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Gaussians, Martingales, and Discrepancy

8.1 Introduction

In this lecture, we explore the interplay between Gaussian random
variables, dimension reduction, martingale concentration, and their
application to the problem of discrepancy minimization.

The plan for today is:

1. Basics about Gaussian random variables (r.v.s).
2. Dimension reduction via the Johnson-Lindenstrauss Lemma.
3. A recap of martingale concentration, particularly for Gaussians.

4. Discrepancy minimization using Random Walks, Martingales, and
Gaussians.

8.2 Facts about Gaussian Random Variables

We start by defining the Gaussian distribution and recalling some
fundamental properties.

Definition 8.1 (Gaussian (Normal) Distribution). A random variable
X follows a Gaussian (or Normal) distribution with mean y and
variance 0, denoted X ~ N(u,0?), if its probability density function
(PDF) is given by:

Fx(x) = ——— exp (—(’C;,é‘)z)

27102

If = 0and 02 = 1, it is called a standard Gaussian.
In this course, we often work with vectors of Gaussians.

Definition 8.2 (Multivariate Gaussian Distribution). A random vector
X € R" follows a multivariate Gaussian distribution with mean
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vector ji € R" and covariance matrix ¥ € R"*" (where X is positive
definite), denoted X ~ N(ji, ), if its PDF is:

L 1 IS R
38 = o (5 AT ).

If X consists of 1 independent standard Gaussians, then ji = 0 and
Y = I, (the identity matrix).

e Scaling: If X ~ N(y,0?), then cX ~ N(cp, c?0?).
® Sums: If X; ~ N(y;, (71-2) are independent, then }°X; ~ N(© y,-,ZUl-z).

Recall some fundamental properties of Gaussian (Normal) distri-
butions.

e Scaling: If X ~ N(y,0?), then cX ~ N(cp, c?c?).
* Sums: If X; ~ N(y;,0?) are independent, then ¥ X; ~ N(¥p;, Y. 07?).

A crucial property we will use extensively relates to projections of
multivariate Gaussians.

Fact 8.3. Let G; ~ N(0,1) be independent standard Gaussians, and
let G = (G1,Gy,...,Gy) € R™. For any fixed vector x € R", the inner
product is distributed as:

(x,G) ~ N (0, 2) = N(O, |Ix]%).

If ||x]| =1, then (x,G) ~ N(0,1).

8.2.1  Gaussians in Subspaces

We can also define Gaussian distributions constrained to a subspace.

Definition 8.4 (Gaussian from a Subspace). Suppose V is a subspace
of R" of dimension d < n. Pick an orthonormal basis 1,75, ..., 7, for
V. We define a Gaussian from subspace V, denoted ¢ ~ N(V), as:

where g; ~ N(0,1) are independent.

Fact 8.5. Let g ~ N(V). For any vector x € R™:
(x,8) ~ N(0,0?)

where 0% = ||Projy, (x)|%. If || x| = 1, then 02 < 1.
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8.3 Recap of Martingale Concentration

We recall the Azuma-Hoeffding inequality and its extensions.

Let Z1,Z, ... be independent r.v.s, and suppose X; is a function of
Z1,...,Z;. If the sequence of differences behaves nicely, we have con-
centration. For example, if X;|Z1, ..., Z;_1 behaves like a Rademacher
variable (taking values 1 with probability 1/2), Azuma-Hoeffding

/\2
Pr >A) <2exp <_2T)

8.3.1  Gaussian Concentration for Martingales

gives:

T
) X

i=1

This concentration extends naturally to Gaussian random variables.

Theorem 8.6 (Gaussian Concentration for Martingales). Suppose we
have a martingale difference sequence such that X;|Z4, ..., Z;_1 is Gaussian
with mean o.

1. If the conditional variance is 1, then:

T /\2
Pr ZXZ' > A <2exp(—2T>.

i=1
2. More generally, if X;|Zy,...,Z;i_1 ~ N(0,02), then:

T /\2
Pr 2Xi >A) <2exp —2202 .

i=1
Crucially, these concentration bounds also hold when T is a stop-

ping time (not a fixed quantity).

Definition 8.7 (Stopping Time). T is a stopping time with respect to a
sequence X1, Xy, ... if the event {T = t} depends only on the values
of Xlr‘ . .,Xt.

8.4 Discrepancy Minimization

We now turn to the main application: discrepancy minimization.

Definition 8.8 (Discrepancy). Given a set system S = (S1,S2,...,5m)
where each S; C [n] = {1,...,n}. A 2-coloring of [n] is a map
X : [n] = {—1,1}. The discrepancy of this coloring is

Y x()

JESi

disc(x) = m[ax

ie[m]

We want to find a coloring x that minimizes the discrepancy
(achieves good balance).

33
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8.4.1 Randomized Coloring

Fact 8.9. Consider a simple randomized approach: set x(j) € {—1,1}

uniformly and independently at random. For any set S;, E [Zje S; x( ])] =
0. By Chernoff-Hoeffding bounds:

/\2
Pr >A) <2exp <_2n>

By setting A = O(y/nlogm) and taking a union bound over all m
sets, we find that the discrepancy is < A with high probability (w.h.p.

1—1/poly(m)).

However, we can achieve tighter bounds.

Y x()

JESi

Theorem 8.10 (Spencer’s Theorem). There exists a coloring x such that

disc(x) < O (y/nlog(m/n)> :

If m = n, this guarantees O(y/n) discrepancy. (This is often sum-
marized as "six standard deviations suffice").

Spencer’s original proof was non-constructive (using the en-
tropy /pigeonhole principle on an exponentially large family). Bansal
(2010) provided the first algorithmic proof using semidefinite pro-
gramming and rounding. We will present a proof due to Lovett and
Meka, which uses Linear Algebra, Gaussians, and Martingales.

8.4.2  Step 1: Relaxation to Partial Colorings

Instead of requiring x : [n] — {—1,1}, we consider a "convex"
fractional relaxation, allowing yx : [n] — [—1,1].

Bad news: If we only minimize the fractional discrepancy, the
problem is trivial: set x(j) = 0 for all j, achieving "zero fractional
discrepancy”.

