11
Prophets and Secretaries

The prophet and secretary problems are two classes of problems where
online decision-making meets stochasticity: in the first set of prob-
lems the inputs are random variables, whereas in the second one

the inputs are worst-case but revealed to the algorithm (a.k.a. the
decision-maker) in random order. Here we survey some results,
proofs, and techniques, and give some pointers to the rich body of
work developing around them.

11.1 The Prophet Problem

The problem setting: there are n random variables Xj, Xp, ..., X;,. We
know their distributions up-front, but not their realizations. These
realizations are revealed one-by-one (say in the order 1,2,...,n). We
want to give a strategy (which is a stopping rule) that, upon seeing
the value X; (and all the values before it) decides either to choose i,
in which case we get reward X; and the process stops. Or we can
pass, in which case we move on to the next items, and are not allowed
to come back to i ever again. We want to maximize our expected
reward. If

Xmax := max{Xy, Xo,..., Xn},

it is clear that our expected reward cannot exceed]E[Xmax]. But how
close can we get?

In fact, we may be off by a factor of almost two against this yard-
stick in some cases: suppose X; = 1 surely, whereas X, = 1/¢ with
probability ¢, and 0 otherwise. Any strategy either picks 1 or passes
on it, and hence gets expected value 1, whereas E[Xmax] = (2 —¢).
Surprisingly, this is the worst case.

Theorem 11.1 (Krengel, Sucheston, and Garling). There is a strategy
with expected reward 1/2IE[Xmax]-

Such a result, that gives a stopping rule whose value is comparable
to the IE[Xmax] is called a prophet inequality, the idea being that one

If we want to find the best strategy,
and we know the order in which we
are shown these r.v.s, there is dynamic
programming algorithm. (Exercise!)

130 THE PROPHET PROBLEM

can come close to the performance of a prophet who is clairvoyant,
can see the future. The result in Theorem 11.1 was proved by Kren-
gel, Sucheston, and Garling; several proofs have been given since.
Apart from being a useful algorithmic construct, the prophet inequal-
ity naturally fits into work on algorithmic auction design: suppose
you know that n potential are interested in an item with valuations
X1,...,Xyn, and you want to sell to one person: how do you make
sure your revenue is close to E[Xmax]?

We now give three proofs of this theorem. For the moment, let us
ignore computational considerations, and just talk about the informa-
tion theoretic issues.

11.1.1 The Median Algorithm

Let T be the median of the distribution of Xpax: i.e.,
Pr[Xmax > 7] = 1/2.

(For simplicity we assume that there is no point mass at 7, the proof
is easily extended to discrete distributions too.) Now the strategy

is simple: pick the first X; which exceeds T. We claim this prove Theo-
rem 11.1.

Proof. Observe that we pick an item with probability exactly 1/2, but
how does the expected reward compare with E[Xmax|?

E[Xmax] < T+ E[(Xmax — 7)F])

ST—HE[(Xi—T)+].

n

i=1

And what does the algorithm get?

ALG > 7 Pr[Xmax > 7] + ilE[(X,- - 1) P\ (Xj < 1)]
i=1 j<i
> T Pr[Xmax > 7] + f]E[(XZ — 7)) - Pr[Xmax < T
i=1

But both these probability values equal half, and hence ALG >

1/2E [Xmax]- O]

While a beautiful proof, it is somewhat mysterious, and difficult
to generalize. Indeed, suppose we are allowed to choose up to k
variables to maximize the sum of their realizations? The above proof
seems difficult to generalize, but the following LP-based one will.

This proof is due to Ester Samuel-Cahn.

However, a recent paper of Shuchi
Chawla, Nikhil Devanur, and Thodoris
Lykouris gives an extension of Samuel-
Cahn’s proof to the multiple item
setting.

https://arxiv.org/abs/2007.07990

PROPHETS AND SECRETARIES 131

11.1.2 The LP-based Algorithm

The second proof is due to Shuchi Chawla, Jason Hartline, David

Malec, and Balu Sivan, and to Saeed Alaei. Define p; as the proba- If you know of an earlier reference for
bility that element X; takes on the highest value. Hence) ; p; = 1. this proof, please let me know.
Moreover, suppose T; is such that Pr[X; > 7] = p;, ie., the pi" per-

centile for X;. Define

vi(pi) = E[X; | X; > 7]

as the value of X; conditioned on it lying in the top pfh

Clearly, E[Xmax] < Y;vi(p;) - pi- Here’s an algorithm that gets value
1/421' vi(pi) - Pi > 1/41E[Xmax]5

If we have not chosen an item among 1, ...,1 — 1, when looking at item i, pass
with probability half without even looking at X;, else accept it if X; > T;.

percentile.

