
8
Gaussians, Martingales, and Discrepancy

8.1 Introduction

In this lecture, we explore the interplay between Gaussian random
variables, dimension reduction, martingale concentration, and their
application to the problem of discrepancy minimization.

The plan for today is:

1. Basics about Gaussian random variables (r.v.s).

2. Dimension reduction via the Johnson-Lindenstrauss Lemma.

3. A recap of martingale concentration, particularly for Gaussians.

4. Discrepancy minimization using Random Walks, Martingales, and
Gaussians.

8.2 Facts about Gaussian Random Variables

We start by defining the Gaussian distribution and recalling some
fundamental properties.

Definition 8.1 (Gaussian (Normal) Distribution). A random variable
X follows a Gaussian (or Normal) distribution with mean µ and
variance σ2, denoted X ∼ N(µ, σ2), if its probability density function
(PDF) is given by:

fX(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
.

If µ = 0 and σ2 = 1, it is called a standard Gaussian.

In this course, we often work with vectors of Gaussians.

Definition 8.2 (Multivariate Gaussian Distribution). A random vector
X⃗ ∈ Rn follows a multivariate Gaussian distribution with mean

82 facts about gaussian random variables

vector µ⃗ ∈ Rn and covariance matrix Σ ∈ Rn×n (where Σ is positive
definite), denoted X⃗ ∼ N(µ⃗, Σ), if its PDF is:

fX⃗(x⃗) =
1√

(2π)n det(Σ)
exp

(
−1

2
(x⃗− µ⃗)TΣ−1(x⃗− µ⃗)

)
.

If X⃗ consists of n independent standard Gaussians, then µ⃗ = 0 and
Σ = In (the identity matrix).

• Scaling: If X ∼ N(µ, σ2), then cX ∼ N(cµ, c2σ2).

• Sums: If Xi ∼ N(µi, σ2
i) are independent, then ∑ Xi ∼ N(∑ µi, ∑ σ2

i).

Recall some fundamental properties of Gaussian (Normal) distri-
butions.

• Scaling: If X ∼ N(µ, σ2), then cX ∼ N(cµ, c2σ2).

• Sums: If Xi ∼ N(µi, σ2
i) are independent, then ∑ Xi ∼ N(∑ µi, ∑ σ2

i).

A crucial property we will use extensively relates to projections of
multivariate Gaussians.

Fact 8.3. Let Gi ∼ N(0, 1) be independent standard Gaussians, and
let G⃗ = (G1, G2, . . . , Gn) ∈ Rn. For any fixed vector x ∈ Rn, the inner
product is distributed as:

⟨x, G⟩ ∼ N
(

0, ∑ x2
i

)
= N(0, ∥x∥2).

If ∥x∥ = 1, then ⟨x, G⟩ ∼ N(0, 1).

8.2.1 Gaussians in Subspaces

We can also define Gaussian distributions constrained to a subspace.

Definition 8.4 (Gaussian from a Subspace). Suppose V is a subspace
of Rn of dimension d ≤ n. Pick an orthonormal basis v⃗1, v⃗2, . . . , v⃗d for
V. We define a Gaussian from subspace V, denoted g ∼ N(V), as:

g =
d

∑
i=1

gi v⃗i,

where gi ∼ N(0, 1) are independent.

Fact 8.5. Let g ∼ N(V). For any vector x ∈ Rn:

⟨x, g⟩ ∼ N(0, σ2)

where σ2 = ∥ProjV(x)∥2. If ∥x∥ = 1, then σ2 ≤ 1.

gaussians, martingales, and discrepancy 83

8.3 Recap of Martingale Concentration

We recall the Azuma-Hoeffding inequality and its extensions.
Let Z1, Z2, . . . be independent r.v.s, and suppose Xi is a function of

Z1, . . . , Zi. If the sequence of differences behaves nicely, we have con-
centration. For example, if Xi|Z1, . . . , Zi−1 behaves like a Rademacher
variable (taking values ±1 with probability 1/2), Azuma-Hoeffding
gives:

Pr

(∣∣∣∣∣ T

∑
i=1

Xi

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

(
− λ2

2T

)
.

8.3.1 Gaussian Concentration for Martingales

This concentration extends naturally to Gaussian random variables.

Theorem 8.6 (Gaussian Concentration for Martingales). Suppose we
have a martingale difference sequence such that Xi|Z1, . . . , Zi−1 is Gaussian
with mean 0.

1. If the conditional variance is 1, then:

Pr

(∣∣∣∣∣ T

∑
i=1

Xi

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

(
− λ2

2T

)
.

2. More generally, if Xi|Z1, . . . , Zi−1 ∼ N(0, σ2
i), then:

Pr

(∣∣∣∣∣ T

∑
i=1

Xi

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

(
− λ2

2 ∑ σ2
i

)
.

Crucially, these concentration bounds also hold when T is a stop-
ping time (not a fixed quantity).

Definition 8.7 (Stopping Time). T is a stopping time with respect to a
sequence X1, X2, . . . if the event {T = t} depends only on the values
of X1, . . . , Xt.

8.4 Discrepancy Minimization

We now turn to the main application: discrepancy minimization.

Definition 8.8 (Discrepancy). Given a set system S = (S1, S2, . . . , Sm)

where each Si ⊆ [n] = {1, . . . , n}. A 2-coloring of [n] is a map
χ : [n]→ {−1, 1}. The discrepancy of this coloring is

disc(χ) = max
i∈[m]

∣∣∣∣∣∑j∈Si

χ(j)

∣∣∣∣∣ .

We want to find a coloring χ that minimizes the discrepancy
(achieves good balance).

84 discrepancy minimization

8.4.1 Randomized Coloring

Fact 8.9. Consider a simple randomized approach: set χ(j) ∈ {−1, 1}
uniformly and independently at random. For any set Si, E

[
∑j∈Si

χ(j)
]
=

0. By Chernoff-Hoeffding bounds:

Pr

(∣∣∣∣∣∑j∈Si

χ(j)

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

(
−λ2

2n

)
.

By setting λ = O(
√

n log m) and taking a union bound over all m
sets, we find that the discrepancy is ≤ λ with high probability (w.h.p.
1− 1/poly(m)).

However, we can achieve tighter bounds.

Theorem 8.10 (Spencer’s Theorem). There exists a coloring χ such that

disc(χ) ≤ O
(√

n log(m/n)
)

.

If m = n, this guarantees O(
√

n) discrepancy. (This is often sum-
marized as "six standard deviations suffice").

Spencer’s original proof was non-constructive (using the en-
tropy/pigeonhole principle on an exponentially large family). Bansal
(2010) provided the first algorithmic proof using semidefinite pro-
gramming and rounding. We will present a proof due to Lovett and
Meka, which uses Linear Algebra, Gaussians, and Martingales.

8.4.2 Step 1: Relaxation to Partial Colorings

Instead of requiring χ : [n] → {−1, 1}, we consider a "convex"
fractional relaxation, allowing χ : [n]→ [−1, 1].

