

Lecture 12 : Identity and primality testing

1. Identity testing

- Matrix multiplication verification
- Polynomial Identity Testing (PIT) via Schwartz-Zippel
- Perfect matching identification

2. Primality testing

- Fingerprinting
- Basics of Number theory, Group theory
- Fermat test, Euler test, Miller-Rabin test

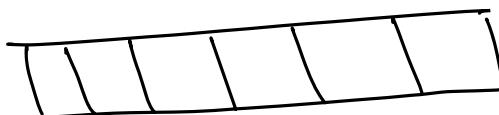
Is there an elephant in the room?

Deiter: Don't know, the lights are off.

Randy: [Runs around the room for a while] pretty sure there isn't one.

Empty list checking

Given a large list $A[1, \dots, n]$ that is either empty or has $\frac{n}{2}$ non empty elements. For any $1 \leq i \leq n$, we get to know if $A[i] = \emptyset$ or not.



Empty (YES)

or

Not empty (No)

Any deterministic algorithm will have to probe $\frac{n}{2}$ positions in the worst case.

probe c random indices i_1, \dots, i_c

— if $A[i_1] = \dots = A[i_c] = \emptyset$, return "YES"

— else if $A[i_c] \neq \emptyset$, return "NO"

→ witness for non-emptiness

one sided error \rightarrow false positives are possible

but probability $\leq \frac{1}{2^c}$.

→ NO false negatives

This is pretty much the core principle in what follows.
Smarts in choosing the list and elements carefully.

Freivalds' Algorithm : Matrix Multiplication Verification

Given $n \times n$ matrices A, B, C .

Output "YES" if $AB = C$, "NO" otherwise.

Trivial deterministic algorithm is to compute AB and entrywise compare with C . Takes $n^{\omega} \xrightarrow{2.371552}$ time

(. Pick a random vector $x = (x_1, x_2, \dots, x_n)$ such that x_i is i.i.d uniform from some finite set $S, |S| \geq 2$.

2. if $(AB)x \neq cx$, return "NO"

else return "YES"

each run of this algorithm takes $O(n^2)$ time as
 $(AB)x = A(Bx)$. Checking $(AB)x \stackrel{?}{=} cx$ requires three
matrix-vector multiplications.

Lemma: If $P \in \mathbb{R}^{n \times n}$, $P \neq 0$, then $\Pr_{x \sim \mathbb{S}^n} [Px = 0] \leq \frac{1}{|S|}$.

Proof:- Without loss of generality, assume $P_{11} \neq 0$.

$$\text{If } Px = 0, \sum_{j=1}^n P_{1j} x_j = 0 \Rightarrow x_1 = -\frac{1}{P_{11}} \left[\sum_{j \geq 2} P_{1j} x_j \right]$$

For any fixed x_2, \dots, x_n , there is exactly one
choice for x_1 that satisfies the above condition.

$$\text{so } \Pr_{x \sim \mathbb{S}^n} [Px = 0] \leq \frac{1}{|S|}.$$

□

Corollary: If $AB \neq C$, $\Pr[(AB)x = cx] \leq \frac{1}{|S|}$.

[set $P = AB - C$ in lemma]

Intuitively, the null space $\{x : Px = 0\}$ of
a non-zero matrix P is "sparse". There is
abundance of witness $\{x : Px \neq 0\}$.

Px is a multivariate polynomial of degree 1.
This property can be generalized to polynomials
of degree d . The null space becomes roots/zeros of P .

A degree- d polynomial is of the form:

$$P(x_1, \dots, x_n) = \sum_{\substack{\sum_i d_i \leq d \\ i=1 \\ d_i \in \mathbb{Z}_{\geq 0}}} c_d \prod_{i=1}^{d_i} x_i^{d_i}.$$

P is a polynomial over field \mathbb{F} if $c_d \in \mathbb{F}$.

The polynomial P should not be confused with the function it computes.

x^2, x compute the same function in \mathbb{F}_2 . This happens if $\deg(P) \geq \text{size of field}$.

If $\deg(P) \leq |\mathbb{F}| - 1$, then the polynomial is uniquely determined by the function it computes.

A zero polynomial is the polynomial with all coefficients $c_d = 0$. So $x^2 - x$ over \mathbb{F}_2 is not a zero polynomial even though it computes zero everywhere.

Fact [degree mantra]

A univariate polynomial $P(x)$ over field \mathbb{F} has at most $\deg(P)$ roots, unless $P(x)$ is the zero polynomial.