Fix: We require that most variables are "close” to £1, allowing only
a small fraction of variables to be far from {—1,1}.

Lemma 8.11 (Partial Coloring Lemma (Lemma 1)). Let xg = 0 be the
starting point in [—1,1]". We can find x € [—1,1]" such that:

1. ‘Zjesi xj‘ < /ISi| - A+1/poly(n) for all i.
2. #{jst. x; ¢ {-1,1}} <n/2.

Here A = cy/log(m/n) for some constant c.

We will actually prove a more general statement involving arbi-
trary vectors, which implies Lemma 8.11.
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Lemma 8.12 (Generalized Partial Coloring Lemma (Lemma 2)). Given
any vectors a1, ay, ..., 4, € R", any starting point xg € [—1,1]", and a
small 6 > 0 (e.g., 1/poly(n)). We can find x € [—1,1]" such that:

1. |{a;, x — x0)| < ||aj||2 - A for all i.
2. #{jst. xj € (—(1-6),1-0)} <n/2.

Here A = cy/log(m/n).

To see that Lemma 8.12 implies Lemma 8.11, set 4; to be the indi-
cator vector of set S; (so ||a;|l2 = 1/|S;|) and set xy = 0. We then take
the solution given by Lemma 8.12 and round the variables close to
+1 to exactly £1.

8.4.3 From Partial to Total Coloring

Before proving Lemma 8.12, let’s see how Lemma 8.11 implies
Spencer’s Theorem. We use an iterative approach.

Start at Xg = 0. Apply Lemma 8.11. This yields a set | of > n/2
variables colored {£1}. The remaining < n/2 variables are fractional.

Freeze the variables in J. Consider the remaining variables [n] \ J.
Start where the previous run stopped (using that configuration as the
new Xj) and run Lemma 8.11 again on this smaller instance of size
<n/2.

This finds a new set ]’ of > 1|[n] \ J| variables at +1. Repeat.

The net discrepancy may add up over the iterations. The total
discrepancy is bounded by:

Xx(S) <cy/nlog(m/n) + C\/; log(m/(n/2)) + C\/Z log(m/(n/4)) +...
=c- Z %log (2:71)

i>0

= O(y/nlog(m/n)).

The sum converges, dominated by the first term. This shows how to

get Spencer’s Theorem from Lemma 1 (and hence from Lemma 2).

8.5 Proof of Lemma 8.12: Gaussian Random Walks

How to prove Lemma 8.12? We use a beautiful algorithm utilizing
ideas from:

e Random Walks
e Gaussians

* Martingales
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Recall the goal (Lemma 8.12). WLOG, assume 4; are unit vectors,
so we want [(a;, x — xg)| < A. For convenience, we will prove that
#{jst x; € (—=(1-9),1-09)} <7n/10 (instead of < n/2).

8.5.1  The Algorithm Idea

The idea is to start at x and take tiny Gaussian steps. (X!T! = X! +
gaussian).
If we just do this, it is not great. We need to maintain constraints:

1. Coordinate bounds: x; € [~1,1] for all j.

2. Discrepancy bounds: (a;, x — xp) € [—A, A] for all i.

The Key Idea: If we get close to violating some constraint, we
"freeze" the solution, forcing subsequent steps to lie in a subspace
orthogonal to that constraint.

r
A<

- %
Logedumale
bowas

We define when a variable or a constraint is close to being vio-
lated.

Definition 8.13. A variable j is frozen if |x;| > 1 — . A constraint a;
is dangerous if |(a;, x — xp)| > A — .

Intuition: The variable bounds are often much closer to the origin
than the discrepancy bounds. So we expect the random walk to hit a
variable bound earlier, meaning we will freeze many more variables
than constraints become dangerous.

Figure 8.1: Feasible Region for the
Random Walk.
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8.5.2  The Algorithm Details

At time , we have a solution x!. Let F! = {j : \x]t| > 1— 6} be the set
of frozen variables. Let D! = {i : |(a;, x' — x°)| > A — 6} be the set of
dangerous constraints.

We define the subspace V; where the next step must lie.

Definition 8.14. Let V; be the subspace orthogonal to all frozen vari-
ables and all dangerous constraints.

Vi = (span ({ej:j € F'} U{a;: i€ Dt}))L.

The algorithm proceeds as follows. We set the step size € <
)

10+/log(mn) "
Algorithm 3: Lovett-Meka Algorithm
21 while dim(V;) > n/2 do
2.2 (This means we have few frozen/dangerous

constraints/variables.)
23 | Pick gt ~ N(V;) (a Gaussian from that subspace).
2q | Al xtpe-gp

The algorithm stops when dim(V;) < n/2. This means we have at
least 11/2 frozen variables or dangerous constraints in total (or more
precisely, the dimension spanned by them is > 71/2). We need to
show that most of these are frozen variables.

8.5.3 Analysis of the Algorithm
What could go wrong with the algorithm?

1. The solution x "jumps" outside the feasible region ([—1,1]" or the
discrepancy bounds).

2. The algorithm stops (when dim(V;) < n/2), but very few variables
are frozen (mostly dangerous constraints).

Let’s address these concerns.

1. Staying Feasible. We know that x!~! was "good". For non-frozen
variables, |x]t-_1| < 1 - 4. For non-dangerous constraints, |(a;, x'~1)| <
A 4.

For x! to go outside the feasible region, the step must be large:
leg’| > 4.

We analyze the probability of a large Gaussian step. Since the
components of ¢’ have variance < 1:

2
Pr(leg’| > 6) < 2exp (—(5/26)) :
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We chose € such that 6/e > \/log(mn).
100log(mn)\ 2
2 (mn)>0°

We can take a union bound over all m + n constraints and over all
49

Pr(leg’| > 8) < 2exp <—

time steps, provided the total number of steps T is less than (mn)
We will actually prove that T = O(1/€?) = O(poly(m,n)) many
steps.