Bad news: If we only minimize the fractional discrepancy, the
problem is trivial: set χ(j) = 0 for all j, achieving "zero fractional
discrepancy".

Fix: We require that most variables are "close" to ±1, allowing only
a small fraction of variables to be far from {−1, 1}.

Lemma 8.11 (Partial Coloring Lemma (Lemma 1)). Let x0 = 0 be the
starting point in [−1, 1]n. We can find x ∈ [−1, 1]n such that:

1.
∣∣∣∑j∈Si

xj

∣∣∣ ≤ √|Si| · ∆ + 1/poly(n) for all i.

2. #{j s.t. xj /∈ {−1, 1}} ≤ n/2.

Here ∆ = c
√

log(m/n) for some constant c.

We will actually prove a more general statement involving arbi-
trary vectors, which implies Lemma 8.11.

gaussians, martingales, and discrepancy 85

Lemma 8.12 (Generalized Partial Coloring Lemma (Lemma 2)). Given
any vectors a1, a2, . . . , am ∈ Rn, any starting point x0 ∈ [−1, 1]n, and a
small δ > 0 (e.g., 1/poly(n)). We can find x ∈ [−1, 1]n such that:

1. |⟨ai, x− x0⟩| ≤ ∥ai∥2 · ∆ for all i.

2. #{j s.t. xj ∈ (−(1− δ), 1− δ)} ≤ n/2.

Here ∆ = c
√

log(m/n).

To see that Lemma 8.12 implies Lemma 8.11, set ai to be the indi-
cator vector of set Si (so ∥ai∥2 =

√
|Si|) and set x0 = 0. We then take

the solution given by Lemma 8.12 and round the variables close to
±1 to exactly ±1.

8.4.3 From Partial to Total Coloring

Before proving Lemma 8.12, let’s see how Lemma 8.11 implies
Spencer’s Theorem. We use an iterative approach.

Start at X0 = 0. Apply Lemma 8.11. This yields a set J of ≥ n/2
variables colored {±1}. The remaining ≤ n/2 variables are fractional.

Freeze the variables in J. Consider the remaining variables [n] \ J.
Start where the previous run stopped (using that configuration as the
new X0) and run Lemma 8.11 again on this smaller instance of size
≤ n/2.

This finds a new set J′ of ≥ 1
2 |[n] \ J| variables at ±1. Repeat.

The net discrepancy may add up over the iterations. The total
discrepancy is bounded by:

χ(S) ≤ c
√

n log(m/n) + c
√

n
2

log(m/(n/2)) + c
√

n
4

log(m/(n/4)) + . . .

= c ·∑
i≥0

√
n
2i log

(
2im

n

)
= O(

√
n log(m/n)).

The sum converges, dominated by the first term. This shows how to
get Spencer’s Theorem from Lemma 1 (and hence from Lemma 2).

8.5 Proof of Lemma 8.12: Gaussian Random Walks

How to prove Lemma 8.12? We use a beautiful algorithm utilizing
ideas from:

• Random Walks

• Gaussians

• Martingales

86 proof of lemma 8.12: gaussian random walks

Recall the goal (Lemma 8.12). WLOG, assume ai are unit vectors,
so we want |⟨ai, x − x0⟩| ≤ ∆. For convenience, we will prove that
#{j s.t. xj ∈ (−(1− δ), 1− δ)} ≤ 7n/10 (instead of ≤ n/2).

8.5.1 The Algorithm Idea

The idea is to start at x0 and take tiny Gaussian steps. (Xt+1 = Xt +

gaussian).
If we just do this, it is not great. We need to maintain constraints:

1. Coordinate bounds: xj ∈ [−1, 1] for all j.

2. Discrepancy bounds: ⟨ai, x− x0⟩ ∈ [−∆, ∆] for all i.

The Key Idea: If we get close to violating some constraint, we
"freeze" the solution, forcing subsequent steps to lie in a subspace
orthogonal to that constraint.

Figure 8.1: Feasible Region for the
Random Walk.

We define when a variable or a constraint is close to being vio-
lated.

Definition 8.13. A variable j is frozen if |xj| > 1− δ. A constraint ai

is dangerous if |⟨ai, x− x0⟩| > ∆− δ.

Intuition: The variable bounds are often much closer to the origin
than the discrepancy bounds. So we expect the random walk to hit a
variable bound earlier, meaning we will freeze many more variables
than constraints become dangerous.

gaussians, martingales, and discrepancy 87

8.5.2 The Algorithm Details

At time t, we have a solution xt. Let Ft = {j : |xt
j | ≥ 1− δ} be the set

of frozen variables. Let Dt = {i : |⟨ai, xt − x0⟩| ≥ ∆− δ} be the set of
dangerous constraints.

We define the subspace Vt where the next step must lie.

Definition 8.14. Let Vt be the subspace orthogonal to all frozen vari-
ables and all dangerous constraints.

Vt =
(
span

(
{ej : j ∈ Ft} ∪ {ai : i ∈ Dt}

))⊥ .

The algorithm proceeds as follows. We set the step size ϵ ≤
δ

10
√

log(mn)
.

Algorithm 3: Lovett-Meka Algorithm

2.1 while dim(Vt) ≥ n/2 do
2.2 (This means we have few frozen/dangerous

constraints/variables.)
2.3 Pick gt ∼ N(Vt) (a Gaussian from that subspace).
2.4 xt+1 ← xt + ϵ · gt.

The algorithm stops when dim(Vt) < n/2. This means we have at
least n/2 frozen variables or dangerous constraints in total (or more
precisely, the dimension spanned by them is > n/2). We need to
show that most of these are frozen variables.

8.5.3 Analysis of the Algorithm

What could go wrong with the algorithm?

1. The solution xt "jumps" outside the feasible region ([−1, 1]n or the
discrepancy bounds).

2. The algorithm stops (when dim(Vt) < n/2), but very few variables
are frozen (mostly dangerous constraints).

Let’s address these concerns.

1. Staying Feasible. We know that xt−1 was "good". For non-frozen
variables, |xt−1

j | ≤ 1− δ. For non-dangerous constraints, |⟨ai, xt−1⟩| ≤
∆− δ.

For xt to go outside the feasible region, the step must be large:
|ϵgt| ≥ δ.

We analyze the probability of a large Gaussian step. Since the
components of gt have variance ≤ 1:

Pr(|ϵgt| ≥ δ) ≤ 2 exp
(
− (δ/ϵ)2

2

)
.

88 proof of lemma 8.12: gaussian random walks

We chose ϵ such that δ/ϵ ≥
√

log(mn).

Pr(|ϵgt| ≥ δ) ≤ 2 exp
(
−100 log(mn)

2

)
=

2
(mn)50 .

We can take a union bound over all m + n constraints and over all
time steps, provided the total number of steps T is less than (mn)49.
We will actually prove that T = O(1/ϵ2) = O(poly(m, n)) many
steps.

2. How many steps? We analyze the expected progress of the algo-
rithm using the ℓ2 norm.

Fact 8.15. E
[
∥xT − x0∥2] = ∑t<T ϵ2 · E[dim(Vt)].