A corollary of the fact above is that

$$\Pr_{x \sim S} [P(x) = 0] \leq \frac{d}{|S|}.$$

when x is picked uniformly randomly from a set $S \subseteq \mathbb{F}$.

Schwartz-Zippel

$$\text{For } P \neq 0, \quad \Pr_{\substack{x_1 \sim S \\ \dots \\ x_n \sim S}} [P(x_1, x_2, \dots, x_n) = 0] \leq \frac{d}{|S|}.$$

Proof:- Proof is by induction on n . For the base case $n=1$, $P(x)$ has at most d roots. So

$$\Pr_{x \sim S} [P(x_1) = 0] \leq \frac{d}{|S|}.$$

For the inductive step, let k be the largest degree of x_1 in P and write

$$P(x_1, \dots, x_n) = M(x_2, \dots, x_n) x_1^k + N(x_1, \dots, x_n)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\text{degree} \leq d-k \qquad \qquad \qquad \text{degree of } x_1 < k$$

Let Σ be the event that $M(x_2, \dots, x_n) = 0$.

(M is not the zero polynomial by definition)

case 1: Σ happens. From inductive hypothesis,

$$\Pr[\Sigma] \leq \frac{d-k}{|S|}$$

case 2: Σ happens. Let $P'(x) = P(x, x_2, \dots, x_n)$ be the univariate polynomial obtained by fixing x_2, \dots, x_n conditioned on Σ not happening

$$\Pr_{x \sim S} [P(x) = 0 \mid \neg \Sigma] \leq \frac{k}{|S|}$$

$$\begin{aligned} \Pr [P(x_1, \dots, x_n) = 0] &= \Pr [P(x_1, \dots, x_n) = 0 \mid \Sigma] \cdot \Pr(\Sigma) \\ &\quad + \Pr [P(x_1, \dots, x_n) = 0 \mid \neg \Sigma] \cdot \Pr(\neg \Sigma) \\ &\leq 1 \cdot \frac{d \cdot k}{|S|} + \frac{k}{|S|} \cdot 1 = \frac{d}{|S|} \cdot D \end{aligned}$$

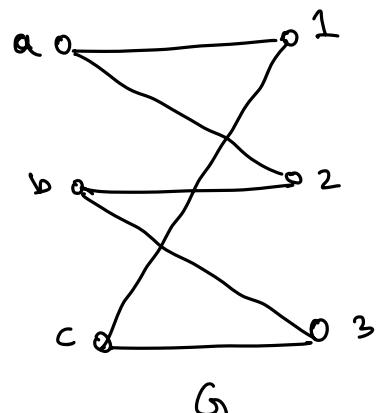
Schwart - zippel naturally gives an algorithm for Polynomial identity testing. To check if $Q \equiv R$, we check if $P = Q - R$ is zero by evaluating at random points.

$$\text{def} \begin{bmatrix} x+y & x^2 - y^2 & 0 \\ 1 & x & 1 \\ 0 & y & 1 \end{bmatrix} \rightarrow \text{zero?}$$

Detecting Perfect Matchings by Computing a Determinant

$$\begin{array}{c} 1 \quad 2 \quad 3 \\ a \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \\ b \end{array}$$

bi-adjacency Matrix



$$E = \begin{bmatrix} x_{11} & x_{12} & 0 \\ 0 & x_{22} & x_{23} \\ x_{31} & 0 & x_{33} \end{bmatrix} \quad \text{Edmonds matrix}$$

$$\det(E) = x_{11}x_{22}x_{33} + x_{12}x_{23}x_{31}$$

Fact: every monomial in $\det(E)$ corresponds to a perfect matching in G .

↓

$\det(E)$ is a non-zero polynomial iff G contains a perfect matching.

over any field \mathbb{F}

PM-tester (bipartite graph G , $S \subseteq \mathbb{F}$)

1. $E \leftarrow$ edmonds matrix of graph G
2. Sample each non-zero entry $x_{i,j} \sim S$ uniformly and independently at random.
3. $\tilde{E} \leftarrow$ matrix with sampled values substituted
 if $\det(\tilde{E}) = 0$ then
 return G does not have a PM (No)
 else
 return G contains a PM (Yes)

No false positives, $\Pr[\text{false negative}] \leq \frac{n}{|S|} \quad (\text{choose } |S| \geq n^3)$

Computing the determinant takes $O(n^3)$ time by gaussian elimination. But $O(n^2)$ time algorithms

known [Bunch, Hopcroft]

→ parallel algorithms using $O(\log^2 n)$ time, $O(n^{3.5})$ processors

known [Berlekamp]

The PM detection algorithm can be converted to a PM finding algorithm.