2. How many steps? We analyze the expected progress of the algo-
rithm using the ¢, norm.

Fact 8.15. E [[|xT —x0|?] = Zyo7€? - E[dim(V})].
Proof.
E[Ilx! = 202] = E[|1x' = +egil?]

= E [[lx" = 20|2] +2¢E [(gr, 2" — x| +€E [Igi]]?]
The middle term is o because g; is independent of x' (conditioned on
Vi) and E[g¢] = 0 (by symmetry). The last term E [||g[|? | V4] is the

dimension of the subspace V;. So, E [||x'*1 — x0?] = E [||x" — x0||?] +
€2 - E[dim(V})]. The result follows by induction. O

Since the algorithm runs as long as dim(V;) > n/2, we have:

T _ .02 2 o
E[Hx —x||}2£t:e 5 =T3¢

On the other hand, since xT

2" = x%]|> < O(n).
So, T4€* < O(n). This implies T < O(1/€?). The algorithm is very
likely to stop after O(1/€2) = O(poly(n,m)) steps.

must remain in [—1,1]", we must have

3. What happens at the stopping time? We need to analyze how many
frozen vs dangerous constraints we have. We want to bound the
number of dangerous constraints.

Let’s see what the probability is that a specific constraint i (say a;)
becomes dangerous. Let Y; = (a;, x' — x°). We want Pr(|Y7| > A —9).

Y7 is a martingale (it is the sum of the noise contributions €(a;, g¢)).
Let Z; = e(a;, gt). Zt is Gaussian N (0, Utz) where (th < €2 (since a; is a
unit vector and g; is a Gaussian in a subspace).

We use the Gaussian concentration for martingales, noting that T
is a stopping time.

(A—05)
Pr(|Yr| > A—6) <2exp <_22E[0t2})

A—05)?
<2exp (—(2T€2)> .
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We know Te? = O(1). We set A = O(+/log(m/n)).

n

Pr(constraint i dangerous) < 2exp(—0(A?)) = 2exp(—O(log(m/n))) < Tom*
(By choosing the constant c in A large enough).
Now we can calculate the expected number of dangerous con-
straints:
i n
E[#dangerous constraints] = } _ Pr(constraint i dangerous) < m - Tom = n/10.

1

By Markov’s inequality,
Pr(#dangerous > n/5) <1/2.

When the algorithm stops, we have dim(V;) < n/2. This implies
that the span of frozen variables and dangerous constraints has di-
mension > n/2. With probability > 1/2, we have #Dangerous < n/5.
In this case, the number of frozen variables must be large enough to
account for the remaining dimension (e.g., #Ffrozen > n/2 —n/5 =
3n/10).

This successfully proves Lemma 8.12 (except that we proved
#{jst xj € (—=(1-0),1-09)} <7n/10 instead of < n/2.) ).

8.6 To wrap up

Today we saw Gaussian RVs and their use for:
¢ Dimension reduction (for distance preservation).
¢ Discrepancy minimization.

Along the way, we needed:

¢ Concentration bounds for sums of squares of (independent) Gaus-
sians (Chi-squared distribution).

¢ Concentration bounds for Gaussians (but using martingale tech-
niques).

¢ Random walks with Gaussians.

These ideas are simple but very powerful! The dimension reduc-
tion techniques (approximate) are useful in various surprising con-
texts, such as Compressive Sensing (also the "single-pixel camera").

8.7 Dimension Reduction and the JL Lemma

For a set of n points {x1,%2,..., xn} in RP, can we map them into
some lower dimensional space R¥ and still maintain the Euclidean

89
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distances between them? We can always take k < n — 1, since any set
of n points lies on a n — 1-dimensional subspace. And this is (exis-
tentially) tight, e.g., if xp — x1,x3 — x1,...,x; — x7 are all orthogonal
vectors.

But what if we were fine with distances being approximately pre-
served? There can only be k orthogonal unit vectors in R*, but there
are as many as exp(ce?k) unit vectors which are e-orthogonal—i.e.,
whose mutual inner products all lie in [—¢, ¢]. Near-orthogonality al-
lows us to pack exponentially more vectors! (Indeed, we will see this
in a homework exercise.)

This near-orthogonality of the unit vectors means that distances
are also approximately preserved. Indeed, for any two 4,b € Rk,

la— bl = (a—b,a—b) = (a,a) +(b,b) — 2(a,b) = ||a|l3 +[|b|3 —2(a, b),

so the squared Euclidean distance between any pair of the points

defined by these e-orthogonal vectors falls in the range 2(1 + ¢). So,
if we wanted n points at exactly the same (Euclidean) distance from
each other, we would need n — 1 dimensions. (Think of a triangle in

2-dims.) But if we wanted to pack in n points which were at distance

(1 £¢) from each other, we could pack them into

k=0 (")

dimensions.

8.8 The Johnson Lindenstrauss lemma

The Johnson Lindenstrauss “flattening” lemma says that such a claim

is true not just for equidistant points, but for any set of n points in
Euclidean space:

Lemma 8.16. Let ¢ € (0,1/2). Given any set of points X = {x1,x2,...,%n}

in RD, there exists a map A : RP — R¥ with k = O(loggz"> such that

| A(x;) — A(x) 13

1—¢e<
% — x/]|3

<l+e

Moreover, such a map can be computed in expected poly(n, D,1/¢) time.

Note that the target dimension k is independent of the original
dimension D, and depends only on the number of points n and the
accuracy parameter &.

It is not difficult to show that we need at least ()(log n) dimen-
sions in such a result, using a packing argument. Noga Alon showed

a lower bound of Q( logn

W)' and then Kasper Green Larson and

Having n > exp(ce?k) vectors in d
dimensions means the dimension is
k= O(logn/e?).

Given n points with Euclidean distances
in (1 £ ¢), the balls of radius 15¢
around these points must be mutually
disjoint, by the minimum distance,

and they are contained within a ball

of radius (1 + ¢) + L3¢ around x,.
Since volumes of balls in R of radius r
behave like ckrk, we have

1—e\k 3+e\k
ma(—5) <a(5)
ork > Qlogn) fore <1/2.
Alon (2003)
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Jelani Nelson showed a tight and matching lower bound of Q(loggz")
dimensions for any dimensionality reduction scheme from 7 dimen-
sions that preserves pairwise distances.

