
INTRO TO QUANTUM COMPUTING

what can we do with Quantum computers ?

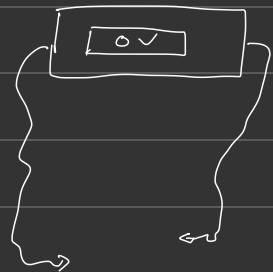
Classical Computers :

Logical bits

Physical bits

Low Voltage

High Voltage



Voltmeter

Make the physical implementation smaller and smaller . . .

to the Quantum scale !

Logical bits

Physical bits

photon

horizontally polarized

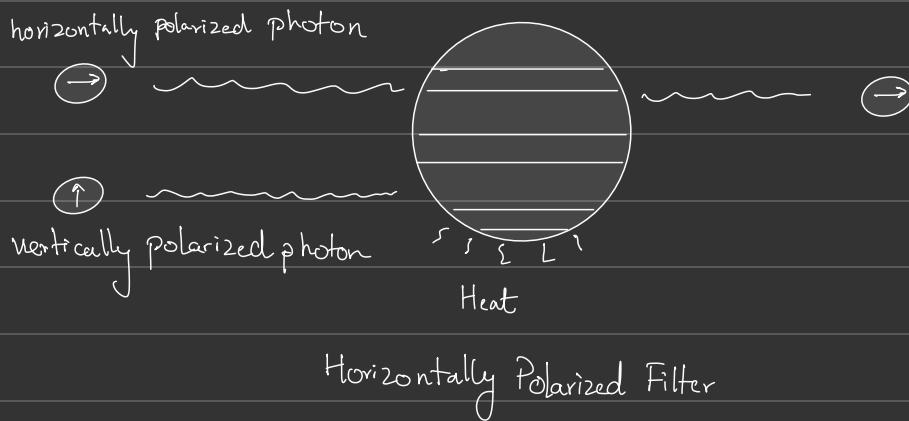
vertically polarized

Measurement ?

Polarizing Sunglasses

(same idea as 3D movie)

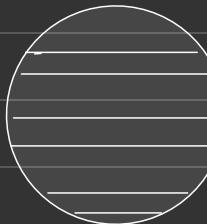
Cartoon:



- Same idea for vertically polarized filters

Fun Experiments with Polarized Filters:

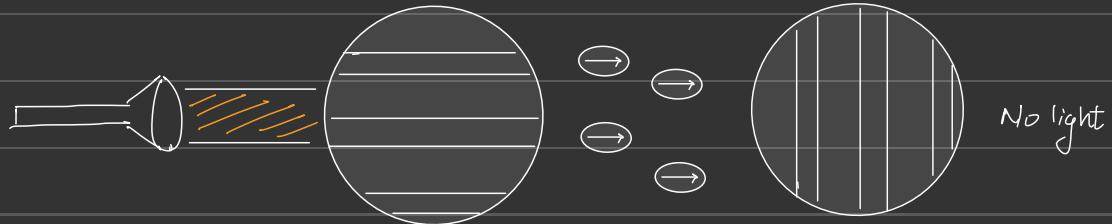
①



all photons
are horizontally
polarized

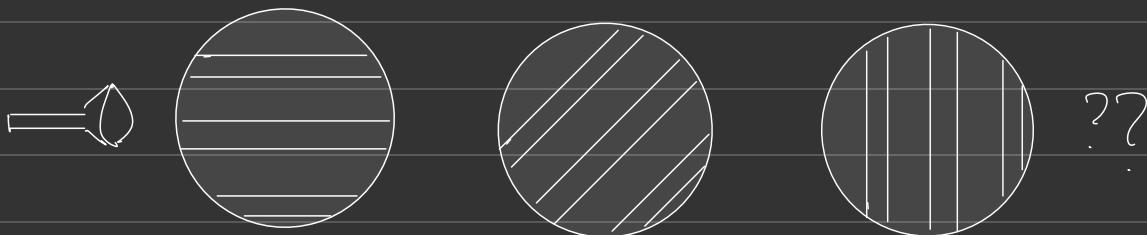
50% intensity

2

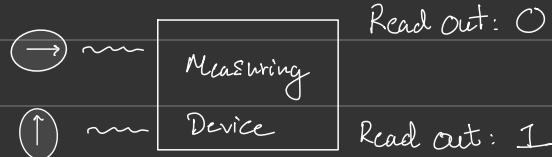


Exercise: Explain the following "party trick"