Find-PM (bipartite graph $G, S \subseteq \mathbb{F}$)

1. Assume G has a perfect matching let $e = uv$ be an edge in G .

if $\text{PM-tester}(G[V - \{u, v\}], S) = \text{YES}$ then

return $\text{Find-PM}(G[V - \{u, v\}], S)$

else

$M' \leftarrow \text{Find-PM}(G[V - \{u, v\}], S)$

return $M' \cup \{e\}$

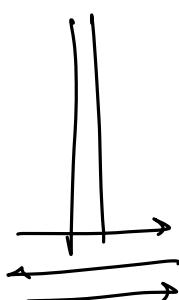
$O(mn^6)$ time

We conclude the identity testing part with another nice application of the multivariate case of Schwartz-Zippel (degree mantra)

Communication complexity of Equality

Alice

$a \in \{0,1\}^n$



Bob

$b \in \{0,1\}^n$

Can communicate
back & forth

Goal: Test if $a = b$ using min # bits communicated.

Any deterministic algorithm needs $\geq n$ bits

(essentially, Alice sends Bob her message)

The following protocol uses $O(\log n)$ bits of communication with $\Pr[\text{error}] \leq \frac{1}{\text{Poly}(n)}$.

Polynomial-Protocol

1. Alice sends Bob an arbitrary prime $n^2 \leq q \leq 2n^2$ $\log q \rightarrow O(\log n)$ bits

2. Alice forms $A(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x$

Bob forms $B(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x$

Goal is to decide if $A = B$.

3. Alice picks a random $\alpha \in \mathbb{F}_q$ and sends $A(\alpha) \in \mathbb{F}_q$ to Bob $O(\log n)$ bits

Bob computes $B(\alpha)$, says "yes" if $A(\alpha) = B(\alpha)$
"no" otherwise.

if $a = b$, $\Pr[\text{"yes"}] = 1$

if $a \neq b$, $\Pr[\text{"yes"}] = \Pr_{\alpha \in \mathbb{F}_q} [A(\alpha) = B(\alpha)] \leq \frac{n}{q} \leq \frac{1}{n}$.

We can design a protocol that does not involve polynomials but uses the properties of prime numbers.

Prime - Protocol

1. Alice picks a prime p u.a.y from $\{1, 2, 3, \dots, T\}$
2. Alice sends p and $a \bmod p$ to Bob
3. Bob says "yes" if $b \bmod p = a \bmod p$
"no" otherwise

if $a = b$, $\Pr[\text{"Yes"}] = 1$

if $a \neq b$, $\Pr[\text{"YES"}] = \Pr[b \equiv a \pmod p]$

$b-a$ is a n bit number so has $\leq n$ distinct prime factors.

$$\text{so } P \vdash [b \equiv a \pmod{p}] \leq \frac{n}{\#\text{primes} \leq T}$$

$$\pi(\tau) := \# \text{ primes} \leq \tau$$

Theorem [Prime Number Theorem]

$$\frac{\pi}{\ln \pi} \leq \pi(\pi) \leq \frac{1.26\pi}{\ln \pi} \quad \forall \pi \geq 17$$

so $\frac{\pi}{\pi(\pi)} \leq \frac{\pi \ln \pi}{\pi}$

picking $\pi = c n \log n$ gives $\Pr[\text{error}] \leq \frac{1}{c} + o(1)$

Step 2 requires $O(\log \pi) = O(\log n)$ bits of communication

How is Step 1 executed?

Sample a random number in $[2, \pi]$ until it is prime.

$$\mathbb{E}[\#\text{trials}] \approx \frac{\pi}{\pi(\pi)} = (\pi \sim \ln n)$$

But how do we verify that a number is prime?

Primality Testing

Fingerprinting, RSA cryptography, ... etc require a supply of primes (with thousands of bits).

Given an integer n , we wish to determine if n is prime or composite.

The following naive algorithm is known since 2000 years ago:

for $a = 2, 3, \dots, \lfloor \sqrt{n} \rfloor$,

if $a \mid n$, output "composite" and halt
output "prime"

This takes $O(\sqrt{n})$ iterations which is exponential in the input size. We want $O(\text{poly}(\log n))$ run time.

Does choosing a randomly help?