The JL Lemma was first considered in the area of metric embed-
dings, for applications like fast near-neighbor searching; today we
use it to speed up algorithms for problems like spectral sparsification

Larson and Nelson (2017)
of graphs, and solving linear programs fast.

8.9 The Construction

The JL lemma is pretty surprising, but the construction of the map

is perhaps even more surprising: it is a super-simple randomized
construction. Let M be a k x D matrix, such that every entry of M is
filled with an i.i.d. draw from a standard normal N(0, 1) distribution
(ak.a. the “Gaussian” distribution). For x € RP, define

1
A(x) = —=Mx.
() =%
That’s it. You hit the vector x with a Gaussian matrix M, and scale it
down by v/k. That’s the map A.
Since A(x) is a linear map and satisfies ®A(x) + BA(y) = A(ax +
By), it is enough to show the following lemma:

Lemma 8.17. [Distributional Johnson-Lindenstrauss] Let ¢ € (0,1/2).
If A is constructed as above with k = ce %logé~!, and x € RP is a unit
vector, then

Pr[|[A(x)||3€14+¢ >1—0.

To prove Lemma 8.16, set 6 = 1/12, and hence k = O(e~2logn).
Now for each x;, x; € X, use linearity of A(-) to infer

|A(x;) — A(x)|)?

I
i — ;> i — ;>

= | A@y)|]* € (1 e)

with probability at least 1 — 1/ n?, where vjj is the unit vector in the
direction of x; — x;. By a union bound, all (3) pairs of distances in
(%) are maintained with probability at least 1 — (5) % > 1/2. A few

2 =
comments about this construction: ’

* The above proof shows not only the existence of a good map, we
also get that a random map as above works with constant prob-
ability! In other words, a Monte-Carlo randomized algorithm
for dimension reduction. (Since we can efficiently check that the
distances are preserved to within the prescribed bounds, we can
convert this into a Las Vegas algorithm.) Or we can also get deter-
ministic algorithms: see here.
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¢ The algorithm (at least the Monte Carlo version) is data-oblivious:
it does not even look at the set of points X: it works for any set X
with high probability. Hence, we can pick this map A before the
points in X arrive.

8.10 Intuition for the Distributional JL Lemma

Let us recall some basic facts about Gaussian distributions. The prob-
ability density function for the Gaussian N(u,0?) is

(x=p)?

fa)= e at

2o

We also use the following; the proof just needs some elbow grease.

Proposition 8.18. If G; ~ N(u1,07) and Gy ~ N(pa,03) are indepen-
dent, then for ¢ € R,
¢ Gy ~ N(cpy, c?o?) (8.1)
G1+ Gy ~ N(my +]/12,0'1 +0’22). (8.2)
Now, here’s the main idea in the proof of Lemma 8.17. Imagine

0). Then
Me; is just the first column of M, which is a vector with independent

that the vector x is the elementary unit vector e; = (1,0, ...,

and identical Gaussian values.

Gi1 Gip Gip| |1 G11

Gy1 Gop -+ Gyp| |0 G
Mey = | . ] . . =1 .

Gki Gk -+ Ggp] [0 Gr1

A(x) is a scaling-down of this vector by v/k: every entry in this

random vector A(x) = A(ey) is distributed as

1/vk- N (0,1) = N(0,1/k) (by (8.1)).

Thus, the expected squared length of A(x) = A(ey) is
k k 1
e [lacolF] - [ a] - £ o] - £ -1
=

i=1
So the expectation of ||A(x) ||2 is 1; the heart is in the right place!

ZA

Now to show that || A(x)||* does not deviate too much from the
mean—i.e., to show a concentration result. Indeed, ||A(x)||% is a sum
of independent N(0,1/k)? random variables, so if these N(0,1/k)?
variables were bounded, we would be done by the Chernoff bounds
of the previous chapter. Sadly, they are not. However, their tails are
fairly “thin”, so if we squint hard enough, these random variables

The fact that the means and the vari-
ances take on the claimed values should
not be surprising; this is true for all
r.v.s. The surprising part is that the
resulting variables are also Gaussians.

If G has mean y and variance 02, then
E[G?] = Var[G] 4+ E[G]? = 0% + 2.
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can be viewed as “pretty much bounded”, and the Chernoff bounds
can be used.

Of course this is very vague and imprecise. Indeed, the Laplace
distribution with density function f(x) o« e~*/*I for x € R also has
pretty thin tails—"exponential tails”. But using a matrix with Laplace
entries does not work the same, no matter how hard we squint. It
turns out you need the entries of M, the matrix used to define A(x),
to have “sub-Gaussian tails”. The Gaussian entries have precisely this
property.

We now make all this precise, and also remove the assumption
that the vector x = e1. In fact, we do this in two ways.

1. First we give a proof via a direct calculation: it has several steps,
but each step is elementary, and you are mostly following your
nose.

2. The second proof uses the notion of sub-Gaussian random vari-
ables from , and builds some general machinery for concentration
bounds.

8.11 A Direct Proof of Lemma 8.17

Recall that we want to argue about the squared length of A(x) € R,
where A(x) = ﬁMx, and x is a unit vector. First, let’s understand
what the expected length of A(x) is, and then we will show concen-

tration about the mean.

Lemma 8.19. Suppose the entries of M are independent random variables,
with mean zero and unit variance. Then for unit vector x € RP,

E[ A=) = [lx]>

Proof. Each entry of the vector Mx is the inner product of x with
a vector with independent zero mean and unit variance random
variables, and so is itself a random variable with zero mean and
variance ) ; xi2 = 1. This means that for any entry i € [k],

E[(Mx)?] = Var(Mx) + E[(Mx);]*> = 1.

