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Martingales and Strong Concentration Inequalities

7.1 Concentration Beyond Sums

We are familiar with concentration bounds for sums of independent
random variables. Given r.v.s Xj, Xy, ..., X;;, Chernoff-Hoeffding
bounds provide concentration for their sums. For example, if X; are
bounded and independent, then

Pr(|}_X;—E[}_Xi]| > A) <2exp ()‘2> :

But what if we have some function f(X) = f(Xy,...,X,) and
we want to understand if f(X) is close to its expectation E[f(X)]?
Classic Chernoff is not the tool here if f # Y X;.

Example 7.1. Consider the random graph G(, p). Every edge is
chosen independently at random with probability p. Let f(X) be the
size of the maximum matching in G ~ G(n, p). (Here X represents
the independent r.v.s corresponding to the edges).

We want to say: Pr(|f — E[f]| > A) < small.

How can we achieve this? Today, we explore several techniques:

1. Martingales and Azuma-Hoeffding Inequality = Concentration
for Lipschitz functions (McDiarmid’s Inequality).

2. Talagrand’s Inequality = Concentration of certifiable functions.

7.2 Concentration of Lipschitz Functions

Let f : R" — R. We are interested in functions that do not change too
much if the input changes slightly.

Definition 7.2 (Lipschitz Condition). Suppose f(X) is such that

n

fR) < f@) + )i Uxi # yi).

i=1
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Then we say that f is c-Lipschitz (with respect to the Hamming met-
ric).

(In general, we want that |f(X) — f(7)| < a - dist(%,¥) for some
metric. The Lipschitz condition means that a function’s value changes
little if we change the input by a little bit.)

Theorem 7.3 (Method of Bounded Differences (McDiarmid’s Inequal-
ity)). Suppose f is c-Lipschitz for ¢ = (c1,¢2,...,cn). If X3,..., Xy are
chosen randomly and independently, then

v

1

2
Pr(|f(X) — E[f(X)]] 2 A) <2-exp ( 2/\2> :

Example 7.4. Let X; € {—1,+1} (Rademacher variables) and f(X) =
Y. X;. E[f] = 0. If we change one X;, the sum changes by 2, so ¢; = 2.
Y. c? = 4n. We get concentration for sums of Rademachers:

Pr(|f(X)| > A) <2-exp (—%;:) =2-exp <—;\:l)

(This recovers Hoeffding’s bound.)

7.2.1 Further Examples

Example 7.5 (Balls and Bins). #n balls, n bins. X; = bin in which ball

i falls (uniform in {1,...,n}, independent). Let f(X) = # empty bins.
E[f] = n(1 —1/n)" ~ n/e. The function f is 1-Lipschitz (changing
where one ball falls changes the number of empty bins by at most 1).
Soc; =1and ZC% =n.

Pe(lf ~ Elf)l > 2) < 2exp (-2 )

Setting A = O(y/nlogn), we get that # empty bins = n/e+O(/nlogn)
with high probability (w.h.p.).

Example 7.6 (Random Graphs - Edge Exposure). G ~ G(n, p) ran-
dom graph. We consider the input variables to be the m = (3) po-
tential edges. f = # isolated vertices, or size of max matching, or
coloring number x(G).

If we change a single edge (present or absent):

¢ #isolated vertices changes by < 2.
* Size of max matching changes by < 1.

¢ Coloring # changes by < 1.
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In these cases, we can use McDiarmid’s Inequality. If c; = O(1),
then y_c? = O(m).

2
Pr(lf ~ ELf)l 2 1) < 2exp (- s ).

= f € E[f] £ O(y/mlogn) w.h.p.

Remark 7.7. Note that the above argument applies to any base graph
G and we sample a random subset of the edges of G where each
edge is picked with probability p. The Erd6s-Rényi model is just the
special case where G is the complete graph on 1 vertices. We focus
on that in the class for simplicity.

7.2.2  Limitations and Vertex Exposure

Hang on! We have E[f] < n (size of matching, # isolated vertices,
etc.). If m ~ n?, the deviation is O(n,/logn). This means we are not
very tightly concentrated!