Proof.

E
[
∥xt+1 − x0∥2

]
= E

[
∥xt − x0 + ϵgt∥2

]
= E

[
∥xt − x0∥2

]
+ 2ϵE

[
⟨gt, xt − x0⟩

]
+ ϵ2E

[
∥gt∥2

]
.

The middle term is 0 because gt is independent of xt (conditioned on
Vt) and E[gt] = 0 (by symmetry). The last term E

[
∥gt∥2 | Vt

]
is the

dimension of the subspace Vt. So, E
[
∥xt+1 − x0∥2] = E

[
∥xt − x0∥2]+

ϵ2 · E[dim(Vt)]. The result follows by induction.

Since the algorithm runs as long as dim(Vt) ≥ n/2, we have:

E
[
∥xT − x0∥2

]
≥∑

t
ϵ2 · n

2
= T · n

2
ϵ2.

On the other hand, since xT must remain in [−1, 1]n, we must have
∥xT − x0∥2 ≤ O(n).

So, T n
2 ϵ2 ≤ O(n). This implies T ≤ O(1/ϵ2). The algorithm is very

likely to stop after O(1/ϵ2) = O(poly(n, m)) steps.

3. What happens at the stopping time? We need to analyze how many
frozen vs dangerous constraints we have. We want to bound the
number of dangerous constraints.

Let’s see what the probability is that a specific constraint i (say ai)
becomes dangerous. Let Yt = ⟨ai, xt − x0⟩. We want Pr(|YT | > ∆− δ).

YT is a martingale (it is the sum of the noise contributions ϵ⟨ai, gt⟩).
Let Zt = ϵ⟨ai, gt⟩. Zt is Gaussian N(0, σ2

t) where σ2
t ≤ ϵ2 (since ai is a

unit vector and gt is a Gaussian in a subspace).
We use the Gaussian concentration for martingales, noting that T

is a stopping time.

Pr(|YT | > ∆− δ) ≤ 2 exp
(
− (∆− δ)2

2 ∑ E[σ2
t]

)
≤ 2 exp

(
− (∆− δ)2

2Tϵ2

)
.

gaussians, martingales, and discrepancy 89

We know Tϵ2 = O(1). We set ∆ = O(
√

log(m/n)).

Pr(constraint i dangerous) ≤ 2 exp(−O(∆2)) = 2 exp(−O(log(m/n))) ≤ n
10m

.

(By choosing the constant c in ∆ large enough).
Now we can calculate the expected number of dangerous con-

straints:

E[#dangerous constraints] =
m

∑
i=1

Pr(constraint i dangerous) ≤ m · n
10m

= n/10.

By Markov’s inequality,

Pr(#dangerous ≥ n/5) ≤ 1/2.

When the algorithm stops, we have dim(Vt) < n/2. This implies
that the span of frozen variables and dangerous constraints has di-
mension > n/2. With probability ≥ 1/2, we have #Dangerous < n/5.
In this case, the number of frozen variables must be large enough to
account for the remaining dimension (e.g., #Frozen ≥ n/2− n/5 =

3n/10).
This successfully proves Lemma 8.12 (except that we proved

#{j s.t. xj ∈ (−(1− δ), 1− δ)} ≤ 7n/10 instead of ≤ n/2.)).

8.6 To wrap up

Today we saw Gaussian RVs and their use for:

• Dimension reduction (for distance preservation).

• Discrepancy minimization.

Along the way, we needed:

• Concentration bounds for sums of squares of (independent) Gaus-
sians (Chi-squared distribution).

• Concentration bounds for Gaussians (but using martingale tech-
niques).

• Random walks with Gaussians.

These ideas are simple but very powerful! The dimension reduc-
tion techniques (approximate) are useful in various surprising con-
texts, such as Compressive Sensing (also the "single-pixel camera").

8.7 Dimension Reduction and the JL Lemma

For a set of n points {x1, x2, . . . , xn} in RD, can we map them into
some lower dimensional space Rk and still maintain the Euclidean

90 the johnson lindenstrauss lemma

distances between them? We can always take k ≤ n− 1, since any set
of n points lies on a n − 1-dimensional subspace. And this is (exis-
tentially) tight, e.g., if x2 − x1, x3 − x1, . . . , xn − x1 are all orthogonal
vectors.

But what if we were fine with distances being approximately pre-
served? There can only be k orthogonal unit vectors in Rk, but there
are as many as exp(cε2k) unit vectors which are ε-orthogonal—i.e.,
whose mutual inner products all lie in [−ε, ε]. Near-orthogonality al-
lows us to pack exponentially more vectors! (Indeed, we will see this
in a homework exercise.)

This near-orthogonality of the unit vectors means that distances
are also approximately preserved. Indeed, for any two a, b ∈ Rk,

∥a− b∥2
2 = ⟨a− b, a− b⟩ = ⟨a, a⟩+ ⟨b, b⟩− 2⟨a, b⟩ = ∥a∥2

2 + ∥b∥2
2− 2⟨a, b⟩,

so the squared Euclidean distance between any pair of the points
defined by these ε-orthogonal vectors falls in the range 2(1± ε). So,
if we wanted n points at exactly the same (Euclidean) distance from
each other, we would need n− 1 dimensions. (Think of a triangle in
2-dims.) But if we wanted to pack in n points which were at distance Having n ≥ exp(cε2k) vectors in d

dimensions means the dimension is
k = O(log n/ε2).

(1± ε) from each other, we could pack them into

k = O
(

log n
ε2

)
dimensions.

8.8 The Johnson Lindenstrauss lemma

The Johnson Lindenstrauss “flattening” lemma says that such a claim
is true not just for equidistant points, but for any set of n points in
Euclidean space:

Lemma 8.16. Let ε ∈ (0, 1/2). Given any set of points X = {x1, x2, . . . , xn}
in RD, there exists a map A : RD → Rk with k = O

(
log n

ε2

)
such that

1− ε ≤
∥A(xi)− A(xj)∥2

2

∥xi − xj∥2
2

≤ 1 + ε.

Moreover, such a map can be computed in expected poly(n, D, 1/ε) time.

Note that the target dimension k is independent of the original
dimension D, and depends only on the number of points n and the
accuracy parameter ε. Given n points with Euclidean distances

in (1 ± ε), the balls of radius 1−ε
2

around these points must be mutually
disjoint, by the minimum distance,
and they are contained within a ball
of radius (1 + ε) + 1−ε

2 around x0.
Since volumes of balls in Rk of radius r
behave like ckrk , we have

n · ck

(1− ε

2

)k
≤ ck

(3 + ε

2

)k

or k ≥ Ω(log n) for ε ≤ 1/2.

