
concentration of measure 141

9.5 Application #1: Oblivious Routing on the Hypercube

Now we return to fourth application mentioned at the beginning of
the chapter. (The first two applications have already been considered
above, the third will be covered as a homework problem.)

The setting is the following: we are given the d-dimensional hyper-
cube Qd, with n = 2d vertices. We have n = 2d vertices, each labeled
with a d-bit vector. Each vertex i has a single packet (which we also
call packet i), destined for vertex π(i), where π is a permutation on
the nodes [n].

Packets move in synchronous rounds. Each edge is bi-directed,
and at most one packet can cross each directed edge in each round.
Moreover, each packet can cross at most one edge per round. So if
uv ∈ E(Qd), one packet can cross from u to v, and one from v to u,
in a round. Each edge e has an associated waiting queue We; so each
node has d queues, one for each edge leaving it. If several packets
want to cross an edge e in the same round, only one can cross; the
rest wait in the queue We and try again the next round. We assume
the queues are allowed to grow to arbitrary size (though one can also
show queue length bounds in the algorithm below). The goal is to get
a simple routing scheme that delivers the packets in O(d) rounds, no
matter what permutation π needs to be routed.

One natural proposal is the bit-fixing routing scheme: each packet
i looks at its current position u, finds the first bit position where u
differs from π(i), and flips the bit (which corresponds to traversing
an edge out of u). For example:

0001010→ 1001010→ 1101010→ 1100010→ 1100011.

However, this proposal can create “congestion hotspots” in the net- Suppose we choose a permutation π
such that

π(w000) = 000w,

where w, 000 ∈ {0, 1}d/2. All these 2d/2

packets have to pass through the all-
zeros node in the bit-fixing routing
scheme; since this node can send out at
most d packets at each timestep, need at
least 2d/2/d rounds.

work, and therefore delay some packets by 2Ω(d). In fact, it turns
out any deterministic oblivious strategy (that does not depend on the
actual sources and destinations) must have a delay of Ω(

√
2d/d)

rounds.

9.5.1 A Randomized Algorithm. . .

Here’s a lovely randomized strategy, due to Les Valiant, and to Valiant (1982)

Valiant and Brebner. It requires no centralized control, and is opti-
mal in the sense of requiring O(d) rounds (with high probability) on
any permutation π.

Each node i picks a randomized midpoint Ri independently and uni-
formly from [n]: it sends its packet to Ri. Then after 5d rounds have
elapsed, the packets proceed to their final destinations π(i). All routing
is done using bit-fixing.

https://mathscinet.ams.org/mathscinet-getitem?mr=MR0652908


142 application #1: oblivious routing on the hypercube

9.5.2 . . . and its Analysis

Theorem 9.16. The random midpoint algorithm above succeeds in deliver-
ing the packets in at most 10d rounds, with probability at least 1− 2

n .

Proof. We only prove that all packets reach their midpoints by time
5d, with high probability. The argument for the second phase is then
identical. Let Pi be the bit-fixing path from i to the midpoint Ri, and
define

Si := {j ̸= i | path Pj shares an edge with Pi}.

Claim 9.17. Any two paths Pi and Pj intersect in one contiguous
segment.

Proof. (Exercise.) This is where using a consistent routing strategy
like bit-fixing helps.

Claim 9.18. Packet i reaches midpoint Ri by time at most |Pi|+ |Si|.

Proof. Consider the path Pi = ⟨e1, e2, . . . , eℓ⟩ taken by packet i. If Si

were empty, clearly packet i would reach its destination in time |Pi|;
we now show how to charge each timestep that packet i is delayed
to a distinct packet in Si. For that, we first define the notion of lag. Observe: the lags are defined for pack-

ets in Si according to the numbering of
edges in Pi , not the numbering of their
own paths.

For any edge ek ∈ Pi, we say every packet in Wek at the beginning of
timestep t has lag t − k. Note that all packets in the same queue at
the same time have the same lag. Now:

1. Each packet j in Si ∪ {i} either reaches its destination on Pi or it
leaves Pi (forever, by Claim 9.17) after traversing some last edge
ek ∈ Pi. Call this traversal of ek the final traversal for packet j, and
call its lag value just before this final traversal its final lag.