Can we do better by using a different view of the randomness?
Yes! (For some cases.)

Suppose we view the edges in "groups". This is often called the
vertex exposure method, as opposed to the edge exposure method
used above.

Figure 7.1: Example of the vertex expo-
sure method. Each group corresponds
to the edges incident to a vertex.
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Group Y; = edges going from vertex i to vertices {1,2,...,i — 1}.
We have n groups (actually n — 1) of independent r.v.’s. f(Y1,Y2,...,Yy)
is the same function.

Now we check the Lipschitz condition with respect to these
groups.

For Matching: If we change one group Y; (i.e., change all edges
incident to vertex 7), the max matching size changes by at most 1.

For Coloring x: If we change all edges incident to vertex i, we
may need to choose a new color for i, but the total number of colors
changes by at most 1.

Using vertex exposure, we have Y_c? = n. This gives much tighter
concentration:

f—E[f] £O(y/nlogn) whp.
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Is this still useful? Is E[f] large compared to the deviation O(y/n)?
It depends on p. Say p = 1/2.

* Max matching size ~ n/2. (G(n, p) has a perfect matching w.h.p.
if p is large enough).

¢ Coloring number ~ (Each color class must be an inde-

n
2log, 1"
pendent set. The largest %ndependent set in G(n,1/2) has size
~ 2log, n).

These are much larger than the deviation bounds (at least for p =
1/2). For small p, more sophisticated techniques might be needed.

7.3 Martingales and Concentration

To understand how to prove McDiarmid’s Inequality, we need the
concepts of Martingales and Conditional Expectations.

7.3.1  Review of Conditional Expectation

Let’s recap some basic facts about conditional probability. Suppose
X, Y are r.v.s on a common sample space Q. E[X|Y = y] is the aver-
age of X over the events where Y = y.

E[X/V=VJ = AVpr7(? X
ovewba spaller
T e

space Yey3

E[X|Y] is a function of Y, which takes on some constant value in
each part of the partition defined by Y.

ELXEy=¥)
€Y =K]

s

E(y-0]7

—<,
vep I /<K

f=t

Fact 7.8 (Tower Property / Law of Total Expectation). E[X] =
Ly EIX[Y = y] - Pr(Y = y) = Ey[E[X]Y]].

More complicated example of the above:

Fact 7.9. E[X|Y] = EZ[E[X]Y, Z]|Y].

Figure 7.2: Illustration of E[X|Y = y]
as the average of X over the part of the
sample space where Y =y.

Figure 7.3: Illustration of E[X|Y] as a
function of Y.
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Figure 7.4: Illustration of E[X|Y] =
Ez[E[X]Y, Z]|Y]

E[K(Y-y, 23]

E[X] is the average over all points in () (a constant). E[X]|Y] is the
average of X over each "partition" for Y (a function of Y). E[X|Y, Z] is
the average of X over the finer "grid" defined by Y and Z (a function
of Y, Z).

7.3.2  Martingales

Martingales model settings where we have correlations between
random variables, but we can still prove concentration. They allow us
to move beyond merely sums of independent r.v.s.

Definition 7.10 (Martingale). A sequence (X;) = Xo, Xj,... of r.v.s
on a common sample space is a martingale if:

1. E[|Xy|] < oo.
2. E[Xk|Xk,1,.. .,Xo] = Xk*l'

More generally, a sequence (Xj) is a martingale with respect to
(wort) (Zy) if:

1. E[|Xy|] < oo.
2. Xy is a function of Zy, ..., Z;.

3. E[Xk|Zk,1,. . .,ZO] = Xk*l'

7.3.3 Doob Martingales

The most common type of martingale we encounter is the Doob
Martingale. It formalizes the idea of "exposing" the underlying ran-
domness gradually.

Suppose we have n random variables Z1,Z,, ..., Z, over ), and a
function f(Zy,...,Z,). We define the sequence X; fort =0...n as:

Xi =Elf(Z1,...,Z)|Z1,..., Z4).

o XO = E[f]
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* Xy = E[f|Z1].

o Xy =E[flZ1,...,Zn] = f(Z1,...,Zy).