It is not difficult to show that we need at least Ω(log n) dimen-
sions in such a result, using a packing argument. Noga Alon showed

Alon (2003)

a lower bound of Ω
(log n

ε2 log 1/ε

)
, and then Kasper Green Larson and

http://www.math.tau.ac.il/~nogaa/PDFS/extremal1.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2025940
http://people.seas.harvard.edu/~minilek/papers/jl_tight.pdf
http://people.seas.harvard.edu/~minilek/papers/jl_tight.pdf

gaussians, martingales, and discrepancy 91

Jelani Nelson showed a tight and matching lower bound of Ω
(log n

ε2

)

Larson and Nelson (2017)

dimensions for any dimensionality reduction scheme from n dimen-
sions that preserves pairwise distances.

The JL Lemma was first considered in the area of metric embed-
dings, for applications like fast near-neighbor searching; today we
use it to speed up algorithms for problems like spectral sparsification
of graphs, and solving linear programs fast.

8.9 The Construction

The JL lemma is pretty surprising, but the construction of the map
is perhaps even more surprising: it is a super-simple randomized
construction. Let M be a k× D matrix, such that every entry of M is
filled with an i.i.d. draw from a standard normal N(0, 1) distribution
(a.k.a. the “Gaussian” distribution). For x ∈ RD, define

A(x) =
1√
k

Mx.

That’s it. You hit the vector x with a Gaussian matrix M, and scale it
down by

√
k. That’s the map A.

Since A(x) is a linear map and satisfies αA(x) + βA(y) = A(αx +

βy), it is enough to show the following lemma:

Lemma 8.17. [Distributional Johnson-Lindenstrauss] Let ε ∈ (0, 1/2).
If A is constructed as above with k = cε−2 log δ−1, and x ∈ RD is a unit
vector, then

Pr[∥A(x)∥2
2 ∈ 1± ε] ≥ 1− δ.

To prove Lemma 8.16, set δ = 1/n2, and hence k = O(ε−2 log n).
Now for each xi, xj ∈ X, use linearity of A(·) to infer∥∥A(xi)− A(xj)

∥∥2∥∥xi − xj
∥∥2 =

∥∥A(xi − xj)
∥∥2∥∥xi − xj

∥∥2 =
∥∥A(vij)

∥∥2 ∈ (1± ε)

with probability at least 1− 1/n2, where vij is the unit vector in the
direction of xi − xj. By a union bound, all (n

2) pairs of distances in
(X

2) are maintained with probability at least 1− (n
2)

1
n2 ≥ 1/2. A few

comments about this construction:

• The above proof shows not only the existence of a good map, we
also get that a random map as above works with constant prob-
ability! In other words, a Monte-Carlo randomized algorithm
for dimension reduction. (Since we can efficiently check that the
distances are preserved to within the prescribed bounds, we can
convert this into a Las Vegas algorithm.) Or we can also get deter-
ministic algorithms: see here.

http://people.seas.harvard.edu/~minilek/papers/jl_tight.pdf
http://people.seas.harvard.edu/~minilek/papers/jl_tight.pdf
http://people.seas.harvard.edu/~minilek/papers/jl_tight.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=MR3734267
https://arxiv.org/pdf/1006.3585

92 intuition for the distributional jl lemma

• The algorithm (at least the Monte Carlo version) is data-oblivious:
it does not even look at the set of points X: it works for any set X
with high probability. Hence, we can pick this map A before the
points in X arrive.

8.10 Intuition for the Distributional JL Lemma

Let us recall some basic facts about Gaussian distributions. The prob-
ability density function for the Gaussian N(µ, σ2) is

f (x) = 1√
2πσ

e
(x−µ)2

2σ2 .

We also use the following; the proof just needs some elbow grease. The fact that the means and the vari-
ances take on the claimed values should
not be surprising; this is true for all
r.v.s. The surprising part is that the
resulting variables are also Gaussians.

Proposition 8.18. If G1 ∼ N(µ1, σ2
1) and G2 ∼ N(µ2, σ2

2) are indepen-
dent, then for c ∈ R,

c G1 ∼ N(cµ1, c2 σ2
1) (8.1)

G1 + G2 ∼ N(µ1 + µ2, σ2
1 + σ2

2). (8.2)

Now, here’s the main idea in the proof of Lemma 8.17. Imagine
that the vector x is the elementary unit vector e1 = (1, 0, . . . , 0). Then
M e1 is just the first column of M, which is a vector with independent
and identical Gaussian values.

M e1 =


G1,1 G1,2 · · · G1,D

G2,1 G2,2 · · · G2,D
...

...
. . .

...
Gk,1 Gk,2 · · · Gk,D




1
0
...
0

 =


G1,1

G2,1
...

Gk,1

 .

A(x) is a scaling-down of this vector by
√

k: every entry in this
random vector A(x) = A(e1) is distributed as

1/
√

k · N (0, 1) = N(0, 1/k) (by (8.1)).

Thus, the expected squared length of A(x) = A(e1) is If G has mean µ and variance σ2, then
E[G2] = Var[G] + E[G]2 = σ2 + µ2.

E
[
∥A(x)∥2

]
= E

[
k

∑
i=1

A(x)2
i

]
=

k

∑
i=1

E
[

A(x)2
i

]
=

k

∑
i=1

1
k
= 1.

So the expectation of ∥A(x)∥2 is 1; the heart is in the right place!
Now to show that ∥A(x)∥2 does not deviate too much from the
mean—i.e., to show a concentration result. Indeed, ∥A(x)∥2 is a sum
of independent N(0, 1/k)2 random variables, so if these N(0, 1/k)2

variables were bounded, we would be done by the Chernoff bounds
of the previous chapter. Sadly, they are not. However, their tails are
fairly “thin”, so if we squint hard enough, these random variables

gaussians, martingales, and discrepancy 93

can be viewed as “pretty much bounded”, and the Chernoff bounds
can be used.

Of course this is very vague and imprecise. Indeed, the Laplace
distribution with density function f (x) ∝ e−λ|x| for x ∈ R also has
pretty thin tails—“exponential tails”. But using a matrix with Laplace
entries does not work the same, no matter how hard we squint. It
turns out you need the entries of M, the matrix used to define A(x),
to have “sub-Gaussian tails”. The Gaussian entries have precisely this
property.

We now make all this precise, and also remove the assumption
that the vector x = e1. In fact, we do this in two ways.

1. First we give a proof via a direct calculation: it has several steps,
but each step is elementary, and you are mostly following your
nose.

2. The second proof uses the notion of sub-Gaussian random vari-
ables from , and builds some general machinery for concentration
bounds.

8.11 A Direct Proof of Lemma 8.17

Recall that we want to argue about the squared length of A(x) ∈ Rk,
where A(x) = 1√

k
Mx, and x is a unit vector. First, let’s understand

what the expected length of A(x) is, and then we will show concen-
tration about the mean.

Lemma 8.19. Suppose the entries of M are independent random variables,
with mean zero and unit variance. Then for unit vector x ∈ RD,

E[∥A(x)∥2] = ∥x∥2.

Proof. Each entry of the vector Mx is the inner product of x with
a vector with independent zero mean and unit variance random
variables, and so is itself a random variable with zero mean and
variance ∑i x2

i = 1. This means that for any entry i ∈ [k],

E[(Mx)2
i] = Var(Mx) + E[(Mx)i]

2 = 1.