Now E[[|A(x)|]?] =  Zi_; E[(Mx)?] =1 = |||, O
Observe that did not use the fact that the matrix entries were

Gaussians. We will use it for the concentration bound, which we
show next.
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8.11.1 Concentration about the Mean

Using that each entry of M is an independent N(0,1) r.v., we can
use Proposition 8.18 to infer that (Mx); ~ N(0,x2 +x3 + ... +
x4) = N(0,1). So, each of the k coordinates of Mx behaves just like
an independent Gaussian! For brevity, define

k
Z:= 4G = L g2,
i=
so Z is the average of the squares of a collection of k independent
N(0,1) r.vs.

Next we show that Z does not deviate too much from 1. Since Z is
the sum of a bunch of independent and identical random variables,
let’s start down the usual path for a Chernoff bound, for the upper
tail, say:

Pr[Z >14+ 8] < Pr[eth > etk(l+s)] < IE[eth}/etk(lJre) (8.3)
_ H (E[etcz]/et(l+s)) (8.4)

for every t > 0, where G ~ N(0,1). Now ]E[etcz], the moment-
generating function for G? is easy to calculate for t < 1/2:

etgze_gz/ng _ 1 6_22/2 dz 1

1
V271 Jger V27 Jzer VI—2t J1-2¢

Plugging back into (8.4), the bound on the upper tail shows that for
all t € (0,1/2),

. (8.5)

k
PrZ > (1+¢)] < (M@) .
Let’s just focus on part of this expression:
1 1
<m> = exp (—t ~3 log(1 — 2t))> (8.6)
= exp ((26)2/4+ (26 /6 + -+ ) 8.7)
<exp (P(1+2t 284 1)) (8.8)

= exp(t?/(1 —2t)).

Plugging this back, we get

1 k
Pr(Z > (1+¢)] < <W>

<exp(kt?/(1—2t) — kte) < e ke /8

The easy way out is to observe that
the squares of Gaussians are chi-
squared r.v.s, the sum of k of them

is x* with k degrees of freedom, and

the internet conveniently has tail
bounds for these things. But even if
you don’t recall these facts, and don’t
have internet connectivity and cannot
check Wikipedia, it is not that difficult
to prove from scratch.


http://en.wikipedia.org/wiki/Chi-square_distribution
http://en.wikipedia.org/wiki/Chi-square_distribution
http://mathworld.wolfram.com/Chi-SquaredDistribution.html
http://mathworld.wolfram.com/Chi-SquaredDistribution.html
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if we set t = ¢/4 and use the fact that 1 — 2t > 1/2 for ¢ < 1/2. (Note:
this setting of t also satisfies t € (0,1/2), which we needed from our
previous calculations.)

Almost done: let’s take stock of the situation. We observed that
| A(x)||3 was distributed like an average of squares of Gaussians, and
by a Chernoff-like calculation we proved that

Pr[||A(x)[3 > 1+¢] < exp(—ke*/8) < 6/2

fork = E% In %. A similar calculation bounds the lower tail, and
finishes the proof of Lemma 8.17.
The JL Lemma was first proved by Bill Johnson and Joram Linden-
strauss. There have been several proofs after theirs, usually trying to Johnson and Lindenstrauss (1982)
tighten their results, or simplify the algorithm/proof (see citations in
some of the newer papers): the proof above is some combinations of
those by Piotr Indyk and Rajeev Motwani, and Sanjoy Dasgupta and Indyk and Motwani (1998)
myself. Dasgupta and Gupta (2004)

8.12  Introducing Subgaussian Random Variables

It turns out that the proof of Lemma 8.17 is a bit cleaner (with fewer
calculations) if we use the abstraction provided by the generic Cher-
noff bound from last lecture, and the notion of subGaussian random
variables which we introduce next. This abstraction will also allow
us to extend the result to JL matrices having i.i.d. entries from other
distributions, e.g., where each Mij er{-1,+1}.

8.12.1 Subgaussian Random Variables

Recall the definitions of the log-MGF ¢ (t) and its Legendre-Fenchel
dual y*(A) from §?2.

Definition 8.20. A random variable V with mean 0 is subgaussian with
parameter o if its log-MGF ¢ (t) satisfies

o t?
P < ——

forall t > 0. It is subgaussian with parameter o up to t; if the above
inequality holds for all [¢]| < t,.

In other words, the log-MGF of a subgaussian r.v. is bounded
above by that of a Gaussian! At this point, it’s useful to recall a fact
we asked as an exercise in §2?:

Fact 8.21. If 1 (t) > ¢po(t) for all t > 0, then ¢} (A) < ¢35 (A) for all A.

Using this, the dual function of a subgaussian random variable
with parameter ¢ is bounded below by that of a Gaussian N(0,¢?),
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https://mathscinet.ams.org/mathscinet-getitem?mr=MR0737400
http://portal.acm.org/citation.cfm?id=276876&dl=
http://www.cs.cmu.edu/~anupamg/papers/jl.pdf
http://www.cs.cmu.edu/~anupamg/papers/jl.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=MR1715608
http://www.cs.cmu.edu/~anupamg/papers/jl.pdf
http://www.cs.cmu.edu/~anupamg/papers/jl.pdf
http://www.cs.cmu.edu/~anupamg/papers/jl.pdf
http://www.cs.cmu.edu/~anupamg/papers/jl.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=MR1943859
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which means we have a tighter upper tail bound! Indeed, combining
with (??), we immediately get:

Theorem 8.22 (Subgaussian Tail Bounds). If V is zero-mean and sub-
gaussian with parameter o, then

Pr[V > A] < e/ (0%,

Most tail bounds you will prove using the subgaussian perspective
will come down to showing that some random variable is subgaus-
sian with parameter ¢, whereupon you can use Theorem 8.22. Given
that you will often reason about sums of subgaussians, you may use
the next fact, which is an analog of Proposition 8.18.

Lemma 8.23. If V1, V,, ... are independent, zero-mean and o;-subgaussian,
and x1, %y, ... are reals, then V = Y; x;V; is \/¥; x?0?-subgaussian.