This sequence forms a martingale, representing the process of "expos-
ing the variables one at a time".

Example 7.11. Throw 7 balls into # bins. Z; = bin into which i-th ball
goes. f(Z) = number of empty bins.

Example 7.12. Z,...,Z, are n random points in [0,1]2. f(Z) = length
of the shortest tour (TSP) over these points.

7.3.4 Concentration for Martingales (Azuma-Hoeffding)

If the differences between consecutive steps in a martingale are
bounded, then the end point is concentrated around the start point.

Theorem 7.13 (Azuma-Hoeffding Inequality). Suppose (X) is a mar-
tingale where | Xy — Xx_1| < ci for all k. Then

22
Pr(| X, — Xo| > A) <2-exp (—) .
2y c?
Recall that for Doob martingales, Xo = E[f] and X, = f(Z). So

Azuma-Hoeffding bounds the probability that the function deviates
from its mean:

A2
Pr(|f —E|f]| >A) <2- —— |-
r(If ~Elf)l > 1) <2-exp ( 226%)
(Note the difference in the constant in the exponent compared to
McDiarmid’s inequality).

Exercise 7.14. Prove McDiarmid’s Inequality (up to constants) from
Azuma-Hoeffding. (Hint: Show that the Lipschitz condition on f
implies bounded differences for the corresponding Doob martingale
when Z; are independent).

7.4 Extensions and Other Inequalities

Sometimes we want concentration bounds that are much smaller
than O(/nlogn), perhaps depending on the mean or variance (more
"Chernoff-like").
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7.4.1 Freedman’s Inequality

Freedman’s Inequality provides concentration based on the con-
ditional variance. Let (X}) be a martingale with differences Yy =
Xy — Xj_1. Suppose | Y| < c. Define the predictable quadratic varia-
tion (sum of conditional variances):

: 2

Wi =Y E[Y?|Zy,..., Zi4).
i=1

Theorem 7.15 (Freedman’s Inequality (Simplified)). Then for any
AT >0

/\2
Pr(| Xy — Xo| > A and Wy, < 7%) < 2exp <_T2+cx\) '

If we typically have 12 < ¥ c?, this bound is much better.

7.4.2  Talagrand’s Concentration Inequality

We now consider a special case of another famous inequality: Tala-
grand’s Concentration Inequality.

It is useful for functions that are Lipschitz AND have "small certifi-
cates" for their value. It can give good concentration even when the
expectation is small (e.g., maximum matching in G(n, p) when p is
very small).

Let X3,..., Xy be independent variables. Let f be c-Lipschitz.

Definition 7.16 (h-certifiable). f is h-certifiable if: whenever f(x) > s,
there exists a subset of coordinates I (a certificate) such that |I| <
h(s), and f(y) > s whenever y agrees with x on the coordinates in I.

Example 7.17 (Max Matching). f(Xj,..., X;;) = max matching in a
graph. X; € {0,1} (edge indicators). If the max matching size is > s,
there is a matching of size s. If we reveal these s edges (variables) and
they are present, the max matching size is guaranteed to be > s. So

h(s) =s.

Theorem 7.18 (Application of Talagrand’s Concentration Inequality).
If f is c-Lipschitz and h-certifiable:

Pr (‘f—Mf‘ > /\) <4exp (W) .

Here My is the median of f. (Pr(f > My) > 1/2and Pr(f < My) >
1/2).

This provides "Concentration around the median" rather than
around the mean. (If f is bounded and the probability of deviation is
small, the mean and median are close).
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Application to Matching. For the matching example: h(s) = s and
c=1

2
Pr(|f — My > A) < 4dexp <_4(M;\+A)> :

Let’s set A = 10,/ Mylogn. Assuming M is large enough so that
A L Mgy.