2. Suppose packet i traverses the last edge eℓ on its path and reaches
its destination at timestep T. Since it has lag T − ℓ = T − |Pi| just
before it traverses the edge, it reaches the destination at time |Pi|
plus its final lag. So it suffices to show that i’s final lag is at most
|Si|.

3. The initial lag (at time t = 1) of this packet i is (1 − 1) = 0,
since it belongs to queue We1 at the very beginning. The lag of
this packet never decreases over time as it makes its way along
the path. Indeed, if it is in Wek at the beginning of some timestep
t, and it traverses the edge, it now belongs to wek+1 at the start of
timestep t + 1, and its new lag is (t + 1) − (k + 1) = t − k and
therefore unchanged.

4. Else suppose packet i’s lag increases from some value L to L + 1 at
some timestep. This is because i ∈ Wek for some k at the beginning



concentration of measure 143

of time t = L + k, but some other packet j ∈ Si from queue Wek

was sent across the edge ek at this timestep. In this case, imagine
packet i gives packet j a token numbered L. So there is a single
token generated for each increase in i’s lag, each with a different
number.

5. We show (in the next bullet point) how to maintain the invariant
that at the beginning of each time, any token numbered L still on
the path Pi is carried by some packet in Si with current lag L. This
implies that when a packet in Si makes its final traversal and it has
some final lag L′, it is either carrying a single token numbered L′

at that time or no token at all. Since each token is carried by some
packet, this means there can be at most |Si| tokens overall, and
hence i’s final lag value is at most |Si|.

6. To ensure the invariant, note that when j got the token numbered
L from i, packet j had lag value L. Now as long as j does not get
delayed as it proceeds along the path, its lag remains L (and it
keeps the token). If it does get delayed, say while waiting in queue
Wek′ while some other packet j′ (having the same lag value L,
because they were sharing the same queue) traverses the edge ek′ ,
packet j gives its token numbered L to this j′. This maintains the
invariant.

Finally, we bound the size of Si by a concentration bound. Since
Ri is chosen uniformly at random from {0, 1}d, the labels of i and Ri

differ in d/2 bits in expectation. Hence Pi has expected length d/2.
There are d2d = dn (directed) edges, and all n = 2d paths behave
symmetrically, so the expected number of paths Pj using any edge e
is n·d/2

dn = 1/2.

Claim 9.19. Pr[|Si| ≥ 4d] ≤ e−2d.

Proof. If Xij is the indicator of the event that Pi and Pj intersect,
then |Si| = ∑j ̸=i Xij, i.e., it is a sum of a collection of independent
{0, 1}-valued random variables. Now conditioned on any choice of
Pi (which is of length at most d), the expected number of paths using
each edge in it is at most 1/2, so the conditional expectation of Si is
at most d/2. Since this holds for any choice of Pi, the unconditional
expectation µ = E[Si] is also at most d/2.

Now apply the Chernoff bound to Si with λ = 4d− µ and µ ≤ d/2
to get

Pr[|Si| ≥ 4d] ≤ exp
{
− (4d− µ)2

2µ + (4d− µ)

}
≤ e−2d.



144 application #2: graph sparsification

Note that we could apply the bound even though the variables Xij

were not i.i.d., and moreover we did not need estimates for E[Xij],
just an upper bound for their expected sum.

Now applying a union bound over all n = 2d packets i means
that all n packets reach their midpoints within d + 4d steps with
probability 1− 2d · e−2d ≥ 1− e−d ≥ 1− 1/n. Similarly, the second
phase has a probability at most 1/n of failing to complete in 5d steps,
completing the proof.

A different strategy would be to let each packet pick a random
permutation and fix the bits according to that permutation. Sadly,
this approach gives delay 2Ω(d). This is true even if each node picks
its permutation independently. One bad example appears in Valiant’s
original paper (see Section 5 “The Necessity for Phase A”) and shows
that you can fix a permutation that “gangs up” on some node, even if
the bit-fixing order is random.

9.6 Application #2: Graph Sparsification

9.7 Application #3: The Power of Two Choices