Now E[∥A(x)∥2] = 1
k ∑k

i=1 E[(Mx)2
i] = 1 = ∥x∥2.

Observe that did not use the fact that the matrix entries were
Gaussians. We will use it for the concentration bound, which we
show next.

94 a direct proof of Lemma 8.17

8.11.1 Concentration about the Mean

Using that each entry of M is an independent N(0, 1) r.v., we can
use Proposition 8.18 to infer that (Mx)i ∼ N(0, x2

1 + x2
2 + . . . +

x2
D) = N(0, 1). So, each of the k coordinates of Mx behaves just like

an independent Gaussian! For brevity, define

Z := ∥A(z)∥2 =
k

∑
i=1

1
k
(Mx)2

i ,

so Z is the average of the squares of a collection of k independent
N(0, 1) r.v.s.

Next we show that Z does not deviate too much from 1. Since Z is
the sum of a bunch of independent and identical random variables,
let’s start down the usual path for a Chernoff bound, for the upper
tail, say: The easy way out is to observe that

the squares of Gaussians are chi-
squared r.v.s, the sum of k of them
is χ2 with k degrees of freedom, and
the internet conveniently has tail
bounds for these things. But even if
you don’t recall these facts, and don’t
have internet connectivity and cannot
check Wikipedia, it is not that difficult
to prove from scratch.

Pr[Z ≥ 1 + ε] ≤ Pr[etkZ ≥ etk(1+ε)] ≤ E[etkZ]/etk(1+ε) (8.3)

= ∏
i

(
E[etG2

]/et(1+ε)
)

(8.4)

for every t > 0, where G ∼ N(0, 1). Now E[etG2
], the moment-

generating function for G2 is easy to calculate for t < 1/2:

1√
2π

∫
g∈R

etg2
e−g2/2dg =

1√
2π

∫
z∈R

e−z2/2 dz√
1− 2t

=
1√

1− 2t
. (8.5)

Plugging back into (8.4), the bound on the upper tail shows that for
all t ∈ (0, 1/2),

Pr[Z ≥ (1 + ε)] ≤
(

1
et(1+ε)

√
1− 2t

)k
.

Let’s just focus on part of this expression:(
1

et
√

1− 2t

)
= exp

(
−t− 1

2
log(1− 2t))

)
(8.6)

= exp
(
(2t)2/4 + (2t)3/6 + · · ·

)
(8.7)

≤ exp
(

t2(1 + 2t + 2t2 + · · ·)
)

(8.8)

= exp(t2/(1− 2t)).

Plugging this back, we get

Pr[Z ≥ (1 + ε)] ≤
(

1
et(1+ε)

√
1− 2t

)k

≤ exp(kt2/(1− 2t)− ktε) ≤ e−kε2/8,

http://en.wikipedia.org/wiki/Chi-square_distribution
http://en.wikipedia.org/wiki/Chi-square_distribution
http://mathworld.wolfram.com/Chi-SquaredDistribution.html
http://mathworld.wolfram.com/Chi-SquaredDistribution.html

gaussians, martingales, and discrepancy 95

if we set t = ε/4 and use the fact that 1− 2t ≥ 1/2 for ε ≤ 1/2. (Note:
this setting of t also satisfies t ∈ (0, 1/2), which we needed from our
previous calculations.)

Almost done: let’s take stock of the situation. We observed that
∥A(x)∥2

2 was distributed like an average of squares of Gaussians, and
by a Chernoff-like calculation we proved that

Pr[∥A(x)∥2
2 > 1 + ε] ≤ exp(−kε2/8) ≤ δ/2

for k = 8
ε2 ln 2

δ . A similar calculation bounds the lower tail, and
finishes the proof of Lemma 8.17.

The JL Lemma was first proved by Bill Johnson and Joram Linden-
strauss. There have been several proofs after theirs, usually trying to Johnson and Lindenstrauss (1982)

tighten their results, or simplify the algorithm/proof (see citations in
some of the newer papers): the proof above is some combinations of
those by Piotr Indyk and Rajeev Motwani, and Sanjoy Dasgupta and Indyk and Motwani (1998)

myself. Dasgupta and Gupta (2004)

8.12 Introducing Subgaussian Random Variables

It turns out that the proof of Lemma 8.17 is a bit cleaner (with fewer
calculations) if we use the abstraction provided by the generic Cher-
noff bound from last lecture, and the notion of subGaussian random
variables which we introduce next. This abstraction will also allow
us to extend the result to JL matrices having i.i.d. entries from other
distributions, e.g., where each Mij ∈R {−1,+1}.

8.12.1 Subgaussian Random Variables

Recall the definitions of the log-MGF ψ(t) and its Legendre-Fenchel
dual ψ∗(λ) from §??.

Definition 8.20. A random variable V with mean 0 is subgaussian with
parameter σ if its log-MGF ψ(t) satisfies

ψ(t) ≤ σ2t2

2
.

for all t ≥ 0. It is subgaussian with parameter σ up to t0 if the above
inequality holds for all |t| ≤ t0.

In other words, the log-MGF of a subgaussian r.v. is bounded
above by that of a Gaussian! At this point, it’s useful to recall a fact
we asked as an exercise in §??:

Fact 8.21. If ψ1(t) ≥ ψ2(t) for all t ≥ 0, then ψ∗1 (λ) ≤ ψ∗2 (λ) for all λ.

Using this, the dual function of a subgaussian random variable
with parameter σ is bounded below by that of a Gaussian N(0, σ2),

https://mathscinet.ams.org/mathscinet-getitem?mr=MR0737400
http://portal.acm.org/citation.cfm?id=276876&dl=
http://www.cs.cmu.edu/~anupamg/papers/jl.pdf
http://www.cs.cmu.edu/~anupamg/papers/jl.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=MR1715608
http://www.cs.cmu.edu/~anupamg/papers/jl.pdf
http://www.cs.cmu.edu/~anupamg/papers/jl.pdf
http://www.cs.cmu.edu/~anupamg/papers/jl.pdf
http://www.cs.cmu.edu/~anupamg/papers/jl.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=MR1943859

96 introducing subgaussian random variables

which means we have a tighter upper tail bound! Indeed, combining
with (??), we immediately get:

Theorem 8.22 (Subgaussian Tail Bounds). If V is zero-mean and sub-
gaussian with parameter σ, then

Pr[V ≥ λ] ≤ e−λ2/(2σ2).

Most tail bounds you will prove using the subgaussian perspective
will come down to showing that some random variable is subgaus-
sian with parameter σ, whereupon you can use Theorem 8.22. Given
that you will often reason about sums of subgaussians, you may use
the next fact, which is an analog of Proposition 8.18.

Lemma 8.23. If V1, V2, . . . are independent, zero-mean and σi-subgaussian,

and x1, x2, . . . are reals, then V = ∑i xiVi is
√

∑i x2
i σ2

i -subgaussian.