Proof. Using independence and the definition of subgaussian-ness:

]E[Etv] t):,xV H]E tx,, <Hetx, 0/2

125202

Finally taking logarithms, Yy (t) = ¥ ¢v: (tx;) < ¥ —4 . O

8.12.2 A Couple of Examples

Let’s do an example: suppose V ~ N(y,c?), then
1 e 2

—_— ee 22dx

V2o /XEIR

E[e!(V#)] =

(= mz 2

1 1202 /2 / t 202/2
= —c e dx = . 8.
V2o JxeR ®.9)

Hence, for N(u,0?) r.v.s, we have

2,2 )\2
P =" and ) =5y

the latter by basic calculus. Now the generic Chernoff bound for says
that for normal N(u,0?) variables,

A2
Pr[V—pu>Al<e 22, (8.10)
How about a Rademacher {—1, +1}-valued r.v. V? The MGF is
- el et 2t 2
E[e!(V-1)] = —cosht—1+2|+4|+ S < e,
50 2 2
t . A
P(t) = 3 and Pr(A) = >
Note that

lPRademacher(t) < lPN(O,l)(t) == lp?{ademacher(A) > lp;(\](o,l)()\)‘

This means the upper tail bound for a single Rademacher is at least
as strong as that for the standard normal.
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8.13 A Proof of Lemma 8.17 using Subgaussian r.v.s

Suppose we choose each M;; to be an independent copy of a subgaus-
sian r.v. with zero mean and unit variance, and let A(x) = - Mx

Tk
again? We want to show that

1

=1, (Mx)? (8.11)

™=

Z:= || AW)|?

Il
—_

has mean ||x||?, and is concentrated sharply around that value. Con-
veniently, we had only used the mean and variance of the entries of
M in proving Lemma 8.19, so we can still infer that

E[Z] = E[| A()|? = x| = 1.

It just remains to show the concentration.

8.13.1  Sums of Squares of Subgaussians

To add in. Until then see the explanaton in Matousek’s paper “On
Variants of the Johnson-Lindenstrauss Lemma”.

8.13.2 Relating Subgaussian to Gaussians

If you have done the proof for the Gaussian case, and just want to ex-
tend the JL Lemma to other subgaussian random variables, you need
not do all the work in §8.13.1. Instead you can relate subgaussian
concentration to good old Gaussian concentration.

Indeed, the direct proof from §8.11 showed the (Mx);s were them-
selves Gaussian with variance ||x||?. Since the Rademachers are 1-
subgaussian, Lemma 8.23 shows that (Mx); is subgaussian with
parameter ||x||>. Next, we need to consider Z, which is the average of
squares of k independent (Mx);s. The following lemma shows that the

MGEF of squares of symmetric o-subgaussians are bounded above by
2
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the corresponding Gaussians with variance o~. An rv. X is symmetric if it is distributed
the same as R|X|, where R is an inde-

Lemma 8.24. If V is symmetric mean-zero o-subgaussian r.v., and W ~ pendent Rademacher.
N(0,02), then E[¢!V*] < E[e'W*] for t > 0.

Proof. Using the calculation in (8.9) in the “backwards” direction
Ey[e!’] = Ey,wleVZ(V/0)W),

(Note that we’ve just introduced W into the mix, without any provo-
cation!) Hence, rewriting

Eyw[e (/0] = By By [V2/0)])
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we can use the o-subgaussian behavior of V in the inner expectation
to get an upper bound of

Eyy[e” (VHIWI/0)/2] = Epofet™]. O

Excellent. Now the bound on the upper tail for sums of squares
of symmetric mean-zero o-subgaussians follows from that of Gaus-
sians. The lower tail (which requires us to bound IE[etVZ] for t < 0)
needs one more idea: suppose V is a mean-zero o-subgaussian with
parameter 0> = 1, and suppose |t| < 1. A Taylor expansion shows
that

E[e"’] <1+ tE[V2] + £ Y E[VZ/il].
i>2
Since E[V?] = 1and [t| < 1, this is at most 1 + t + tzlE[eVZ]. Now
use the above bound lE[eVz] < ]E[ewz] to get that E[etvz] <1+t+
t2/4/1 —2t, and the proof proceeds as for the Gaussian case.

In summary, we get the same tail bounds as in §8.11.1, and hence
that the Rademacher matrix also has the distributional JL property,
while using far fewer random bits!

In general one can use other g-subgaussian distributions to fill
the matrix M—using ¢ different than 1 may require us to rework
the proof from §8.11.1 since the linear terms in (8.6) don’t cancel any
more, see works by Indyk and Naor or Matousek for details.

8.13.3 The Fast JL Transform

A different direction to consider is getting fast algorithms for the

JL Lemma: Do we really need to plug in non-zero values into every
entry of the matrix A? What if most of A is filled with zeroes? The
first problem is that if x is a very sparse vector, then Ax might be
zero with high probability? Achlioptas showed that having a random
two-thirds of the entries of A being zero still works fine: Nir Ailon
and Bernard Chazelle showed that if you first hit x with a suitable
matrix P which caused Px to be “well-spread-out” whp, and then
||APx|| =~ ||x|| would still hold for a much sparser A. Moreover, this
P requires much less randomness, and furthermore, the computa-
tions can be done faster too! There has been much work on fast and
sparse versions of JL: see, e.g., this paper from SOSA 2018 by Michael
Cohen, T.S. Jayram, and Jelani Nelson. Jelani Nelson also has some
notes on the Fast JL Transform.