Lemma 11.2. The algorithm achieves a value of 1/4E[Xmax].

Proof. Say we “reach” item i if we’ve not picked an item before i. The
expected value of the algorithm is

n
ALG >) Prreach item i] - 1/2- Pr[X; > 7] - E[X; | X; > 7]
i=1

n
= ZPr[reach item i) - 1/2- p; - v;(p;). (11.1)
i=1

Since we pick each item with probability p;/2, the expected number
of items we choose is half. So, by Markov’s inequality, the probability
we pick no item at all is at least half. Hence, the probability we reach
item i is at least one half too, the above expression is 1/4Y; v;(p;) - pi
as claimed. O

Now to give a better bound, we refine the algorithm above: sup-
pose we denote the probability of reaching item i by r;, and suppose
we reject item i outright with probability 1 — g;. Then (11.1) really
shows that .

ALG =) 1i- i pi - vi(pi)-
i=1
Above, we ensured that q; = r; = 1/2, and hence lost a factor of 1/4.
But if we could ensure that r; - g; = 1/2, we’d get the desired result of
1/2E[Xmax]. For the first item r; = 1 and hence we can set q; = 1/2.
What about future items? Note that since that

tiv1 = 1i(1—q; - pi) (11.2)

we can just set q;11 = ﬁ A simple induction shows that 7;;1 >
1/2—indeed, sum up (11.2) to get r;11 = 11 — ngi pi/2—so that
giv1 € [0,1] and is well-defined.

132 THE PROPHET PROBLEM

11.1.3 The Computational Aspect

If the distribution of the r.v.s X; is explicitly given, the proofs above
immediately give us algorithms. However, what if the variables X;
are given via a black-box that we can only access via samples?

The first proof merely relies on finding the median: in fact, finding
an “approximate median” 7 such that Pr[Xmax < T] € (1/2—¢,1/2+¢)
gives us expected reward 1/2+¢/2E[Xmax]. To do this, sample from
Xmax O(s’2 log (5’1) times (each sample to Xmax requires one sample
to each of the X;s) and take T to be the sample median. A Hoeffding
bound shows that 7 is an “approximate median” with probability at
least 1 —¢.

For the second proof, there are two ways of making it algorithmic.
Firstly, if the quantities are polynomially bounded, estimate p; and v;
by sampling. Alternatively, solve the convex program

max { Zi:]/i -0i(yi) | Zi:]/i = 1}

and use the y;’s from its solution in lieu of p;’s in the algorithm
above.

Do we need such good approximations? Indeed, getting samples
from the distributions may be expensive, so how few samples can
we get away with? A paper of Pablo Azar, Bobby Kleinberg, and
Matt Weinberg shows how to get a constant fraction of [E[Xmax] via
taking just one sample from each of the X;s. Let us a give a different
algorithm, by Aviad Rubinstein, Jack Wang, and Matt Weinberg.

11.1.4 The One-Sample Algorithm

For the preprocessing, take one sample from the distributions for
each of Xj,Xp, ..., X,. (Call these samples 51, Sy, ...,S;.) Set the
threshold T to be the largest of these sample values. Now when see-
ing the actual items Xj, Xp, ..., X;, pick the first item higher than 7.
We claim this one-sample algorithm gives an expected value at least
1/2E [Xmax] .

Proof. As a thought experiment, consider taking two independent
samples from each distribution, then flipping a coin C; to decide
which is X; and which is S;. This has the same distribution as origi-
nal process, so we consider this perspective.

Now consider all these 21 values together, in sorted order: call
these Wy > Wy > ... > Wy,. We say W; has index i if it is drawn
from the i*" distribution, and hence equal to X; or S;. Let j* be the
smallest position where W;, Wj« ;1 have the same index for some
i < j*. Observe: the coins C; for the indices corresponding to the first

PROPHETS AND SECRETARIES

j* positions are independent, and the coin for the position j* + 1 is
the same as one of the previous ones. We claim that

Wi, Wj*.fl.
2! 2]

E [Xmax] == Z

i<j*

Indeed, Xmax = W; if all the previous Wys belong to the sample (i.e.,
they are S’s and not X’s), but W; belongs to the actual values (it is an
X). Moreover, if all the previous values are Ss, then Wj*+1 would be
an X and hence the maximum, by our choice of j*.