Proof. Using independence and the definition of subgaussian-ness:

E[etV] = E[et ∑i xiVi] = ∏
i

E[etxiVi] ≤∏
i

e(txi)
2σ2

i /2.

Finally taking logarithms, ψV(t) = ∑i ψVi (txi) ≤ ∑i
t2x2

i σ2
i

2 .

8.12.2 A Couple of Examples

Let’s do an example: suppose V ∼ N(µ, σ2), then

E[et(V−µ)] =
1√
2πσ

∫
x∈R

etxe−
x2

2σ2 dx

=
1√
2πσ

et2σ2/2
∫

x∈R
e−

(x−tσ2)2

2σ2 dx = et2σ2/2. (8.9)

Hence, for N(µ, σ2) r.v.s, we have

ψ(t) =
t2σ2

2
and ψ∗(λ) =

λ2

2σ2 ,

the latter by basic calculus. Now the generic Chernoff bound for says
that for normal N(µ, σ2) variables,

Pr[V − µ ≥ λ] ≤ e−
λ2

2σ2 . (8.10)

How about a Rademacher {−1,+1}-valued r.v. V? The MGF is

E[et(V−µ)] =
et + e−t

2
= cosh t = 1 +

t2

2!
+

t4

4!
+ · · · ≤ et2/2,

so

ψ(t) =
t2

2
and ψ∗(λ) =

λ2

2
.

Note that

ψRademacher(t) ≤ ψN(0,1)(t) =⇒ ψ∗Rademacher(λ) ≥ ψ∗N(0,1)(λ).

This means the upper tail bound for a single Rademacher is at least
as strong as that for the standard normal.

gaussians, martingales, and discrepancy 97

8.13 A Proof of Lemma 8.17 using Subgaussian r.v.s

Suppose we choose each Mij to be an independent copy of a subgaus-
sian r.v. with zero mean and unit variance, and let A(x) = 1√

k
Mx

again? We want to show that

Z := ∥A(x)∥2 =
1
k

k

∑
i=1

(Mx)2
i (8.11)

has mean ∥x∥2, and is concentrated sharply around that value. Con-
veniently, we had only used the mean and variance of the entries of
M in proving Lemma 8.19, so we can still infer that

E[Z] = E[∥A(x)∥2 = ∥x∥ = 1.

It just remains to show the concentration.

8.13.1 Sums of Squares of Subgaussians

To add in. Until then see the explanaton in Matousek’s paper “On
Variants of the Johnson-Lindenstrauss Lemma”.

8.13.2 Relating Subgaussian to Gaussians

If you have done the proof for the Gaussian case, and just want to ex-
tend the JL Lemma to other subgaussian random variables, you need
not do all the work in §8.13.1. Instead you can relate subgaussian
concentration to good old Gaussian concentration.

Indeed, the direct proof from §8.11 showed the (Mx)is were them-
selves Gaussian with variance ∥x∥2. Since the Rademachers are 1-
subgaussian, Lemma 8.23 shows that (Mx)i is subgaussian with
parameter ∥x∥2. Next, we need to consider Z, which is the average of
squares of k independent (Mx)is. The following lemma shows that the
MGF of squares of symmetric σ-subgaussians are bounded above by
the corresponding Gaussians with variance σ2. An r.v. X is symmetric if it is distributed

the same as R|X|, where R is an inde-
pendent Rademacher.Lemma 8.24. If V is symmetric mean-zero σ-subgaussian r.v., and W ∼

N(0, σ2), then E[etV2
] ≤ E[etW2

] for t > 0.

Proof. Using the calculation in (8.9) in the “backwards” direction

EV [etV2
] = EV,W [e

√
2t(V/σ)W].

(Note that we’ve just introduced W into the mix, without any provo-
cation!) Hence, rewriting

EV,W [e
√

2t(V/σ)W] = EW [EV [e(
√

2tW/σ)V]],

98 optional: compressive sensing

we can use the σ-subgaussian behavior of V in the inner expectation
to get an upper bound of

EW [eσ2(
√

2t|W|/σ)2/2] = EW [etW2
].

Excellent. Now the bound on the upper tail for sums of squares
of symmetric mean-zero σ-subgaussians follows from that of Gaus-
sians. The lower tail (which requires us to bound E[etV2

] for t < 0)
needs one more idea: suppose V is a mean-zero σ-subgaussian with
parameter σ2 = 1, and suppose |t| < 1. A Taylor expansion shows
that

E[etV2
] ≤ 1 + tE[V2] + t2 ∑

i≥2
E[V2i/i!].

Since E[V2] = 1 and |t| < 1, this is at most 1 + t + t2E[eV2
]. Now

use the above bound E[eV2
] ≤ E[eW2

] to get that E[etV2
] ≤ 1 + t +

t2/
√

1− 2t, and the proof proceeds as for the Gaussian case.
In summary, we get the same tail bounds as in §8.11.1, and hence

that the Rademacher matrix also has the distributional JL property,
while using far fewer random bits!

In general one can use other σ-subgaussian distributions to fill
the matrix M—using σ different than 1 may require us to rework
the proof from §8.11.1 since the linear terms in (8.6) don’t cancel any
more, see works by Indyk and Naor or Matousek for details. Indyk and Naor (2008)

Matoušek (2008)

8.13.3 The Fast JL Transform

A different direction to consider is getting fast algorithms for the
JL Lemma: Do we really need to plug in non-zero values into every
entry of the matrix A? What if most of A is filled with zeroes? The
first problem is that if x is a very sparse vector, then Ax might be
zero with high probability? Achlioptas showed that having a random
two-thirds of the entries of A being zero still works fine: Nir Ailon
and Bernard Chazelle showed that if you first hit x with a suitable Ailon and Chazelle

matrix P which caused Px to be “well-spread-out” whp, and then
∥APx∥ ≈ ∥x∥ would still hold for a much sparser A. Moreover, this
P requires much less randomness, and furthermore, the computa-
tions can be done faster too! There has been much work on fast and
sparse versions of JL: see, e.g., this paper from SOSA 2018 by Michael
Cohen, T.S. Jayram, and Jelani Nelson. Jelani Nelson also has some Cohen, Jayram, and Nelson (2018)

notes on the Fast JL Transform.

8.14 Optional: Compressive Sensing

To rewrite. In an attempt to build a better machine to take MRI scans,
we decrease the number of sensors. Then, instead of the signal x we

http://dx.doi.org/10.1145/1273340.1273347
http://www.cs.brown.edu/~matteo/augustseminar/papers/Matousek-VariantsJohnsonLindenstrauss.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2344022
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2436844
http://www.cs.princeton.edu/~chazelle/pubs/FJLT-sicomp09.pdf
http://www.cs.princeton.edu/~chazelle/pubs/FJLT-sicomp09.pdf
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2506527
https://core.ac.uk/display/154064060
https://mathscinet.ams.org/mathscinet-getitem?mr=MR3773205
https://people.eecs.berkeley.edu/~minilek/madalgo2015/index.html

gaussians, martingales, and discrepancy 99

intended to obtain from the machine, we only have a small num-
ber of measurements of this signal. Can we hope to recover x from
the measurements we made if we make sparsity assumptions on x?
We use the term s-sparse signal for a vector with at most s nonzero
entries, i.e., with | supp(x)| ≤ s. It is common to use the notation

∥x∥0 := | supp(x)|, even though
this is not a norm.

