
7
Martingales

7.1 Online Edge Coloring (Online Fair Matchings)

In the online edge coloring problem, we are given a max degree ∆
and a sequence of edges e1, e2, . . . , em on a vertex set V with maxi-
mum degree ∆. The edges arrive one by one and we must color each
edge as it arrives with a color such that no two adjacent edges share
the same color. The goal is to minimize the number of colors used.
There has been recent progress on this problem by Blikstad, Svens-
son, Vintan, and Wajc that settles a conjecture of Bar-Noy, Motwani,
and Naor from 1992. They basically show the following:

Theorem 7.1. There is a randomized online algorithm that uses at most
(1 + o(1))∆ colors in expectation whenever ∆ = ω(

√
log n). Moreover,

there is a deterministic online algorithm that uses at most (1 + o(1))∆
colors whenever ∆ = ω(log n).

Both the randomized (and perhaps surpringly the deterministic)
algorithm are based on analyzing Martingales, which lead to rather
clean and tight algorithms. We explain this connection in a simplified
(but very related) setting of online fair matchings. Specifically, given
the max degree ∆, we wish to devise a randomized algorithm that
maintains a matching M in an online fashion (whenever an edge is
presented we need to irrevocably decide whether to include it in our
matching or not) such that the following holds:

Pr[e ∈ M] ≥ 1
∆ + q

∀e ∈ E ,

where q is a small "error" term that is o(∆). We can notice that if we
have an online edge coloring algorithm that uses at most ∆ + q colors,
then it is easy to achieve a fair matching algorithm. Simply output
one of the color classes uniformly at random. This shows that the
online edge coloring problem is at least as hard as the online fair
matching problem. Surprisingly, one can also (when randomization



60 online edge coloring (online fair matchings)

is allowed) go the other direction (up to losing some small factors
o(log n) etc.). In any case, we will focus on the online fair matching
problem and illustrate the main ideas there.

7.1.1 The Algorithm

After thinking about this for a while, there is almost only one reason-
able algorithm that comes to mind. At each time step t, we will for
each pair of vertices (i.e., potential edge e) maintain a bias Qt(e) that
we will use to sample the edge e if it arrives at time t. We will initial-
ize Q1(e) = 1/(∆ + q) for all edges e. Indeed, why would we ever
want to sample an edge with probability larger than 1/(∆ + q)? That
would only be detrimental, as it would mean we are over-sampling
some edges and decreasing the probability that we can take later
arriving edges. These biases will change over time, as we see now.

1. When an edge et = (ut, vt) arrives at time t, we sample it with
probability equal to its current bias Qt(et).

2. If we sample et, we add it to our matching M and then zero
out the bias for all edges e incident to either ut or vt, i.e., set
Qt+1(e) = 0 for all these edges. Indeed, we cannot select any of
these neighboring edges in a matching.

3. On the other hand, if we do not sample et, we will keep the match-
ing unchanged and update the neighbors’ biases as follows:

Qt+1(e) :=
Qt(e)

1 − Qt(et)
∀e incident to ut or vt .

The reason for this update is simple: that we want to “boost” the bi-
ases of the edges incident to ut or vt since we did not get to sample
et. Indeed, for an edge e incident to ut or vt we have that the prob-
ability that we sample that edge if it were to arrive at time t + 1 to
be

E[Qt+1(e) | Qt(e)] = Qt(et) · 0 + (1 − Qt(et))
Qt(e)

1 − Qt(et)
= Qt(e),

so these biases give us a Martingale!
In other words, that each edge e has the same probability of being

included in the matching if it were to arrive at time t or t + 1, or more
generally at any time step. Specifically, each edge e is sampled in the
matching with probability exactly 1/(∆ + q).

7.1.2 The Issue

However, an issue with the above “algorithm”: it is only well-defined
if we can ensure that Qt(et) ≤ 1 for all t and et.
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To get a feeling for this condition let us consider the following
example:

u vet

f1

...

f∆−1

g1

...

g∆−1

Here we think that the edges arrive in the order

f1, f2, . . . , f∆−1, g1, g2, . . . , g∆−1, et.

The only chance that we have to pick et in the matching is that none
of the other edges are selected in the matching. If this is the whole
graph, we have that

Qt(et) = Q1(et) ·
1

∏∆−1
i=1 (1 − Qi( fi))

· 1

∏∆−1
j=1 (1 − Q∆−1+j(gj))

,

which simplifies to Indeed, observe that Q2( f2) =
Q1( f2)

1−Q1( f1)
since f1 was not chosen, and hence
1 − Q2( f2) =

1−Q1( f1)−Q1( f2)
1−Q1( f1)

, etc.
Qt(et) =

1
∆ + q

· 1
St(u)

· 1
St(v)

,

where

St(u) = 1 −
∆−1

∑
i=1

Q1( fi) and St(v) = 1 −
∆−1

∑
j=1

Q1(gj) .

Calculations aside, this is rather natural as this is the probability that
u is free if we match every fi with probabiliity Q1( fi) and similarly
for v. Crucially, note that since each St(u) is a linear function of the
edge biases, it itself is a Martingale.

We thus have that both St(u) and St(v) are at least 1 − ∆−1
∆+q ≥

q/(2∆), where we used that q ≤ ∆. This gives us that

Qt(et) =
1

(∆ + q)
1

St(u)
1

St(v)
≤ 4

∆
q2 ≤ 1/

√
∆

if we set q = 4∆3/4. So this case is great in that P(et) is not only
smaller than 1 but actually very small (less than 1/

√
∆).

However, what if there are edges that arrive before the edges in the figure,
incident to the edges fi and gi? This may, if not taken, increase the
scaling factors 1/St(u) and 1/St(v). Moreover, it is very hard to get a
control on these P(·) values as they may be arbitrarily correlated.
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7.1.3 Concentration Save The Day

Martingale concentration allows us to handle this issue and only
consider the local 2-hop neighborhood of the edge et. Specifically, the
scaling factors St(u) form a Martingale for each u. So even if Q1( fi)

was not the original bias of the neighboring edge fi, but the bias due
to all the edges that care before, in expectation it equals 1/(∆ + q).

We can now use the known Martingale concentration inequalities
to show that the scaling factors St(u) do not deviate too much from
its initial value (which is at least q/(2∆)) over all arriving edges
incident to fi’s. A union bound then shows that P(et) ≤ O( 1√

∆
) with

high probability.
In the formal proof, we need to be a bit more careful to bound

the step size of the Martingale: this is done by never selecting edges
with probability much larger than 1/

√
∆ (if an edge arrives with

probability larger than this, we simply reject it). This then allows us
to use Freedman’s inequality to conclude that the Martingale does
not deviate too much from its initial value.