(mathematics to explain it
is in this lecture)



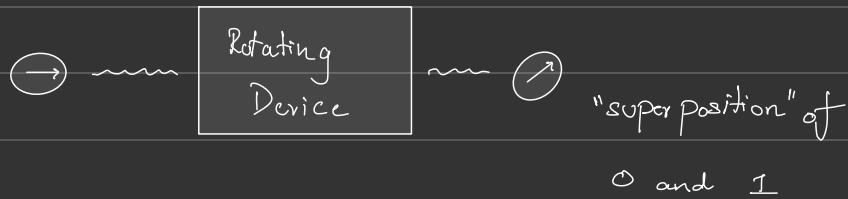
Mathematical Abstraction:



(Obs. this is the NOT Gate)

- Cannot really do interesting computation with 1 bit.

Punchline: Can do interesting computation with 1 "qubit"!



Logical Qubit :

$$x \underbrace{|0\rangle}_{\text{logical zero}} + y \underbrace{|1\rangle}_{\text{logical one}}$$

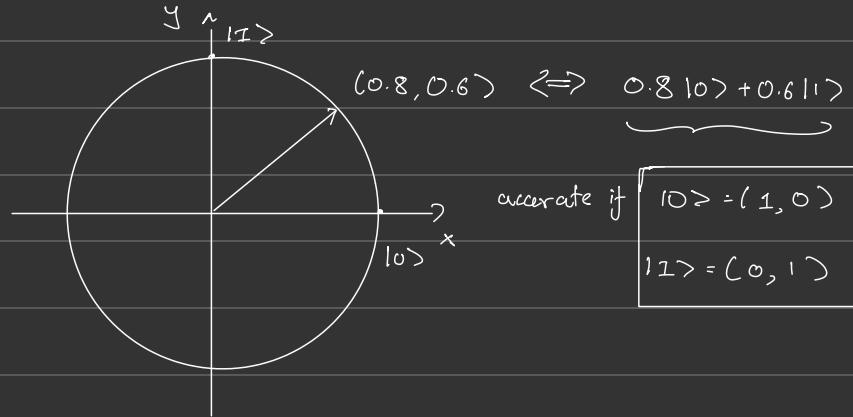
for real numbers x, y , s.t. $x^2 + y^2 = 1$

- Some amount of logical zero and some amount of logical one.

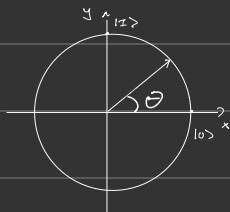
Ex. Equal superposition of $|0\rangle$ and $|1\rangle$

$$\underbrace{\sqrt{\frac{1}{2}}|0\rangle}_{\text{"amplitude"}} + \underbrace{\sqrt{\frac{1}{2}}|1\rangle}_{\text{"amplitude"}}$$

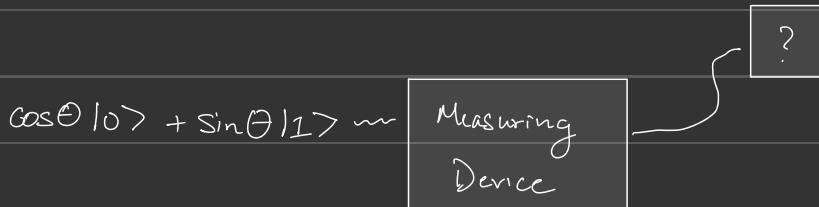
Geometric Interpretation: $x|0\rangle + y|1\rangle$ s.t. $x^2 + y^2 = 1$



$|00\rangle \rightsquigarrow$ Rotate by θ $\rightsquigarrow \cos\theta|0\rangle + \sin\theta|1\rangle$



What happens when you measure an arbitrary qubit?



Law of Quantum Mechanics:

$$\left. \begin{array}{l} \Pr[\text{readout is } |0\rangle] = \cos^2 \theta \\ \Pr[\text{readout is } |1\rangle] = \sin^2 \theta \end{array} \right\} \begin{array}{l} \text{the natural thing} \\ \text{you expect to happen} \end{array}$$

Recap: We have the following mathematical formalization of storing and manipulating a single qubit:

① Description: $\cos\theta|0\rangle + \sin\theta|1\rangle$

② Measurement: $\Pr[|0\rangle] = \cos^2 \theta, \Pr[|1\rangle] = \sin^2 \theta$

Computation: $|0\rangle \xrightarrow[\text{by } \theta]{\text{rotate}} \cos\theta|0\rangle + \sin\theta|1\rangle$

