want to pick k items, and want to
maximize the expected sum of these k values. Suppose the set of the k largest values is S? ⊆ [n], and
their total value is V ? =

∑
i∈S vi. It is easy to get an algorithm with expected value Ω(V ?). E.g., split

the n items into k groups of n/k items, and run the single-item algorithm separately on each of these.
(Why?) Or ignore the first half of the elements, look at the value v̂ of the (1 − ε)k/2th highest value
item in this set, and pick all items in the second half with values greater than v̂. And indeed, ignoring
half the items must lose a constant factor in expectation.

But here’s an algorithm that gives value V ?(1−δ) where δ → 0 as k →∞. We will set δ = O(k−1/3 log k)
and ε = δ/2. Ignore the first δn items. (We expect δk ≈ k2/3 items from S? fall in this ignored set.)
Now look at the value v̂ of the (1− ε)δkth-highest valued item in this ignored set, and pick the first (at
most) k elements with values greater than v̂ along the remaining (1− δ)n elements.

Why is this algorithm good? There are two failure modes: (i) if v′ = mini∈S? vi be the lowest value item we
care about, then we don’t want v̂ ≤ v′ else we may pick low valued items, and (ii) we want the number of
items from S? in the last (1− δ)n and greater than v̂ to be close to k.

Let’s sketch why both bad events happen rarely. For event (i) to happen, fewer than (1− ε)δk items from S?

fall in the first δn locations: i.e., their number is less than (1−ε) times its expectation, which has probability
exp(−ε2δk) = 1/ poly(k) by a Hoeffding bound. For event (ii) to happen, more than (1 − ε)δk of the top
(1− δ)k items from S? fall among the ignored items. This means their number exceeds (1 +O(ε)) times its
expectation, which again has probability exp(−ε2δk) = 1/ poly(k).

An aside: the standard concentration bounds we know are for sums of i.i.d. r.v.s whereas the random order
model causes correlations. The easiest way to handle that is to ignore not the first δn items but a random
number of items ∼ Bin(n, δ). Then each item has probability δ of being ignored, independent of others.

Is this tradeoff optimal? No. Kleinberg showed that one can get expected value V ?(1−O(k−1/2)), and
this is asymptotically optimal [Kle05].

In fact, one can extend this even further: a set of vectors a1,a2, . . . ,an ∈ [0, 1]m is fixed, along with
values v1, v2, . . . , vn. These are initially unknown. Now they are revealed one-by-one to the algorithm
in a uniformly random order. The algorithm, on seeing a vector and its value must decide to pick it
or irrevocably reject it. It can pick as many vectors as it wants, subject to their sum being at most k
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in each coordinate; the goal is to maximize the expected value of the picked vectors. The k-secretary
case is the 1-dimensional case when each ai = (1). Indeed, this is the problem of solving a packing
linear program online, where the columns arrive in random order. A series of works have extended the
k-secretary case to this online packing LP problem, getting values which are (1−O(

√
(logm)/k)) times

the optimal value of the LP. See, e.g., papers by [KRTV14, GM16, AD15].

2.1.3 Extension: Matroids

One of the most tantalizing generalizations of the secretary problem is to matroids. Suppose the n
elements form the ground set of a matroid, and the elements we pick must form an independent set in this
matroid. Babioff, Immorlica, and Kleinberg [BIK07] asked: if the max-weight independent set has value
V ∗, can we get Ω(V ∗) using an online algorithm? The current best algorithms, due to Lachish [Lac14],
and Feldman, Svensson, and Zenklusen [FSZ15], achieve expected value Ω(V ∗/ log log k), where k is
the rank of the matroid. Can we improve this further, say to a constant? A constant factor is known
for many classes of matroids, like graphical matroids, laminar matroids, transversal matroids, and
gammoids.

2.1.4 Other Random Arrival Models

One can consider other models for items arriving online: say a set of n items (and their values) is fixed
by an adversary, and each timestep we see one of these items sampled uniformly with replacement. (The
random order model is same, but without replacement.) This model, called the i.i.d. model, has been
studied extensively—results in this model are often easier than in the random order model (due to lack
of correlations). See, e.g., references in this monograph by Aranyak Mehta [Meh12].

Do we need the order of items to be uniformly random, or would weaker assumptions suffice? Kessel-
hiem, Kleinberg, and Niazadeh consider this question in a very nice paper and show that much less
independence is enough for many of these results to hold [KKN15].

In general the random-order model is a clean way of modeling the fact that an online stream of data
may not be adversarially ordered. Many papers in online algorithms have used this model to give better
results than in the worst-case model: some of my favorite ones are this paper of Meyerson [Mey01] on
facility location, and this paper of Bahmani, Chowdhury, and Goel on computing PageRank incremen-
tally [BCG10].

Again, see online for many many papers related to the secretary problem: numerous models, different
constraints on what sets of items you can pick, and how you measure the quality of the picked set. It’s
a very clean model, and can be used in many different settings.

Exercises

1. Give an algorithm for general matroids that finds an independent set with expected value at least an O(1/(log k))-
fraction of the max-value independent set.

2. Improve the above result to O(1)-fraction for graphic matroids.
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A Concentration Bounds for Sums of Random Variables

The following bound is used several times in this short survey:

Theorem A.1 (Hoeffding’s Bound) Suppose X = X1+X2+. . .+Xn, where the Xis are independent
random variables taking on values in the interval [0, 1]. Let µ = E[X] =

∑
iE[Xi]. Then

Pr[X > µ+ λ] ≤ exp

(
− λ2

2µ+ λ

)
(A.7)

Pr[X < µ− λ] ≤ exp

(
−λ

2

3µ

)
(A.8)

As an example, this shows that if an unbiased coin is tossed n times, with 99% chance the number of heads
lies in n

2
± Θ(

√
n). Indeed, if Xi = 1 w.p. 1

2
and 0 w.p. 1

2
, then µ = n/2, and both Pr[X > µ + c

√
n] and

Pr[X < µ− c
√
n] are bounded by 1/200 for some constant c.

Exercise: show that if n balls are thrown into n bins, the probability that bin 1 has load more than L is at
most e−Ω(L). Hence show that the max load in any bin is O(logn) with probability 1− 1/poly(n).
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