Formally, x is a n-dimensional s-sparse vector, and a measurement
of x with respect to a vector a is a real number given by ⟨a, x⟩. If we
ask k questions, this gives us a k × n sensing matrix A (whose rows
are the measurements), and a k-dimensional vector b of results. We
want to reconstruct x with s nonzero entries satisfying Ax = b. This
is often written as

min
{
∥x∥0 | Ax = b

}
. (8.12)

8.14.1 Sparse Recovery: A First Attempt

What properties would we like from our sensing matrix A? The first
would be some form of consistency: that the problem should be
solvable.

Definition 8.25 (Kruskal Rank). An m× n matrix A has Kruskal rank
r if every subset of r of its columns are linearly independent.

Lemma 8.26 (Unique Decoding). If A has Kruskal rank ≥ 2s, then for
any b we have Ax = b for at most one s-sparse x.

Proof. Suppose Ax = Ax′ for two s-sparse vectors x, x′. Then A(x −
x′) = 0 for the 2s-sparse vector x − x′. The Kruskal rank being 2s
means this vector x− x′ = 0, and hence x = x′.

So we can just find some sensing matrix with large Kruskal rank
Give examples here and ensure our results will be unique. The next
question is: how fast can we find x? (We should also be worried
about noise in the measurements.) A generic construction of matrices
with large Kruskal rank may not give us efficient solutions to (8.12).
Indeed, it turns out that the problem as formulated is NP-hard, as-
suming A and b are contrived by an adversary.

Of course, asking to solve (8.12) for general A, b is a more difficult
problem than we need to solve. In our setting, we can choose A as
we like and then are given b = Ax, so we can ask whether there are
matrices A for which this decoding process is indeed efficient. This is
precisely what we do next.

100 optional: compressive sensing

8.14.2 The Basis Pursuit Algorithm

Consider the following similar looking problem called the basis pur-
suit (BP) problem:

min
{
∥x∥1 | Ax = b

}
. (8.13)

This problem can be formulated as a linear program as follows,
and hence can be efficiently solved. Introduce n new variables
y1, y2, . . . , yn under the constraints

min
{

∑
i

yi | Ax = b,−yi ≤ xi ≤ yi

}
.

Definition 8.27. We call a matrix A as BP-exact for sparsity s if for
all vectors b such that the non-convex program (8.12) has a unique
solution x∗, this vector x∗ is also the unique optimal solution to the
basis pursuit LP (8.13).

In other words, we want a matrix A for which the two programs
return the same optimal solution. But do BP-exact matrices exist? If
so, how do we efficiently construct them? Our next ingredient will be
crucial to show their existence and construction.

Definition 8.28 (Restricted Isometry Property (RIP)). A matrix A is
(t, ε)-RIP if for all unit vectors x with ∥x∥0 ≤ t, we have

∥Ax∥2
2 ∈ [1± ε].

Lemma 8.29 (RIP =⇒ BP-exact). If a matrix A is (3s, ε)-RIP for some
ε ≤ 1/9, then A is BP-exact for sparsity s.

Proof. Suppose x∗ is the unique solution to (8.12) and x the solution
to (8.13), so that

∥x∥1 ≤ ∥x∗∥1. (8.14)

Suppose x − x∗ = ∆ ̸= 0; hence A∆ = A(x − x∗) = 0. If we could
somehow show that supp(∆) ≤ 3s, then using the RIP property for
A, we would get

0 = ∥A∆∥2 ≥ (1− ε)∥∆∥2 > 0,

a contradiction. But of course, ∆ could have large support, so we
need to work harder. The actual proof breaks up ∆ into small pieces
(so that the RIP matrix A maintains their length), and argues that
there is one large piece that the other pieces cannot cancel out.

Let S := supp(x∗) be the support of x∗, and S be the remaining
coordinates. Let’s sort these coordinates in decreasing order of their
absolute value, and group them into buckets of 2s consecutive coordi-
nates. Call these buckets B1, B2, For vector v ∈ Rn and subset T ⊆ [n],

define vector vT ∈ Rn which agrees
with v on the coordinates in S, and
which has zeroes elsewhere.

gaussians, martingales, and discrepancy 101

Claim 8.30. ∑j≥2 ∥∆Bj∥2 ≤ ∥∆S∥2/
√

2.

Before we prove the claim, let’s see how to use it. The claim says
that total Euclidean length of the vectors {vBj}j≥2 is a constant factor
smaller than that of vS∪B1 . So even after the near-isometric mapping
A, the lengths of the former would not be able to cancel the length of
the latter. Formally:

0 = ∥A∆∥2 ≥ ∥A∆S∪B1∥2 −∑
j≥2
∥A∆Bj∥2

≥ (1− ε) ∥∆S∪B1∥2 − (1 + ε) ∑
j≥2
∥∆Bj∥2

≥ (1− ε) ∥∆S∥2 −
1 + ε√

2
∥∆S∥2 ,

where the first step uses the triangle inequality for norms, the second
uses that each ∆S∪B1 and ∆Bj are 3s-sparse, and the last step uses
∥∆S∪B1∥2 ≥ ∥∆S∥2 and also Claim 8.30. Finally, since ε ≤ 1/9, we
have 1− ε > 1+ε√

2
, so the only remaining possibility is that ∆S = 0.

The next claim implies that ∆S = 0 implies that ∆ = 0, giving a
contradiction and hence the proof of Lemma 8.29.

Claim 8.31. ∥∆S∥1 ≥ ∥∆S∥1.

Proof. We finally use that x = x∗ + ∆ is the optimizer for the LP,
which means

∥x∗∥1 > ∥x∗ + ∆∥1 = ∥x∗S + ∆S∥1 + ∥∆S∥1

≥ ∥x∗S∥1 − ∥∆S∥1 + ∥∆S∥1.

(The last step uses the triangle inequality.) Since ∥x∗∥1 = ∥x∗S∥1, we
get Claim 8.31.

The final piece of the argument is to prove Claim 8.30:

Proof of Claim 8.30. Take any bucket Bj for j ≥ 2. Each entry of ∆
in this bucket is smaller than the smallest entry of Bj−1, and hence
smaller than the average entry of Bj−1. And there are 2s entries in
this bucket Bj, so the Euclidean length of the bucket is

∥∆Bj∥2 ≤
√

2s ·
∥∆Bj−1∥1

2s
=
∥∆Bj−1∥1√

2s
.

Summing this over all j ≥ 2, we get

∑
j≥2
∥∆Bj∥2 ≤ ∑

j≥2

∥∆Bj−1∥1√
2s

=
∥∆S∥1√

2s
.