What about the algorithm? If Wj is a sample (i.e., an S-value) then
we don’t get any value. Else if Wy, ..., W; are all X values, and W;4
is a sample (S value) then we get value at least W;. If i < j*, this hap-
pens with probability 2,% since all the i + 1 coins are independent.
Else if i = j*, the probability is % = 21% Hence

W; Wi W; Wi« W‘*Jrl
AngZ.’—i——L_Z.’ ! iy
i 2i+1 2j i 2i+1 2j*+1 2j*+1
But this is at least half of IE[Xmax|, which proves the theorem. O

11.1.5 Extensions: Picking Multiple Items

What about the case where we are allowed to choose k variables
from among the n? Proof #2 generalizes quite seamlessly. If p; is the
probability that X; is among the top k values, we now have:

Yipi =k (11.3)

The “upper bound” on our quantity of interest remains essentially
unchanged:

E[sum of top k r.v.s] < Y 0;(p;i) - pi. (11.4)

What about an algorithm to get value 1/4 of the value in (11.4)? The
same as above: reject each item outright with probability 1/2, else
pick i if X; > ;. Proof #2 goes through unchanged.

For this case of picking multiple items, we can do much better:
a result of Alaei shows that one can get within (1 — 1/vk+3) of the
value in (11.4)—for k = 1, this matches the factor 1/2 we showed

above. One can, however, get a factor of (1 — O(10fk)) using a

simple concentration bound.

Proof. Suppose we reduce the rejection probability to 4. Then the
probability that we reach some item i without having picked k items
already is lower-bounded by the probability that we pick at most k
elements in the entire process. Since we reject items with probability

133

134 THE PROPHET PROBLEM

J, the expected number of elements we pick is (1 — d)k. Hence, the

(6%K)

probability that we pick less than k items is at least 1 — e~ @), by a

Hoeffding bound for sums of independent random variables. Now
setting 6 = O(%) ensures that the probability of reaching each

item is at least (1 — %), and an argument similar to that in Proof #2
shows that

ALG > Y !' | Pr[reach item i] - Pr[not reject item 7] - Pr[X; > 7] - E[X; | X; > 7]

= Y7 (1= 1/k) - (1—O(/ X)) - pi - vi(pa),

which gives the claimed bound of (1 — O(10;'fk)). O

11.1.6 Extensions: Matroid Constraints

Suppose there is a matroid structure M with ground set [n], and
the set of random variables we choose must be independent in this
matroid M. The value of the set is the sum of the values of items
within it. (Hence, the case of at most k items above corresponds to
the uniform matroid of rank k.) The goal is to make the expected
value of the set picked by the algorithm close to the expected value of
the max-weight independent set.

Bobby Kleinberg and Matt Weinberg give an algorithm to picks
an independent set whose expected value is at least half the value
of the max-weight independent set, thereby extending the original
single-item prophet inequality seamlessly to all matroids. While their
original proof uses a combinatorial idea, a LP-based proof was subse-
quently given by Moran Feldman, Ola Svensson, and Rico Zenklusen.
The idea is again clever and conceptually clean: find a solution y to
the convex program

Xivi(Yi) - i
y € the matroid polytope for M

Now given a fractional point y in the matroid polytope, how to get
an integer point (i.e., an independent set). For this they give an ap-
proach called an “online contention resolution” scheme that ensures
that any item i is picked with probability at least Q)(y;), much like in
the single-item and k-item cases.

There are many other extensions to prophet inequalities: people
have studied more general constraint sets, submodular valuations
instead of just additive valuations, what if the order of items is not
known, what if we are allowed to choose the order, etc. See papers on
arXiv, or in the latest conferences for much more.

Recall that a matroid M = (U, F) is a
set U is a collection of subsets F C 2Y
that is closed under taking subsets,
such thatif A,B € F and |A| < |B|
then there exists b € B\ A such that
AU{b} € F.Setsin F are called
independent sets.

PROPHETS AND SECRETARIES

11.1.7 Exercises

1. Give a dynamic programming algorithm for the best strategy when we know the
order in which r.v.s are revealed to us. (Footnote 1). Extend this to the case where
you can pick k items.

Open problem: is this “best strategy” problem computationally hard when we are
given a general matroid constraint? Even a laminar matroid or graphical matroid?

2. If we can choose the order in which we see the items, show that we can get ex-
pected value > (1 — 1/¢)E[Xmax]. (Hint: use proof #2, but consider the elements in
decreasing order of v;(p;).)

