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9.3 Chernoff bounds, and Hoeffding’s inequality

The main bound of this section is a bit of a mouthful, but as Ryan
O’Donnell says in his notes, you should memorize it “like a poem”. I
find it lies in a sweet spot: it is not difficult to remember, and still is
very broadly applicable: The provenance of these bounds is

again quite complicated. There’s Her-
man Chernoff’s paper, which derives
the corresponding inequality for i.i.d.
Bernoulli random variables. Wassily
Hoeffding gives the generalization
for independent random variables all
taking values in some bounded interval
[a, b]. Moreover, Chernoff attributes
his result to another Herman, namely
Herman Rubin. Then there’s Harald
Cramér (of the Cramér-Rao fame, not of
Cramer’s rule). And there’s the bound
by Sergei Bernstein, many years earlier,
which is at least as strong. . .

Theorem 9.8 (Hoeffding’s inequality). Let X1, . . . , Xn be n independent
random variables taking values in [0, 1]. Let Sn := ∑n

i=1 Xi, with mean
µ := E[Sn] = ∑i E[Xi]. Then for any λ ≥ 0 we have

Upper tail : Pr
[
Sn ≥ µ + λ

]
≤ exp

{
− λ2

2µ + λ

}
. (9.8)

Lower tail : Pr
[
Sn ≤ µ− λ

]
≤ exp

{
−λ2

3µ

}
. (9.9)

Before we prove the bound, let’s give a simpler version that suf-
fices for many settings; here we assume the deviation λ is smaller
than the mean, and hence can be written as βµ for β ∈ [0, 1].

Corollary 9.9 (Double-Sided Concentration Bound). For X1, . . . , Xn

independent r.v.s taking values in [0, 1], Let Sn := ∑n
i=1 Xi have mean

µ := E[Sn]. Then for any β ∈ [0, 1],

Pr
[
Sn ̸∈ µ(1± β)

]
≤ 2 e−β2µ/3. (9.10)

9.3.1 The Proof

Proof of Theorem 9.8. We only prove (9.8); the proof for (9.9) is similar.
The idea is to use Markov’s inequality not on the square or the fourth
power, but on a function which is fast-growing enough so that we get
tighter bounds, and “not too fast” so that we can control the errors.
So we consider the Laplace transform, i.e., the function

x 7→ etx

for some value t > 0 to be chosen carefully. Since this map is mono-
tone,

Pr[Sn ≥ µ + λ)] = Pr[etSn ≥ et(µ+λ)]

≤ E[etSn ]

et(µ+λ)
(using Markov’s inequality)

=
∏i E[etXi ]

et(µ+λ)
(using independence) (9.11)

Bernoulli random variables: Assume that all the Xi ∈ {0, 1}; we will
remove this assumption later. Let the mean be µi = E[Xi], so the
moment generating function can be explicitly computed as

E[etXi ] = 1 + µi(et − 1) ≤ exp(µi(et − 1)).
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Substituting, we get

Pr[Sn ≥ µ + λ] ≤ ∏i E[etXi ]

et(µ+λ)
(9.12)

≤ ∏i exp(µi(et − 1))
et(µ+λ)

(9.13)

≤ exp(µ(et − 1))
et(µ+λ)

(since µ = ∑
i

µi)

= exp(µ(et − 1)− t(µ + λ)). (9.14)

Since this calculation holds for all positive t, and we want the tightest
upper bound, we should minimize the expression (9.14). Setting the
derivative w.r.t. t to zero gives t = ln(1 + λ/µ) which is non-negative
for λ ≥ µ. This bound on the upper tail is also

one to be kept in mind; it often is
useful when we are interested in large
deviations where λ ≫ µ. One such
example will be the load-balancing
application with jobs and machines.

Pr[Sn ≥ µ + λ] ≤ eλ

(1 + λ/µ)µ+λ
. (9.15)

If we define β := λ/µ as the deviation in multiples of the mean, this
quantity is

Pr[Sn ≥ µ + λ] ≤
(

eβ

(1 + β)1+β

)µ

, (9.16)

which is an expression that may be easy to deal with/memorize.
And we can simplify even further: since

β

1 + β/2
≤ ln(1 + β) (9.17)

for all β ≥ 0, so we get

(9.16)
(9.17)
≤ exp

{−β2µ

2 + β

}
= exp

{ −λ2

2µ + λ

}
,

where the last expression follows by algebraic manipulation. This
proves the upper tail bound (9.8); a similar proof gives us the lower
tail as well.