No. If $n = pq$ for two primes p, q , there are only two non-trivial divisors

Some preliminaries

1. Repeated exponentiation. For any $a, b \in \mathbb{N}$, we can compute $a^b \bmod n$ by repeated squaring using $O(\log n)$ multiplications

$\left\{ \begin{array}{l} \text{of } O(\log n) \text{ bit} \\ \text{numbers} \end{array} \right\}$

2. Euclid's algorithm. For any a, b we can compute their gcd using $O(\log a + \log b)$ additions and divisions. Binary gcd algorithm uses $O(\log n)$ bit operations.

3. Group (G, \circ) set of elements binary operation
 if $a \circ b \in G$ + $a, b \in G$ (closure)

(i) $(a \circ b) \circ c = a \circ (b \circ c)$ (associativity)

(ii) $\exists e \in G$ s.t. $a \circ e = e \circ a = a$ (identity)

(iii) $\exists a'$ for all a s.t. $a \circ a' = a' \circ a = e$ (inverse)

[most groups we consider are also commutative]
 $a \circ b = b \circ a$ $\rightarrow \{0, 1, 2, \dots, n-1\}$

examples :- 1. $(\mathbb{Z}, +)$ 2. $(\mathbb{Z}_n, +)$ numbers mod n

3. $(\mathbb{Z}_n^*, *)$ multiplicative group of numbers co-prime to n .

$|\mathbb{Z}_n^*| = \varphi(n)$ (Euler Totient function)

when n is prime, the elements are $\{1, 2, \dots, n-1\}$

$H \subseteq G$ is a subgroup of G if H is a group.

Lagrange's Theorem

For any subgroup H of G , $|H|$ divides $|G|$.

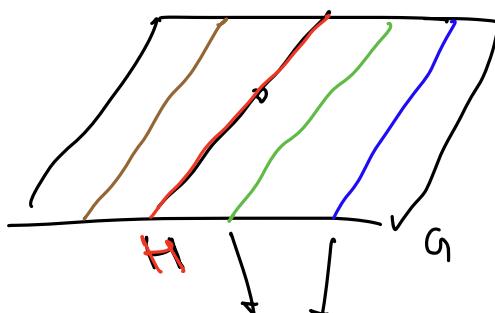
In particular, if $H \neq G$, $|H| \leq |G|/2$.

rough proof idea:-

cosets of H partition G .

$$gH = \{goh : h \in H\}$$

each coset has same size as H .



cosets of H
(essentially translations)
of H by an element

Ex:- $\mathbb{Z}_6^+ = \{0, 1, 2, 3, 4, 5\}$

$H = \{0, 2, 4\}$ is a subgroup.

the group partitions into cosets $0+H, 1+H$.

Fermat test

Fermat's little theorem

For any prime p , $a \in \mathbb{Z}_p^*$, one has

$a^{p-1} \equiv 1 \pmod{p}$. More generally for any (finite) group G , and $a \in G$, we have $a^{|G|} = e$.

$$(a^k = a \underbrace{\circ a \circ \dots \circ a}_{n \text{ times}})$$

PROOF — Let $H = \{a^k : k \in \mathbb{Z}\}$. H is a subgroup of G . Since G is finite, H is finite.

$$H = \{a, a^2, a^3, \dots, a^k = e\} \text{ as } e \in H.$$

$|H| \mid |G|$ from Lagrange's theorem.

$$a^{|G|} = (a^k)^{|G|/k} = e.$$

□

For general n , let $A_n = \{a : a^{n-1} \equiv 1 \pmod{n}\}$. Fermat's little theorem says that $A_n = \mathbb{Z}_n^*$ when n is prime.

Claim : For any n , A_n is a subgroup of \mathbb{Z}_n^* .

If it happens that for composite n , A_n is always a proper subgroup of \mathbb{Z}_n^* , then $|A_n| \leq |\mathbb{Z}_n^*|/2$ by Lagrange's theorem.

This would imply an abundance of witness a s.t. $a^{n-1} \neq 1 \pmod{n}$ for composite numbers.

Fermat test algorithm

1. pick random $a \in \{1, 2, \dots, n-1\}$
2. if $(a, n) \neq 1$, return "No" (n is composite)
3. if $a^{n-1} \pmod{n} \neq 1$ return "No" (n is composite)
else return "Yes"

Turns out there are numbers n s.t $A_n = \mathbb{Z}_n^*$. That is, $a^{n-1} \equiv 1 \pmod{n}$ for all a s.t $(a, n) = 1$. Such n are called Carmichael numbers (561, 1105, 1729, 2465, ...). These numbers fool the Fermat test.