Open problem: can you beat (1 — 1/¢)E[Xmax]? A recent paper of Abolhassani et al.
does so for i.i.d. X;s.

11.2 Secretary Problems

The problem setting: there are n items, each having some intrinsic
non-negative value. For simplicity, assume the values are distinct, but
we know nothing about their ranges. We know 7, and nothing else.
The items are presented to us one-by-one. Upon seeing an item, we
can either pick it (in which case the process ends) or we can pass (but
then this item is rejected and we cannot ever pick it again). The goal
is to maximize the probability of picking the item with the largest
value Umax.

If an adversary chooses the order in which the items are presented,
every deterministic strategy must fail. Suppose there are just two
items, the first one with value 1. If the algorithm picks it, the adver-
sary can send a second item with value 2, else it sends one with value
1/2. Randomizing our algorithm can help, but we cannot do much
better than 1/x.

So the secretary problem asks: what if the items are presented in uni-
formly random order? For this setting, it seems somewhat surprising
at first glance that one can pick the best item with probability at least
a constant (knowing nothing other than n, and the promise of a uni-
formly random order). Indeed, here a simple algorithm and proof
showing a probability of 1/4:

Ignore the first n/2 items, and then pick the next item that is better

than all the ones seen so far.

Note that this algorithm succeeds if the best item is in the second
half of the items (which happens w.p. 1/2) and the second-best item
is in the first half (which, conditioned on the above event, happens
w.p. > 1/2). Hence 1/4. It turns out that rejecting the first half of the
items is not optimal, and there are other cases where the algorithm
succeeds that this simple analysis does not account for, so let’s be
more careful. Consider the following 37%-algorithm:

Ignore the first /e items, and then pick the next item that is better
than all the ones seen so far.

135

136 SECRETARY PROBLEMS

Theorem 11.3. Asn — oo, the 37%-algorithm picks the highest number
with probability at least 1/e. Hence, it gets expected value at least Umax /e.
Moreover, n/e is the optimal choice of m among all wait-and-pick algo-
rithms.

Proof. Call a number a prefix-maximum if it is the largest among the
numbers revealed before it. Notice being the maximum is a property
of just the set of numbers, whereas being a prefix-maximum is a
property of the random sequence and the current position. If we
pick the first prefix-maximum after rejecting the first m numbers, the
probability we pick the maximum is

n
Y Pr[v; is max] - Primax among first f — 1 numbers falls in first m positions]
t=m+1

(%) i 1 m m (
= - — = —(Hy1-— Hmfl)/
g n =1 n

where Hy = 1+ % + % + ...+ % is the k' harmonic number. The
equality (%) uses the uniform random order. Now using the approxi-
mation Hy ~ Ink + 0.57 for large k, we get the probability of picking

the maximum is about 7} In 771111 when m, n are large. This quantity
has a maximum value of 1/e if we choose m = n/e. O

Next we show we can replace any strategy (in a comparison-based
model) with a wait-and-pick strategy without decreasing the proba-
bility of picking the maximum.

Theorem 11.4. The strategy that maximizes the probability of picking the
highest number can be assumed to be a wait-and-pick strategy.

Proof. Think of yourself as a player trying to maximize the probabil-
ity of picking the maximum number. Clearly, you should reject the
next number v; if it is not prefix-maximum. Otherwise, you should
pick v; only if it is prefix-maximum and the probability of v; being
the maximum is more than the probability of you picking the maxi-
mum in the remaining sequence. Let us calculate these probabilities.

We use Pmax to abbreviate “prefix-maximum”. For position i €
{1,...,n}, define

f(i) = Pr[v; is max | v; is Pmax] & m) 11/7:1 = %,
where equality (%) uses that the maximum is also a prefix-maximum,
and (xx) uses the uniform random ordering. Note that f(i) increases
with i.

Now consider a problem where the numbers are again being re-
vealed in a random order but we must reject the first i numbers. The

PROPHETS AND SECRETARIES

goal is to still maximize the probability of picking the highest of the n
numbers. Let g(i) denote the probability that the optimal strategy for
this problem picks the global maximum.