Removing the assumption that Xi ∈ {0, 1}: If the r.v.s are not Bernoullis,
then we define new Bernoulli r.v.s Yi ∼ Bernoulli(µi), which take
value 0 with probability 1− µi, and value 1 with probability µi, so
that E[Xi] = E[Yi]. Note that f (x) = etx is convex for every value
of t ≥ 0; hence the function ℓ(x) = (1− x) · f (0) + x · f (1) satisfies
f (x) ≤ ℓ(x) for all x ∈ [0, 1]. Hence E[ f (Xi)] ≤ E[ℓ(Xi)]; moreover
ℓ(x) is a linear function so E[ℓ(Xi)] = ℓ(E[Xi]) = E[ℓ(Yi)], since
Xi and Yi have the same mean. Finally, ℓ(y) = f (y) for y ∈ {0, 1}.
Putting all this together,

E[etXi ] ≤ E[etYi ] = 1 + µi(et − 1) ≤ exp(µi(et − 1)),

so the step from (9.12) to (9.13) goes through again. This completes
the proof of Theorem 9.8.
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Since the proof has a few steps, let’s take stock of what we did:
i. Apply Markov’s inequality on the function etX ,
ii. Use independence and linearity of expectations to break into etXi ,
iii. Reduce to the Bernoulli case Xi ∈ {0, 1},
iv. Compute the MGF (moment generating function) E[etXi ],
v. Choose t to minimize the resulting bound, and
vi. Use convexity to argue that Bernoullis are the “worst case”. Do make sure you see why the bounds

of Theorem 9.8 are impossible in
general if we do not assume some kind
of boundedness and independence.

You can get tail bounds for other functions of random variables
by varying this template around; e.g., we will see an application for
sums of independent normal (a.k.a. Gaussian) random variables in
the next chapter.

9.3.2 The Generic Chernoff Bound

Let’s consider the case where the r.v.s Xi are identically distributed.
Suppose we start off the same, and get to (9.11). Now define the log-
MGF of the underlying r.v. X to be

ψ(t) := E[etX ]. (9.18)

The expression (9.11) can be then written as

exp
(
n ψ(t)− t(µ + λ)

)
= exp(−n(t(µ+λ)/n− ψ(t))).

The tightest upper bound is obtained when the expression tλ/n −
ψ(t) is the largest. The Legendre-Fenchel dual of the function ψ(t) is This is also called the convex conjugate.

Since it is the max of a collection of
linear functions, one for each t, the dual
function ψ∗ is always convex, even if
the original function ψ is not.

defined as

Exercise: if ψ1(t) ≥ ψ2(t) for all t ≥ 0,
then ψ∗1 (λ) ≤ ψ∗2 (λ) for all λ.

ψ∗(λ) := sup
t≥0
{tλ− ψ(t)},

so we get the following concise statement, which we call the generic
Chernoff bound:

Theorem 9.10 (Generic Chernoff Bound). Suppose Sn is the sum of n
i.i.d. random variables, each having log-MGF ψ(t). Let µ := E[Sn]. Then

Pr[Sn ≥ µ + λ] ≤ exp
(
− n · ψ∗

(
µ + λ

n

))
. (9.19)

For the rest of the proof of the Chernoff bound, we can just focus
on computing the dual ψ∗(λ) of the log-MGF ψ(t). Let’s see some
examples:

1. The first example is when X ∼ N(0, σ2), then

E[etX)] =
1√
2πσ

∫

x∈R
etxe−

x2

2σ2 dx

= et2σ2/2 · 1√
2πσ

∫

x∈R
e−

(x−tσ2)2

2σ2 dx = et2σ2/2. (9.20)
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Hence, for X ∼ N(0, σ2) r.v.s, we have

ψ(t) =
t2σ2

2
and ψ∗(λ) =

λ2

2σ2 ,

the latter by basic calculus. Now the generic Chernoff bound (9.19)
for the sum of n normal N(0, σ2) variables says:

Pr[Sn ≥ λ] ≤ e−
λ2

2n σ2 . (9.21)

This is even interesting when n = 1, in which case we get that for a
N(0, σ2) random variable G, In fact, you may have noticed that for

Gaussians, the two statements (9.21)
and (9.22) are equivalent, using the fact
that the sum of n independent N(0, σ2)
r.v.s is itself a N(0, nσ2) r.v..