8.14 Optional: Compressive Sensing

To rewrite. In an attempt to build a better machine to take MRI scans,
we decrease the number of sensors. Then, instead of the signal x we

Indyk and Naor (2008)
Matousek (2008)

Ailon and Chazelle

Cohen, Jayram, and Nelson (2018)


http://dx.doi.org/10.1145/1273340.1273347
http://www.cs.brown.edu/~matteo/augustseminar/papers/Matousek-VariantsJohnsonLindenstrauss.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2344022
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2436844
http://www.cs.princeton.edu/~chazelle/pubs/FJLT-sicomp09.pdf
http://www.cs.princeton.edu/~chazelle/pubs/FJLT-sicomp09.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2506527
https://core.ac.uk/display/154064060
https://mathscinet.ams.org/mathscinet-getitem?mr=MR3773205
https://people.eecs.berkeley.edu/~minilek/madalgo2015/index.html
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intended to obtain from the machine, we only have a small num-

ber of measurements of this signal. Can we hope to recover x from
the measurements we made if we make sparsity assumptions on x?
We use the term s-sparse signal for a vector with at most s nonzero

entries, i.e., with | supp(x) | <s. It is common to use the notation
llxllo := |supp(x)|, even though

Formally, x is a n-dimensional s-sparse vector, and a measurement 110
this is not a norm.

of x with respect to a vector a is a real number given by (a, x). If we
ask k questions, this gives us a k X n sensing matrix A (whose rows
are the measurements), and a k-dimensional vector b of results. We
want to reconstruct x with s nonzero entries satisfying Ax = b. This
is often written as

min{||x||0 | Ax = b}. (8.12)

8.14.1 Sparse Recovery: A First Attempt

What properties would we like from our sensing matrix A? The first
would be some form of consistency: that the problem should be
solvable.

Definition 8.25 (Kruskal Rank). An m X n matrix A has Kruskal rank
r if every subset of r of its columns are linearly independent.

Lemma 8.26 (Unique Decoding). If A has Kruskal rank > 2s, then for
any b we have Ax = b for at most one s-sparse x.

Proof. Suppose Ax = Ax’ for two s-sparse vectors x,x’. Then A(x —
x") = 0 for the 2s-sparse vector x — x’. The Kruskal rank being 2s
means this vector x — x’ = 0, and hence x = x’. O

So we can just find some sensing matrix with large Kruskal rank
Give examples here and ensure our results will be unique. The next
question is: how fast can we find x? (We should also be worried
about noise in the measurements.) A generic construction of matrices
with large Kruskal rank may not give us efficient solutions to (8.12).
Indeed, it turns out that the problem as formulated is NP-hard, as-
suming A and b are contrived by an adversary.

Of course, asking to solve (8.12) for general A, b is a more difficult
problem than we need to solve. In our setting, we can choose A as
we like and then are given b = Ax, so we can ask whether there are
matrices A for which this decoding process is indeed efficient. This is
precisely what we do next.
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8.14.2  The Basis Pursuit Algorithm

Consider the following similar looking problem called the basis pur-
suit (BP) problem:

min{||x||1 | Ax = b}. (8.13)

This problem can be formulated as a linear program as follows,
and hence can be efficiently solved. Introduce n new variables
Y1,Y2,-..,Yn under the constraints

miﬂ{zyi | Ax =b,~y; < x; < yi}-
1

Definition 8.27. We call a matrix A as BP-exact for sparsity s if for
all vectors b such that the non-convex program (8.12) has a unique
solution x*, this vector x* is also the unique optimal solution to the
basis pursuit LP (8.13).

In other words, we want a matrix A for which the two programs
return the same optimal solution. But do BP-exact matrices exist? If
so, how do we efficiently construct them? Our next ingredient will be
crucial to show their existence and construction.

Definition 8.28 (Restricted Isometry Property (RIP)). A matrix A is
(t,€)-RIP if for all unit vectors x with ||x||p < t, we have

|Ax|)3 € [1+€].

Lemma 8.29 (RIP = BP-exact). Ifa matrix A is (3s,¢€)-RIP for some
e < 1/9, then A is BP-exact for sparsity s.

Proof. Suppose x* is the unique solution to (8.12) and x the solution
to (8.13), so that

[l < ][] (8.14)

Suppose x — x* = A # 0; hence AA = A(x — x*) = 0. If we could
somehow show that supp(A) < 3s, then using the RIP property for
A, we would get

0=[AAlz = (1—-¢)lAlla >0,

a contradiction. But of course, A could have large support, so we
need to work harder. The actual proof breaks up A into small pieces
(so that the RIP matrix A maintains their length), and argues that
there is one large piece that the other pieces cannot cancel out.

Let S := supp(x*) be the support of x*, and S be the remaining
coordinates. Let’s sort these coordinates in decreasing order of their
absolute value, and group them into buckets of 2s consecutive coordi-

nates. Call these buckets By, By, .. .. For vector v € R" and subset T C [n],
define vector v € R” which agrees
with v on the coordinates in S, and
which has zeroes elsewhere.
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Claim 8.30. Lj>5 [|Ap, ]2 < [|As]l2/ V2.

Before we prove the claim, let’s see how to use it. The claim says
that total Euclidean length of the vectors {v B }j>2 is a constant factor
smaller than that of vgp,. So even after the near-isometric mapping
A, the lengths of the former would not be able to cancel the length of
the latter. Formally:

0= [|AAll2 > [[ADsug, [l — ) |AAR 2

=
> (1—¢) [|Asup,lla — (1+¢) ) [|Ag[l2
=
1+e¢
> (1—¢) |As2 - [Asl2

V2

where the first step uses the triangle inequality for norms, the second
uses that each Agp, and A B; are 3s-sparse, and the last step uses

|Asug, |l2 > ||As|l2 and also Claim 8.30. Finally, since ¢ < 1/9, we
havel —¢ > 1—\2‘2, so the only remaining possibility is that Ag = 0.
The next claim implies that Ag = 0 implies that A = 0, giving a

contradiction and hence the proof of Lemma 8.29.
Claim 8.31. ||As|l1 > ||A§H1.
Proof. We finally use that x = x* 4 A is the optimizer for the LP,
which means
[l > [[x" + Ally = [lx5 + sl + [ Aglh
> [lxsll = Asla + [1Ag])-

(The last step uses the triangle inequality.) Since ||x*||; = ||x%[[1, we
get Claim 8.31. ]

The final piece of the argument is to prove Claim 8.30:

Proof of Claim 8.30. Take any bucket B; for j > 2. Each entry of A

in this bucket is smaller than the smallest entry of B]-_l, and hence
smaller than the average entry of B; 1. And there are 2s entries in
this bucket B;, so the Euclidean length of the bucket is

7A=Y | Ve Y |
25 V2s
Summing this over all j > 2, we get
186,411 || Aglh
[Ag;[l2 < — =

Now || Agll1 < [|Ag|l1 by Claim 8.31. And finally, since the support

1A 12 < V25

of Ag is of size s, we can bound its ¢ length by +/s times its ¢, length,
finishing the claim. (Since we wanted that factor of v/2 in the denom-
inator, we made the buckets slightly larger than the size of S.) O
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Exercise:: for any vector v € RY, show

that ||o[ly < v/supp(0) - [|vl2.
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This completes the proof for Lemma 8.29. O

Finally, how do we construct RIP matrices? Call a distribution D
over k X n matrices a distributional JL family if Lemma 8.17 is true
when A is drawn from D. The following theorem was proved by
David Donoho, and by Emanuel Candes and Terry Tao, and by Mark
Rudelson and Roman Vershynin. (The connection of their constuction
to the distributional JL was made explicit by Baraniuk et al.)