Now ∥∆S∥1 ≤ ∥∆S∥1 by Claim 8.31. And finally, since the support Exercise:: for any vector v ∈ Rd, show
that ∥v∥1 ≤

√
supp(v) · ∥v∥2.of ∆S is of size s, we can bound its ℓ1 length by

√
s times its ℓ2 length,

finishing the claim. (Since we wanted that factor of
√

2 in the denom-
inator, we made the buckets slightly larger than the size of S.)

102 optional: compressive sensing

This completes the proof for Lemma 8.29.

Finally, how do we construct RIP matrices? Call a distribution D
over k × n matrices a distributional JL family if Lemma 8.17 is true
when A is drawn from D. The following theorem was proved by
David Donoho, and by Emanuel Candes and Terry Tao, and by Mark
Rudelson and Roman Vershynin. (The connection of their constuction
to the distributional JL was made explicit by Baraniuk et al.)

Theorem 8.32 (JL =⇒ RIP). If we pick A ∈ Rk×n from a distributional JL
family with k ≥ Ω(s log n/s), then with high probability A is BP-exact.

Proof. The proof is simple, but uses some fairly general ideas worth
emphasizing. First, focus on some s-dimensional subspace of Rn

(obtained by restricting to some subset of coordinates). For notational
simplicity, we just identify this subspace with Rs.

1. For δ = ε/3, pick an δ-net N of the sphere Ss−1 (under Euclidean
distances). This can be done by a greedy algorithm: if some point Given a metric space (X, d), a δ-net is a

subset N ⊆ X such that (i) d(x, y) ≥ δ
for all x, y ∈ N, and (ii) for each x ∈ X
there exists y ∈ N such that d(x, y) ≤ δ.
The former is call the packing property
and the latter the covering property of
nets.

x does not satisfy the covering property at any time, it can be
added to the net. We claim the size of the net is |N| := (4/δ)s.
Indeed, define balls of radius δ/2 around the points in N; these
are disjoint by the packing property of nets, and are all contained
in a ball of radius 1 + δ around the origin. Since the volume of
balls of radius r scales as rs, we have

|N| ≤
(

1 + δ

δ/2

)s

= (4/δ)s.

2. If A is an δ-isometry on the δ-net N ⊆ Ss−1, we claim it is a 3δ-
isometry on all of Ss−1. Indeed, consider the point x that achives
the maximum stretch arg max{∥Ax∥2 | x ∈ Ss−1}, and let this
stretch be M. Let y be the closest point in N to x; by the packing
property ∥x − y∥ ≤ δ. Then M = ∥Ax∥ ≤ ∥Ay∥+ ∥A(x − y)∥ ≤
(1 + δ) + Mδ. Rearranging, M ≤ 1+δ

1−δ ≤ (1 + 3δ) for δ ≤ 1/3, say.
For the contraction, consider any x ∈ Ss−1, with closest net point y.
Then ∥Ax∥ ≥ ∥Ay∥ − ∥A(x − y)∥ ≥ 1− δ− (1 + 3δ)δ ≥ 1− 3δ,
again as long as δ ≤ 1/3.

3. By Lemma 8.17, the random matrix A with m rows is an δ-isometry
on each point in the net N, except with probability exp(−cδ2m) for
some constant c.

4. Now apply the above argument to each of the (n
s) subspaces ob-

tained by restricting to some subset S of coordinates. By a union
bound over all subsets S, and over all points in the net for that

gaussians, martingales, and discrepancy 103

subspace, the matrix A is an 3δ-isometry on all points with sup-
port in S except with probability(

n
s

)
· (4/δ)s · exp(−cδ2m) ≤ exp(−Θ(m)),

as long as m is Ω(s log n/s). Since ε = 3δ, we have the proof.

This presentation is based on notes by Jirka Matoušek. Also see
Chapter 4 of Ankur Moitra’s book for more on compressed sensing,
sparse recovery and basis pursuit.

8.15 Some Facts about Balls in High-Dimensional Spaces

Consider the unit ball Bd := {x ∈ Rd | ∥x∥2 ≤ 1}. Here are two
facts, whose proofs we sketch. These sketches can be made formal
(since the approximations are almost the truth), but perhaps the style
of arguments are more illuminating.

Theorem 8.33 (Heavy Shells). At least 1− ε of the mass of the unit ball
in Rd lies within a Θ(

log 1/ε
d)-width shell next to the surface.

Proof. (Sketch) The volume of a radius-r ball in Rd goes as rd, so the
fraction of the volume not in the shell of width w is (1− w)d ≈ e−wd,
which is ε when w ≈ log 1/ε

d .

Given any hyperplane H = {x ∈ Rd | a · x = b} where ∥a∥ = 1, the
width-w slab around it is K = {x ∈ Rd | b− w ≤ a · x ≤ b + w}.

Theorem 8.34 (Heavy Slabs). At least (1− ε) of the mass of the unit ball
in Rd lies within Θ(1/

√
d) slab around any hyperplane that passes through

the origin.

Proof. (Sketch) By spherical symmetry we can consider the hyper-
plane {x1 = 0}. The volume of the ball within {−w ≤ x1 ≤ w} is at
least ∫ w

y=0
(
√

1− y2)d−1dy ≈
∫ w

y=0
e−y2· d−1

2 dy.

If we define σ2 = 1
d−1 , this is∫ w

y=0
e−

y2

2σ2 dy ≈ Pr[G ≤ w],

where G ∼ N(0, σ2). But we know that Pr[G ≥ w] ≤ e−w2/2σ2
by

our generic Chernoff bound for Gaussians (8.10). So setting that tail
probability to be ε gives

w ≈
√

2σ2 log(1/ε) = O
(√ log(1/ε)

d

)
.

https://www.cs.cmu.edu/~15850/handouts/bp.pdf
http://people.csail.mit.edu/moitra/docs/bookex.pdf

104 some facts about balls in high-dimensional spaces

Figure 8.2: Sea Urchin (from uncom-
moncaribbean.com)

This may seem quite counter-intuitive: that 99% of the volume
of the sphere is within O(1/d) of the surface, yet 99% is within
O(1/

√
d) of any central slab! This challenges our notion of the ball

“looking like” the smooth circular object, and more like a very spiky
sea-urchin. Finally, a last observation:

Corollary 8.35 (Near-orthogonality). Two random vectors from the
surface of the unit ball in Rd (i.e., from the sphere Sd−1) are nearly orthog-
onal with high probability. In particular, their dot-product is smaller than

O(
√

log(1/ε)
d) with probability 1− ε.

Proof. Fix one of the vectors u. Then for dot-product |u · v| to be at
most ε, the other vector v must fall in the slab of width ε around the
hyperplane {x · u = 0}. Now Theorem 8.34 completes the argument.

This means that if we pick n random vectors in Rd, and set ε =

1/n2, a union bound gives that all have dot-product O(
√

log n
d). Set-

ting this dot-product to ε gives us n = exp(ε2d) unit vectors with
mutual dot-products at most ε, exactly as in the calculation at the
beginning of the chapter.