100M ¢ log n
flog
< _ | =~ — < .
4exp< 30, )\)) 4exp(—O(logn)) < 1/poly(n)

We have tight concentration around the median matching value

M. The deviation is £0(/ My logn).

7.4.3 Side Note: Median vs Mean

If a function is concentrated around the median, it must also be con-

centrated around the mean, provided the function is bounded.
Suppose Pr(|f — M| > A) < 1/poly(n) (concentration around

median M), and |f| < n. Then |M — u| < A 4+ O(1), where u = E[f].

Proof Sketch. Suppose p > M+ A +c.
u=E[f] =E[flf > M+ A]Pr[f > M+ A] + E[f|f < M+ A]Pr[f < M+ A]

1
<n- rly(n) +(M+2A)-1.
This implies 4 < M + A + n/poly(n). This is not possible unless
c < n/poly(n).
A similar argument holds for y < M — A —c.
So |[M —u| < A+ 0O(1). Therefore, Pr(|f —p| > 2A+0(1)) <
1/poly(n). O

7.5 Wrap up
We saw:

¢ McDiarmid’s Inequality (for Lipschitz functions of independent
r.v.s). This is a special case of Talagrand’s Concentration Inequality.

¢ A quick glimpse of Freedman'’s Inequality (which is more "Chernoff-
like", depends on the variance/mean).

* Martingales and Doob Martingales: important tools when deal-
ing with dependent choices. (Applications mentioned include Fair
Matching and next lecture on Discrepancy Algorithms).

We did not get to:
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e Stopping times and the Optional Stopping Theorem.
¢ Wald’s Inequality.

(These are useful tools for analyzing expected running times of ran-
domized algorithms).

7.6 Application: Online Edge Coloring (Online Fair Matchings)

In the online edge coloring problem, we are given a max degree A
and a sequence of edges ey, ¢, ..., e, on a vertex set V with maxi-
mum degree A. The edges arrive one by one and we must color each
edge as it arrives with a color such that no two adjacent edges share
the same color. The goal is to minimize the number of colors used.
There has been recent progress on this problem by Blikstad, Svens-
son, Vintan, and Wajc that settles a conjecture of Bar-Noy, Motwani,
and Naor from 1992. They basically show the following:

Theorem 7.19. There is a randomized online algorithm that uses at most
(1+ 0(1))A colors in expectation whenever A = w(+/logn). Moreover,
there is a deterministic online algorithm that uses at most (1 + o0(1))A
colors whenever A = w(logn).

Both the randomized (and perhaps surpringly the deterministic)
algorithm are based on analyzing Martingales, which lead to rather
clean and tight algorithms. We explain this connection in a simplified
(but very related) setting of online fair matchings. Specifically, given
the max degree A, we wish to devise a randomized algorithm that
maintains a matching M in an online fashion (whenever an edge is
presented we need to irrevocably decide whether to include it in our
matching or not) such that the following holds:

Pr[eeM]ZL Ve € E,
A+q

where g is a small "error" term that is 0(A). We can notice that if we
have an online edge coloring algorithm that uses at most A + g colors,
then it is easy to achieve a fair matching algorithm. Simply output
one of the color classes uniformly at random. This shows that the
online edge coloring problem is at least as hard as the online fair
matching problem. Surprisingly, one can also (when randomization
is allowed) go the other direction (up to losing some small factors
o(logn) etc.). In any case, we will focus on the online fair matching
problem and illustrate the main ideas there.

7.6.1  The Algorithm

After thinking about this for a while, there is almost only one reason-
able algorithm that comes to mind. At each time step ¢, we will for

77



78 APPLICATION: ONLINE EDGE COLORING (ONLINE FAIR MATCHINGS)

each pair of vertices (i.e., potential edge e) maintain a bias Q;(e) that
we will use to sample the edge e if it arrives at time t. We will initial-
ize Q1(e) = 1/(A + q) for all edges e. Indeed, why would we ever
want to sample an edge with probability larger than 1/(A 4 g4)? That
would only be detrimental, as it would mean we are over-sampling
some edges and decreasing the probability that we can take later
arriving edges. These biases will change over time, as we see now.