Theorem 8.32 (JL = RIP). If we pick A € R**" from a distributional JL
family with k > Q(slogn/s), then with high probability A is BP-exact.

Proof. The proof is simple, but uses some fairly general ideas worth
emphasizing. First, focus on some s-dimensional subspace of IR"
(obtained by restricting to some subset of coordinates). For notational
simplicity, we just identify this subspace with R®.

1. For § = ¢/3, pick an d-net N of the sphere S°~! (under Euclidean
distances). This can be done by a greedy algorithm: if some point
x does not satisfy the covering property at any time, it can be
added to the net. We claim the size of the net is [N| := (4/J)°.
Indeed, define balls of radius J/2 around the points in N; these
are disjoint by the packing property of nets, and are all contained
in a ball of radius 1 4 ¢ around the origin. Since the volume of
balls of radius r scales as r°, we have

14+6\° )
IN| < ((5/2> = (4/0)°.

2. If A is an J-isometry on the d-net N C $5-1 we claim it is a 36-
isometry on all of S°~1. Indeed, consider the point x that achives
the maximum stretch arg max{||Ax||y | x € S}, and let this
stretch be M. Let y be the closest point in N to x; by the packing
property [[x — y|| < 6. Then M = [[Ax|| < | Ayl| + [A(x —y)| <
(14 05) + Mé. Rearranging, M < % < (14 36) for & < 1/3, say.
For the contraction, consider any x € 5° —1 with closest net point y.
Then ||Ax|| > ||Ay|| — |A(x —y)|| > 1—-6—(1+35)6 > 1—34,
again as long as 6 < 1/3.

3. By Lemma 8.17, the random matrix A with m rows is an J-isometry
on each point in the net N, except with probability exp(—cd?m) for
some constant c.

4. Now apply the above argument to each of the () subspaces ob-
tained by restricting to some subset S of coordinates. By a union
bound over all subsets S, and over all points in the net for that

Given a metric space (X,d), a é-net is a
subset N C X such that (i) d(x,y) > &
for all x,y € N, and (ii) for each x € X
there exists y € N such that d(x,y) < é.
The former is call the packing property
and the latter the covering property of
nets.
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subspace, the matrix A is an 3J-isometry on all points with sup-
port in S except with probability

(:)  (4/0)" - exp(—cd®m) < exp(—O(m)),

as long as m is Q)(slogn/s). Since ¢ = 36, we have the proof.

This presentation is based on notes by Jirka Matousek. Also see
Chapter 4 of Ankur Moitra’s book for more on compressed sensing,
sparse recovery and basis pursuit.

8.15 Some Facts about Balls in High-Dimensional Spaces

Consider the unit ball B; := {x € R? | |x||, < 1}. Here are two
facts, whose proofs we sketch. These sketches can be made formal
(since the approximations are almost the truth), but perhaps the style
of arguments are more illuminating.

Theorem 8.33 (Heavy Shells). At least 1 — ¢ of the mass of the unit ball
in R? lies within a G)(k’gd1 L% )-width shell next to the surface.

Proof. (Sketch) The volume of a radius-r ball in RY goes as 7, so the
fraction of the volume ot in the shell of width w is (1 — w)? ~ e~®4,
which is e when w ~ %. O

Given any hyperplane H = {x € RY | a- x = b} where |ja|| = 1, the
width-w slab around itis K= {x e R? | b—w < a-x < b+ w}.
Theorem 8.34 (Heavy Slabs). At least (1 — ¢) of the mass of the unit ball

in R? lies within @ (1/+/d) slab around any hyperplane that passes through
the origin.

Proof. (Sketch) By spherical symmetry we can consider the hyper-
plane {x; = 0}. The volume of the ball within {—w < x; < w} is at

least “ “ ]
J1—y2)d 4 ~/ gy,
/y:O( )Ty e y

If we define 02 = ﬁ, this is
yZ

%
/ e 22dy = Pr[G < w],
y=0

where G ~ N(0,0?). But we know that Pr[G > w] < oW /20 by
our generic Chernoff bound for Gaussians (8.10). So setting that tail
probability to be e gives

wz\/Zazlog(l/s):O< W) O
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This may seem quite counter-intuitive: that 99% of the volume
of the sphere is within O(1/d) of the surface, yet 99% is within
O(1/+/d) of any central slab! This challenges our notion of the ball
“looking like” the smooth circular object, and more like a very spiky
sea-urchin. Finally, a last observation:

Corollary 8.35 (Near-orthogonality). Two random vectors from the
surface of the unit ball in R? (i.e., from the sphere S*~1) are nearly orthog-
onal with high probability. In particular, their dot-product is smaller than

O( M) with probability 1 — e.
Proof. Fix one of the vectors 1. Then for dot-product |u - v| to be at
most ¢, the other vector v must fall in the slab of width ¢ around the

hyperplane {x - u = 0}. Now Theorem 8.34 completes the argument.
O

This means that if we pick 7 random vectors in R?, and set ¢ =

1/12, a union bound gives that all have dot-product O( 10{%" ). Set-
ting this dot-product to ¢ gives us n = exp(¢2d) unit vectors with
mutual dot-products at most ¢, exactly as in the calculation at the
beginning of the chapter.

’ SNBSS, L
Figure 8.2: Sea Urchin (from uncom-
moncaribbean.com)
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