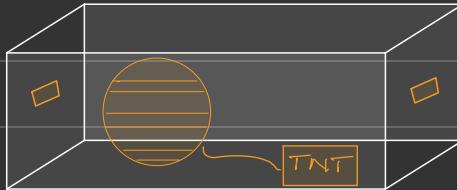
Eliyahu - Yaidman "Bomb"

(Physics though experiment) (Quantum Algorithm)

Case 1:

Empty box

Case 2:



Bomb

Horizontal filter with heat triggered fuse

Rules:

- ① If filter measures $|0\rangle$, photon passes through
- ② If filter measures $|1\rangle$, heat sets off bomb.

Goal: Figure out whether the box has a bomb without it exploding.

- If you know nothing about quantum, and you've only seen horizontal or vertical photons (classical bits) this problem is impossible.

Explanation: You only have two choices: input $|0\rangle$ or $|1\rangle$.

- Consider $|0\rangle$: you get no information at all

- If the box is empty, the photon passes through
- If the box has a bomb, the same thing happens

- Consider $|1\rangle$: Bad idea

- If the box is empty you see a $|1\rangle$ come out
- If the box has a bomb, you certainly see an explosion!
(recall $|1\rangle$ gets absorbed by the filter w.p. 1)

Warm Up:

Key Idea: Taking advantage of superpositions!

Pass $\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$ through the box

Case I: Nothing happens

Case 2: w.p. 0.5 the photon gets absorbed and the bomb explodes.

w. p. 0.5 the photon passes through
 and is horizontally polarized i.e. $10 \Rightarrow$

In this case, we have some non-trivial signal.

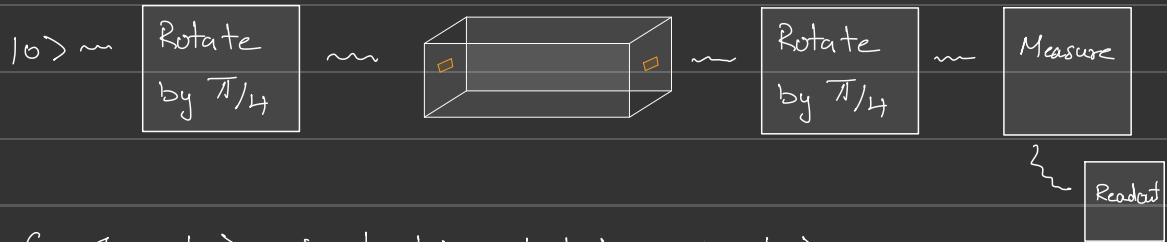
Algorithm:

- ① Start with qubit = $|0\rangle$
- ② Rotate 45° or $\pi/4$ radians
- ③ Pass through box
- ④ Rotate $\pi/4$ radians
- ⑤ readout := Measure (qubit)

4 readout = 10 >

conclude "Bomb"

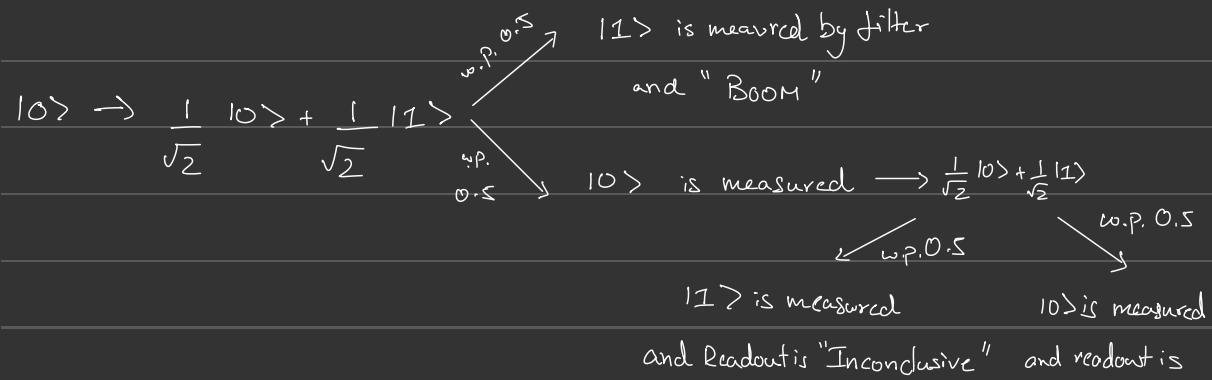
Else "Inconclusive"