1. When an edge ¢; = (u,v;) arrives at time ¢, we sample it with
probability equal to its current bias Q¢ (e;).

2. If we sample e;, we add it to our matching M and then zero
out the bias for all edges e incident to either u; or vy, i.e., set
Qt+1(e) = 0 for all these edges. Indeed, we cannot select any of
these neighboring edges in a matching.

3. On the other hand, if we do not sample ¢, we will keep the match-
ing unchanged and update the neighbors’ biases as follows:

Qt(e)

Qir1(e) := ————~— Ve incident to u; or v;.

+ ( ) 1 _ Qt( et)

The reason for this update is simple: that we want to “boost” the bi-
ases of the edges incident to u; or v; since we did not get to sample
et. Indeed, for an edge e incident to u; or v; we have that the prob-
ability that we sample that edge if it were to arrive at time ¢ + 1 to
be

E[Q:11(e) | Qt(e)] = Qe(er) -0+ (1 — Qt(er))

Qi(e)
1—Qi(er) Qile).
so these biases give us a Martingale!

In other words, that each edge e has the same probability of being
included in the matching if it were to arrive at time ¢ or ¢ + 1, or more
generally at any time step. Specifically, each edge ¢ is sampled in the

matching with probability exactly 1/(A + g).

7.6.2  The Issue

However, an issue with the above “algorithm”: it is only well-defined
if we can ensure that Q;(e;) < 1 for all t and ¢;.

To get a feeling for this condition let us consider the following
example:
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Here we think that the edges arrive in the order

fl/fZ/' . */fA*l/glng/- . ~/gA71/€t-

The only chance that we have to pick ¢; in the matching is that none
of the other edges are selected in the matching. If this is the whole
graph, we have that

1 1
TR - Qi) T - Qacigi(8)

Qt(et) =Q (et)

which simplifies to

1 1 1

Qi(er) = Atq Si(u) Si(v)’

where

A-1 A-1
St(u) =1- ; Ql(fl) and St(?]) =1- Zl Ql(g]) .

]

Calculations aside, this is rather natural as this is the probability that
u is free if we match every f; with probabiliity Q;(f;) and similarly
for v. Crucially, note that since each S;(u) is a linear function of the
edge biases, it itself is a Martingale.

We thus have that both S;(u) and S;(v) are at least 1 — ﬁ—jr; >
q/(2A), where we used that ¢ < A. This gives us that

11 1
(A +q) Si(u) St (v)

Qiler) = §4;‘2§1/\/E
if we set ¢ = 4A3/%. So this case is great in that P(e;) is not only
smaller than 1 but actually very small (less than 1/+/A).

However, what if there are edges that arrive before the edges in the figure,
incident to the edges f; and g;? This may, if not taken, increase the
scaling factors 1/S;(u) and 1/S;(v). Moreover, it is very hard to get a
control on these P(-) values as they may be arbitrarily correlated.

7.6.3  Concentration Save The Day

Martingale concentration allows us to handle this issue and only
consider the local 2-hop neighborhood of the edge ¢;. Specifically, the
scaling factors S¢(u) form a Martingale for each u. So even if Q1 (f;)
was not the original bias of the neighboring edge f;, but the bias due
to all the edges that came before, in expectation it equals 1/ (A +q).

We can now use the known Martingale concentration inequalities
to show that the scaling factors S¢(u) do not deviate too much from
its initial value (which is at least q/(2A)) over all arriving edges

Indeed, observe that Q»(f2) = Q(f)

1-Q1(f1)

since f; was not chosen, and hence

1-— QZ(fZ) = 17Q11£f(12 )

)=Q1(f2)

1

, etc.
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incident to f;’s. A union bound then shows that P(e;) < O(%) with
high probability.

In the formal proof, we need to be a bit more careful to bound
the step size of the Martingale: this is done by never selecting edges
with probability much larger than 1/+/A (if an edge arrives with
probability larger than this, we simply reject it). This then allows us
to use Freedman'’s inequality to conclude that the Martingale does

not deviate too much from its initial value.