The function g(i) must be a non-increasing function of i, else we
could just ignore the (i 4+ 1)* number and set ¢(i) to mimic the strat-
egy for g(i + 1). Moreover, f(i) is increasing. So from the discussion
above, you should not pick a prefix-maximum number at any posi-
tion i where f(i) < g(i) since you can do better on the suffix. More-
over, when f(i) > g(i), you should pick v; if it is prefix-maximum,
since it is worse to wait. Therefore, the approach of waiting until
f becomes greater than g and thereafter picking the first prefix-
maximum is an optimal strategy. O

In keeping with the theme of this chapter, we now give an alter-
nate proof that uses a convex-programming view of the process. We
will write down an LP that captures some properties of any feasible
solution, optimize this LP and show a strategy whose success proba-
bility is comparable to the objective of this LP! The advantage of this
approach is that it then extends to adding other constraints to the
problem.

Proof. (Due to Niv Buchbinder, Kamal Jain, and Mohit Singh.) Let us
fix an optimal strategy. By the first proof above, we know what it is,
but let us ignore that for the time being. Let us just assume w.Lo.g.
that it does not pick any item that is not the best so far (since such an
item cannot be the global best).

Let p; be the probability that this strategy picks an item at posi-
tion i. Let g; be the probability that we pick an item at position 7,
conditioned on it being the best so far. So q; = 1’7—/1. =1 p;.

Now, the probability of picking the best item is

ZPr[i”‘ position is global best and we pick it |
i
1 i
. th o — Lo .
= ;Pr[z position is global best | - g; IZ i ; i (11.5)

What are the constraints? Clearly p; € [0,1]. But also

p; = Pr[pick item i | i best so far| - Pr[i best so far]
< Pr[did not pick 1,...,i — 1| i best so far] - (1/1) (11.6)

But not picking the first i — 1 items is independent of i being the best
so far, so we get

pi < %(1—217]-)-

j<i

137

138 SECRETARY PROBLEMS

Hence, the success probability of any strategy (and hence of the
optimal strategy) is upper-bounded by the following LP in variables

pi:

i
max;E-pi
i-p;i < 1—2Pj
j<i
pi € [0/1]'

Now it can be checked that the solution p; = 0fori < Tand

pit(:4 — 1) for T < i < nis a feasible solution, where T is de-

fined by the smallest value such that H, 1 — Hr_; < 1. (By duality,
we can also show it is optimal!)

Finally we can get a stopping strategy whose success probability
matches that of the LP. Indeed, solve the LP. Now, for the it" position
if we’ve not picked an item already and if this item is the best so far,

pi

pick it with probability 1—- 7
j<i

- By the LP constraint, this probabil-

ity € [0, 1]. Moreover, removing the conditioning shows we pick an
item at location i with probability p;, and a calculation similar to the
one above shows that our algorithm’s success probability is) ; ip;/n,
the same as the LP. O

11.2.1 Extension: Game-Theoretic Issues

Note that in the optimal strategy, we don’t pick any items in the first
n/e timesteps, and then we pick items with quite varying probabili-
ties. If the items are people interviewing for a job, this gives them an
incentive to not come early in the order. Suppose we insist that for
each position i, the probability of picking the item at position i is the
same. What can we do then?

Let’s fix any such strategy, and write an LP capturing the suc-
cess probabilities of this strategy with uniformity condition as a
constraint. Suppose p < 1/n is this uniform probability (over the
randomness of the input sequence). Again, let g; be the probability
of picking an item at position i, conditioned on it being the best so
far. Note that we may pick items even if they are not the best so far,
just to satisfy the uniformity condition; hence instead of q; = i - p as
before, we have

qi < ip.
Moreover, by the same argument as (11.6), we know that

q; <1—(i—1)p.

And the strategy’s success probability is again) q;/n using (11.5). So

PROPHETS AND SECRETARIES

we can now solve the LP

1
maxzi:n qi
:<1-(i=1)-p
gi<i-p
gi €10,1],p >0

Now the Buchbinder, Jain, and Singh paper shows the optimal value
of this LP is at least 1 — 1/1/2 & 0.29; they also give a slightly more
involved algorithm that achieves this success probability.

11.2.2 Extension: Multiple Items

Now back to having no restrictions on the item values. Suppose we
want to pick k items, and want to maximize the expected sum of
these k values. Suppose the set of the k largest values is $* C [n], and
their total value is V* = } ;5 v;. It is easy to get an algorithm with
expected value Q(V*). E.g., split the n items into k groups of n/k
items, and run the single-item algorithm separately on each of these.
(Why?) Or ignore the first half of the elements, look at the value ¢ of
the (1 — e)k/2"" highest value item in this set, and pick all items in
the second half with values greater than 9. And indeed, ignoring half
the items must lose a constant factor in expectation.

