
4
Applications of Concentration Inequalities

4.1 Power of Two Choices: A Random Graphs Proof

Another way to show that the maximum load is O(log log n)—note
that the constant is worse—is to use an first-priciples analysis based
on properties of random graphs. We build a random graph G as
follows: the n vertices of G correspond to the n bins, and the edges
correspond to balls—each time we probe two bins we connect them
with an edge in G. For technical reasons, we’ll just consider what
happens if we throw fewer balls (only m = n/C balls) into n bins—
also, let’s imagine that each ball chooses two distinct bins each time.

The constants can be optimized a bit
further, but I am keeping it simple here.

Theorem 4.1. Let C ≥ 2e2. If we throw n/C balls into n bins using the
best-of-two-bins method, the maximum load of any bin is O(log log n) whp.

Hence for n balls and n bins, the maximum load should be at
most C times as much, whp. (It’s as though after every n/C balls,
we forget about the current loads and zero out our counters—not
zeroing out these counters can only give us a more evenly balanced
allocation; I’ll try to put in a formal proof later.)

To prove the theorem, we need two results about the random
graph G obtained by throwing in n/C random edges into n vertices.
Both the proofs are simple but surprisingly effective counting argu-
ments, they appear at the end.

Lemma 4.2. The size of G’s largest connected component is O(log n) whp.

Lemma 4.3. For all subsets S of the vertex set, the induced graph G[S]
contains at most 3|S| edges, and hence has average degree at most 6, whp.

Given the graph G, suppose we repeatedly perform the following
operation in rounds:

In each round, remove all vertices of degree ≤ 12 in the current graph.

We stop when there are no more vertices of small degree.

36 power of two choices: a random graphs proof

Lemma 4.4. This process ends after O(log log n) rounds whp.

Proof. Condition on the events in the two previous lemmas. Any
component C in the current graph has average degree at most 5; by
Markov at least half the vertices have degree at most 12 and will
be removed, and we halve the component size. But the size of each
component was O(log n) to begin, so this takes O(log log n) rounds.

Lemma 4.5. If a node/bin survives i rounds before it is deleted, its load due
to edges that have already been deleted is at most 12i. If a node/bin is never
deleted, its load is at most 12i∗, where i∗ is the total number of rounds.

Proof. Consider the nodes removed in round 1: their degree was at
most 12, so even if all those balls went to such nodes, their final load
would be at most 12. Now, consider any node x that survived this
round. While many edges incident to it might have been removed in
this round, we claim that at most 12 of those would have contributed
to x’s load. Indeed, the each of the other endpoints of those edges
went to bins with final load at most 12. So at most 12 of them would
choose x as their less loaded bin before it is better for them to go
elsewhere.

Now, suppose y is deleted in round 2: then again its load can be at
most 24: twelve because it survived the previous round, and 12 from
its own degree in this round. OTOH, if y survives, then consider all
the edges incident to y that were deleted in previous rounds. Each
of them went to nodes that were deleted in rounds 1 or 2, and hence
had maximum load at most 24. Thus at most 24 of these edges could
contribute to y’s load before it was better for them to go to the other
endpoint. The same inductive argument holds for any round i ≤ i∗.
Finally, the process ends when each component is a singleton, and
hence there are no more balls to assign.

By Lemma 4.4, the number of rounds is i∗ = O(log log n) whp, so
by Lemma 4.5 the maximum load is also O(log log n) whp.

4.1.1 Missing Proofs of Lemmas

Lemma 4.6. The size of G’s largest connected component is O(log n) whp. This fact actually holds for a random
graph with n nodes and any m < 1

2 n
edges; see the Frieze and Karoński
book.

Proof. We have a graph with n vertices and m = n/C edges where
we connect vertices at random. If there is a component of at least k
vertices, there must be a spanning tree with at least k − 1 edges, and
hence some subset S of k vertices must have had some k − 1 edges fall
into it. For any of the (n

k) choices of S, and (m
k−1) choices of the edge

set, the probability of these edges choosing both endpoints in that set
is [(k/n)2]k−1. (For k ≪ m, we can upper bound (m

k−1) by (m
k)—this

applications of concentration inequalities 37

simplifies some calculations.) Now a union bound says that the “bad
event” of some component of size k is at most(

n
k

)
·
(

m
k

)
·
(

k
n

)2(k−1)

≤ n2 ·
(

e2

C

)k

≤ 1/ poly(n),

for any k = c log n with a large enough constant c; here we used the
standard approximation that (n

k) ≤ (ne
k)

k, and also our assumption
that C ≥ 2e2.

Lemma 4.7. For all subsets S of the vertex set, the induced graph G[S]
contains at most 3|S| edges, and hence has average degree at most 6, whp.

Proof. This proof is very similar in spirit to the one above, with a
couple more steps. Recall that we have m = n/C edges and n nodes.
The probability that some set S of size k gets some 3k edges falling
into it is again(

n
k

)
·
(

m
3k

)
·
(

k
n

)6k

≤
(

n e
k

)k

·
(

n e
3Ck

)3k

·
(

k
n

)6k

=

(
e4

(3C)3 · k2

n2

)k

.

Again, we used the approximations for the binomial, and that C is
large enough. Now a union bound over all sizes k ≥ 2 completes the
argument.

Bibliographic Notes: The original Balanced Allocations paper
of Azar, Broder, Karlin, and Upfal uses a delicate layered induction
argument via Chernoff bounds. The random graph analysis is in the
paper Efficient PRAM Simulation on a Distributed Memory Machine
by Karp, Luby, and Meyer auf der Heide; I learned it from Satish
Rao; here are his notes.

One can get slightly better constaints than the naïve power-of-
two-choices using using the brilliant Always-go-left algorithm due
to How Asymmetry Helps Load Balancing by Berthold Vöcking.
Here’s a survey on the various proof techniques by Mitzenmacher,
Sitaraman and Richa.

http://dx.doi.org/10.1137/S0097539795288490
https://link.springer.com/article/10.1007/BF01940878
http://www.cs.berkeley.edu/~satishr/cs273/rough-notes/lecture2.pdf
http://www.algo.rwth-aachen.de/~voecking/publications/JACM03.pdf
http://www.eecs.harvard.edu/~michaelm/NEWWORK/postscripts/twosurvey.pdf