Case 1: $|0\rangle \rightarrow \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle \rightarrow |1\rangle$

Readout = $|1\rangle$ w.p. 1 and the algo. outputs "inconclusive"

Case 2:

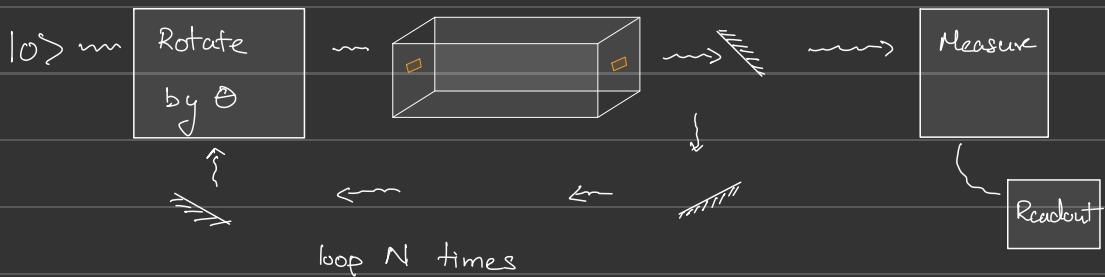


Recap:

- Empty box: 100% chance "Inconclusive" "Bomb!"
- Bomb: 50% chance of explosion
- 25% chance "Inconclusive"
- 25% chance "Bomb"
- Detected bomb without exploding! (not achievable with classical bits)

Elitzur - Vaidman Algorithm:

- ① Let N be "Safety level" specified by user
- ② Start with qubit $|10\rangle$
- ③ Let $\Theta = \pi/2N$
- ④ For $t = 1, 2, \dots, N$
 - Rotate by Θ
 - Pass through mystery box
- ⑤ readout := Measure (qubit)
- ⑥ If $\text{readout} = |10\rangle$ print "Bomb"
Else "Empty"



Case 1: Bounce around N times

$$|10\rangle \rightarrow |11\rangle$$

Readout := $|11\rangle$ w.p. 1 and algorithm outputs "Empty."

Case 2 : - photon is "essentially horizontal", very high chance that filter measures it to be $|0\rangle$ (will calc precisely later)

- photon at angle θ goes into the box again and again the chance the measurement is $|0\rangle$ again
- Assuming the likely thing happens in each iteration the photon comes out in state $|0\rangle$ at the end
- Readout = $|0\rangle$ w.p. 1 and we output "Bomb" without ever exploding!

Summary :

- ① Empty : 100% chance of detecting empty
- ② Bomb : 100% chance of detecting bomb assuming we don't explode

What is the chance of explosion?

- Two competing effects: as you make N large the angle gets closer to 0 (decrease pr. of exploding)
But the photon goes through the box many more times (increase pr. of exploding)
- Not obvious if increasing N helps.

$$\Pr \{ \text{any explosion} \} \leq \Pr \{ \text{explode at } t=1 \} + \Pr \{ \text{explode at } t=2 \} + \dots + \Pr \{ \text{explode at } t=N \}$$

Union bound

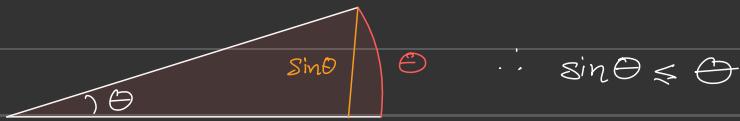
$$\Pr \{ \text{explode at } t=1 \} = \Pr \{ \text{explode at } t=2 \} \dots = \Pr \{ t=N \}$$

(the photon is always entering in state $\cos\theta |0\rangle + \sin\theta |1\rangle$)

$$= N \Pr \{ \text{explode at } t=1 \}$$

$$\Pr \{ \text{measuring } |1\rangle \} = (\sin\theta)^2$$

$$= N \left(\sin \theta \right)^2$$



$$\leq N \theta^2 = N \left(\frac{\pi}{2N} \right)^2 = \frac{\pi^2}{4N} \leq 2.5/N$$

Take N as big as you want. $\Pr[\text{exploding}] \leq 2.5/N$

- whenever you don't explode, the algorithm is correct w.p. 1.

What can you do with more than one qubit?

- ① Grover Search
- ② Shor's Algorithm