But here’s an algorithm that gives value V*(1 — §) where § — 0
ask — co. We will set § = O(k~'/3logk) and ¢ = §/2. Ignore the
first o1 items. (We expect 0k ~ k?/3 items from S* fall in this ignored
set.) Now look at the value © of the (1 — £)dk"-highest valued item
in this ignored set, and pick the first (at most) k elements with values
greater than 9 along the remaining (1 — §)n elements.

Why is this algorithm good? There are two failure modes: (i) if v’ = min;eg+ v;

be the lowest value item we care about, then we don’t want 9 < v’ else we may

pick low valued items, and (ii) we want the number of items from S* in the last
(1 — 6)n and greater than 9 to be close to k.

Let’s sketch why both bad events happen rarely. For event (i) to happen, fewer
than (1 — ¢)dk items from S* fall in the first én locations: i.e., their number is
less than (1 — ¢) times its expectation, which has probability exp(—¢25k) =

1/ poly(k) by a Hoeffding bound. For event (ii) to happen, more than (1 — €)dk
of the top (1 — d)k items from S* fall among the ignored items. This means their
number exceeds (1 + O(e)) times its expectation, which again has probability
exp(—¢2dk) = 1/ poly (k).

An aside: the standard concentration bounds we know are for sums of i.i.d.
r.v.s whereas the random order model causes correlations. The easiest way to
handle that is to ignore not the first én items but a random number of items

~ Bin(n,). Then each item has probability é of being ignored, independent of
others.

Is this tradeoff optimal? No. Kleinberg showed that one can get
expected value V*(1 — O(k~'/2)), and this is asymptotically optimal.

139

140 SECRETARY PROBLEMS

In fact, one can extend this even further: a set of vectors ay,ap,...,a, €
[0,1]™ is fixed, along with values vy, vy, ..., v,. These are initially un-
known. Now they are revealed one-by-one to the algorithm in a
uniformly random order. The algorithm, on seeing a vector and its
value must decide to pick it or irrevocably reject it. It can pick as
many vectors as it wants, subject to their sum being at most k in each
coordinate; the goal is to maximize the expected value of the picked
vectors. The k-secretary case is the 1-dimensional case when each
a; = (1). Indeed, this is the problem of solving a packing linear pro-
gram online, where the columns arrive in random order. A series of
works have extended the k-secretary case to this online packing LP
problem, getting values which are (1 — O(/(logm)/k)) times the
optimal value of the LP.

11.2.3 Extension: Matroids

One of the most tantalizing generalizations of the secretary prob-
lem is to matroids. Suppose the n elements form the ground set of
a matroid, and the elements we pick must form an independent

set in this matroid. Babioff, Immorlica, and Kleinberg asked: if the
max-weight independent set has value V*, can we get Q(V*) using
an online algorithm? The current best algorithms, due to Lachish,
and to Feldman, Svensson, and Zenklusen, achieve expected value
Q(V*/loglogk), where k is the rank of the matroid. Can we im-
prove this further, say to a constant? A constant factor is known for
many classes of matroids, like graphical matroids, laminar matroids,
transversal matroids, and gammoids.

11.2.4 Other Random Arrival Models

One can consider other models for items arriving online: say a set of
n items (and their values) is fixed by an adversary, and each timestep
we see one of these items sampled uniformly with replacement. (The
random order model is same, but without replacement.) This model,
called the i.i.d. model, has been studied extensively—results in this
model are often easier than in the random order model (due to lack
of correlations). See, e.g., references in a monograph by Aranyak
Mehta.

Do we need the order of items to be uniformly random, or would
weaker assumptions suffice? Kesselhiem, Kleinberg, and Niazadeh
consider this question in a very nice paper and show that much less
independence is enough for many of these results to hold .

In general the random-order model is a clean way of modeling the
fact that an online stream of data may not be adversarially ordered.
Many papers in online algorithms have used this model to give better

PROPHETS AND SECRETARIES

results than in the worst-case model: some of my favorite ones are
paper of Meyerson on facility location, and this paper of Bahmani,
Chowdhury, and Goel on computing PageRank incrementally.

Again, see online for many many papers related to the secretary
problem: numerous models, different constraints on what sets of
items you can pick, and how you measure the quality of the picked
set. It’s a very clean model, and can be used in many different set-
tings.

Exercises

1. Give an algorithm for general matroids that finds an independent set with expected
value at least an O(1/(logk))-fraction of the max-value independent set.

2. Improve the above result to O(1)-fraction for graphic matroids.

141