Pr[G ≥ λ] ≤ e−
λ2

2 σ2 . (9.22)

2. How about a Rademacher {−1,+1}-valued r.v. X? The MGF is

E[etX ] =
et + e−t

2
= cosh t = 1 +

t2

2!
+

t4

4!
+ · · · ≤ et2/2,

so

ψ(t) =
t2

2
and ψ∗(λ) =

λ2

2
.

Note that

ψRademacher(t) ≤ ψN(0,1)(t) =⇒ ψ∗Rademacher(λ) ≥ ψ∗N(0,1)(λ).

This means the upper tail bound for a single Rademacher is at
least as strong as that for the standard normal.

3. And what about a centered Bernoulli with bias p? The log-MGF is

ψ(t) := log E[etX ] = log((1− p) + pet),

and a little calculus shows that the dual is

ψ∗(λ) = λ log
λ

p
+ (1− λ) log

1− λ

1− p
.

Interestingly this function has a name: it is Kullback-Leibler diver-
gence DKL(λ∥p) between two Bernoulli distributions, one with bias
λ and the other with bias p. In summary, if we write µ + λ = qn The KL divergence DKL(q∥p), also

called the relative entropy, is a distance
measure between two distributions.
It is not symmetric, so be careful with
the order of the arguments! We will
see more of it when we discuss online
learning and mirror descent.

for some q > p, we have

Pr[Sn ≥ qn] ≤ e−nDKL(q∥p).

We can also extend the generic Chernoff bound to sums of non-
identical distributions using the AM-GM inequality: details here.
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9.3.3 The Examples Again: New and Improved Bounds

Example 1 (Coin Flips): Since each r.v. is a Bernoulli(p), the sum
Sn = ∑i Xi has mean µ = np, and hence

Pr
[
|Sn − np| ≥ βn

]
≤ exp

(
− β2n

2p + β

)
≤ exp

(
− β2n

2

)
.

(For the second inequality, we use that the interesting settings have
p + β ≤ 1.) Hence, if n ≥ 2 ln(1/δ)

β2 , the empirical average Sn/n is
within an additve β of the bias p with probability at least 1− δ. This
has an exponentially better dependence on 1/δ than the bound we
obtained from Chebychev’s inequality.

This is asymptotically the correct answer: consider the problem
where we have n coins, n− 1 of them having bias 1/2, and one having
bias 1/2 + 2β. We want to find the higher-bias coin. One way is to es-
timate the bias of each coin to within β with confidence 1− 1

2n , using
the procedure above—which takes O(log n/ε2) flips per coin—and
then take a union bound. It turns out any algorithm needs Ω(n log n)

ε2

flips, so this the bound we have is tight. .

Example 2 (Load Balancing): Since the load Li on any bin i behaves
like Bin(n, 1/n), the expected load is 1. Now (9.8) says:

Pr[Li ≥ 1 + λ] ≤ exp
(
− λ2

2 + λ

)
.

If we set λ = Θ(log n), the probability of the load Li being larger than
1 + λ is at most 1/n2. Now taking a union bound over all bins, the
probability that any bin receives at least 1 + λ balls is at most 1

n . I.e.,
the maximum load is O(log n) balls with high probability.

In fact, the correct answer is that the maximum load is (1 +

o(1)) ln n
ln ln n with high probability. For example, the proofs in cite show

this. Getting this precise bound requires a bit more work, but we can
get an asymptotically correct bound by using (9.15) instead, with a
setting of λ = C ln n

ln ln n with a large constant C.
Moreover, this shows that the asymmetry in the bounds (9.8)

and (9.9) is essential. A first reaction would have been to believe The situation where λ ≤ µ is often
called the Gaussian regime, since the
bound on the upper tail behaves like
exp(−λ2/µ) = exp(−β2µ), with
β = λ/µ. In other cases, the upper tail
bound behaves like exp(−λ), and is
said to be the Poisson regime.

our proof to be weak, and to hope for a better proof to get

Pr[Sn ≥ (1 + β)µ] ≤ exp(−β2µ/c)

for some constant c > 0, for all values of β. This is not possible,
however, because it would imply a max-load of Θ(

√
log n) with high

probability.

Example 3 (Random Walk): In this case, the variables are [−1, 1]
valued, and hence we cannot apply the bounds from Theorem 9.8