Euler's test

this slightly strengthens Fermat test by checking that $a^{\frac{(n-1)}{2}} \equiv \pm 1 \pmod{n}$.

For $x = a^{\frac{(n-1)}{2}}$, $x^2 \equiv 1 \pmod{n}$ for prime n .

$$(x-1)(x+1) \equiv 0 \pmod{n}$$
$$\Rightarrow x \equiv \pm 1 \pmod{n}$$

The last step need not follow for composite numbers.

1729, 2465 fail the Euler test.

Miller - Rabin Algorithm

Euler test tries to find a non-trivial square root of 1 for just one step.

Miller Rabin test continues trying as long as possible.

Assume n is odd and not a prime power
(we can decide if $n = p^s$ quickly by searching for n 's for $1 \leq s \leq \log n$, binary search for n 's)

so let $n-1 = 2^c d$ where d is odd.

Miller - Rabin Test. Pick random $a \in \{1, 2, \dots, n-1\}$

If $\gcd(a, n) \neq 1$ return NO. So assume $a \in \mathbb{Z}_n^*$.

Consider $a^{n-1}, a^{(n-1)/2}, \dots, a^d$ (in this order). There are three possibilities.

1. Either all the numbers are 1. Output prime
2. The first entry that differs from 1 is not ± 1 . Return composite (We found a non-trivial square root of 1)
3. The first entry that differs from 1 is ± 1 . Output prime (We gave up on a being a witness, as we cannot proceed further once we see $a = \pm 1$)

Example for Carmichael number $n=561$, $n-1=560=2^4 \cdot 35$
For $a=2$, $a^{560}=1$, $a^{280}=1$, $a^{140}=67, \dots \pmod{561}$

Theorem

For any composite number $n > 2$ (not a prime power), the test returns composite for at least half the witnesses $a \in \mathbb{Z}_n^*$.

Proof Let $t \in \{0, 1, 2, \dots, c\}$ be the largest power such that $n^{2^t} \not\equiv 1 \pmod{n}$ for some χ .

$$\left[x^{2^{\frac{n-1}{2}}} = 1 + x \right]$$

such a t exists as

$$x = n-1 \text{ satisfies } (n-1)^d = -1 \pmod{n}$$

for $t=0$.

a	a^2	a^4	\dots	$a^{2^{\frac{n-1}{2}}}$	a^{n-1}
a	a	a	\dots	-1	1
\vdots	\vdots	\vdots		-1	1
-1	-1	1	\dots	1	1

we will show at least half of the elements

$a \in \mathbb{Z}_n^*$ satisfy $a^{2^{\frac{n-1}{2}}} \neq \pm 1 \pmod{n}$. These a are witness for compositeness

let $S = \{a : a^{2^{\frac{n-1}{2}}} = \pm 1\}$. S is a subgroup of \mathbb{Z}_n^* .

It suffices to show that S is a proper subgroup of \mathbb{Z}_n^* (and hence $|S| \leq (\mathbb{Z}_n^*)^{1/2}$)

Suppose for contradiction that $S = \mathbb{Z}_n^*$. We know there is some $x \in S$ s.t. $x^{2^{\frac{n-1}{2}}} = -1 \pmod{n}$.

Since n is composite, $\exists r, s \in S$ s.t. $n = r \cdot s$ (n is not a prime power is used here).

Let y be a number such that

$$y \equiv x \pmod{r}, \quad y \equiv 1 \pmod{s}$$

exists by
chinese remainder
theorem

$$y^{2^d} \equiv x^{2^d} \pmod{r}, \quad y^{2^d} \equiv 1 \pmod{s}$$

$$-1 \pmod{r}$$

$$\text{If } y^{2^d} \equiv 1 \pmod{r} \Rightarrow y^{2^d} \equiv 1 \pmod{r} \Rightarrow 2 \equiv 0 \pmod{r} \times$$

$$\text{If } y^{2^d} \equiv -1 \pmod{r} \Rightarrow y^{2^d} \equiv -1 \pmod{s} \Rightarrow 2 \equiv 0 \pmod{s} \times$$

$y \notin S$ so S has to be a proper subgroup.

□

Miller observed that assuming the generalized Riemann Hypothesis, a witness a exists in the first $O((\log r)^2)$ values of a .

This gives a deterministic primality testing algorithm conditioned on GRH.