
Randomized Algorithms NYU, Fall 2025
HW #3 (out Friday Oct 31, 2025) Due: Wednesday Nov 12, 2025

Please submit solutions only to the problems, not to exercises. Please collaborate in groups of
2 (or at most 3). Write your own solutions, no sharing of written content. Put down
names of your collaborator(s) on the front page and also in the last problem. Submissions
will be via gradescope, and the link will appear on the course webpage and on Brightspace. Also,
changes, corrections, and clarifications will also appear on the Ed discussion board, so please check
it regularly.

Exercises

1. (2-Coloring Hypergraphs via Lovász Local Lemma.) A hypergraph H = (V,E) con-
sists of a set of vertices V and a collection of edges E, where each edge is a subset of V . We
are interested in a 2-coloring of the vertices, say χ : V → {Red, Blue}, such that no edge
is monochromatic (i.e., every edge contains at least one Red vertex and at least one Blue
vertex). If such a coloring exists, the hypergraph is called 2-colorable.

We consider k-uniform hypergraphs, where every edge Ei ∈ E has size |Ei| = k.

(a) Consider a randomized coloring where each vertex v ∈ V independently chooses its color
(Red or Blue) with probability 1/2 each. For a fixed edge Ei, calculate the probability
that Ei is monochromatic.

(b) (Warm-up: Standard Probabilistic Method) Let m be the total number of edges in H.
Show that if m < 2k−1, then H is 2-colorable.

(c) The condition in (b) works regardless of how the edges intersect. If the intersections are
sparse, we can do better. Let’s define the degree of an edge Ei, denoted deg(Ei), as the
number of other edges Ej (j 6= i) such that Ei ∩Ej 6= ∅. Suppose the maximum degree
is bounded by d, i.e., deg(Ei) ≤ d for all i.

Let Ai be the ”bad” event that edge Ei is monochromatic. We want to understand the
dependencies between these events. Explain why the event Ai is mutually independent
of the set of all events {Aj : Ei ∩ Ej = ∅}.

(d) Use the Symmetric Lovász Local Lemma (LLL) to prove the following classical theorem
(Erdős-Lovász, 1975): Any k-uniform hypergraph in which every edge intersects at most
d other edges is 2-colorable if e ·(d+1) ≤ 2k−1. (Here e ≈ 2.718 is the base of the natural
logarithm).

Reminder (Symmetric LLL): Let A1, . . . , Am be events. If each event Ai has probability
Pr[Ai] ≤ p and each event is mutually independent of all other events except for at most
d events (the dependency degree), and if e · p · (d+ 1) ≤ 1, then Pr[

⋂m
i=1Ai] > 0.

2. (Discrepancy of Sparse, Uniform Set Systems.) Let U = {1, . . . , n} be a universe
of elements, and let S = {S1, . . . , Sm} be a collection of subsets of U . We seek a coloring
χ : U → {−1,+1} that minimizes the discrepancy:

disc(χ) = max
i∈[m]

∣∣∣∣∣∣
∑
j∈Si

χ(j)

∣∣∣∣∣∣ .
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We consider a special case (related to the Beck-Fiala setting) where the set system satisfies
the following locality conditions for some k ≥ 2:

• (Sparsity) Each element j ∈ U belongs to at most k subsets.

• (Uniformity) Each subset Si contains at most k elements, i.e., |Si| ≤ k.

Use the Symmetric Lovász Local Lemma (LLL) to prove that there exists a coloring χ such
that disc(χ) = O(

√
k log k).

Hint: Consider a randomized coloring and use the Chernoff bound for the sum of N indepen-
dent Rademacher variables: Pr(|

∑
Xj | ≥ t) ≤ 2e−t

2/(2N).

3. (Vertex-exposure McDiarmid for χ(G(n, p)).) Let G ∼ G(n, p) be an Erdős-Rényi
random graph. We analyze the concentration of the chromatic number χ(G) using the vertex-
exposure approach and McDiarmid’s inequality.

(a) Show that χ(G) is 1-Lipschitz with respect to vertex modifications. That is, if G and
G′ differ only in the edges incident to a single vertex v, then |χ(G)− χ(G′)| ≤ 1.

(b) Apply McDiarmid’s inequality using an appropriate independent vertex exposure to
conclude that

Pr(|χ(G)− E[χ(G)]| ≥ λ) ≤ 2 exp

(
−2λ2

n

)
.

4. (Talagrand for edge-disjoint H-packings). Fix a constant graph H with eH = |E(H)| ≥
1. Let G ∼ G(n, p) and f(G) = max{number of edge-disjoint copies of H in G}.

(a) (1-Lipschitz) Show that toggling a single edge changes f by at most 1.

(b) (Certificate) Prove f is h-certifiable with h(s) = eHs.

(c) (Talagrand) Using the inequality from the notes, for all λ > 0,

Pr(|f −Mf | ≥ λ) ≤ 4 exp

(
− λ2

4eH(Mf + λ)

)
,

where Mf is the median of f . Conclude f(G) = Mf ±O(
√
Mf log n) w.h.p.

(d) (Mean vs median) Using boundedness f ≤ m/eH , m =
(
n
2

)
, derive f(G) = E[f(G)] ±

O(
√
E[f(G)] log n+ 1) w.h.p.

Problems

Please write short and clear solutions to each of these problems. Use the language of probability
to your advantage. Be clear what the events are, what probabilities and expectations you are
reasoning about. If you use any concentration bounds, please clearly make sure you
argue that the conditions are satisfied.

1. (Frugal Vertex Coloring.) Let G = (V,E) be a graph with maximum degree ∆. A vertex
coloring χ : V → C is called β-frugal if for every vertex v, no color appears more than β
times in its neighborhood N(v). That is,

|{u ∈ N(v) : χ(u) = c}| ≤ β for all v ∈ V, c ∈ C.

A coloring is proper if χ(u) 6= χ(v) for all edges {u, v} ∈ E.
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Show that for any constant integer β ≥ 1, there exists a β-frugal coloring of G using Q =
O(∆1+1/β) colors.

In fact, a stronger statement is true: there is a coloring that is both proper and β-frugal. But
we only require to prove the above weaker statement.

2. (Concentration for Euclidean MST.) Let X1, . . . , Xn be n points chosen independently
and uniformly at random from the unit square [0, 1]2. Let L(X1, . . . , Xn) denote the total
length of the Minimum Spanning Tree (MST) on these points, using Euclidean distances.

Let µ = E[L(X1, . . . , Xn)] be the expected length of the MST. Prove that for any ε > 0, the
probability of deviating from the mean by εn is exponentially small in n. Specifically, show
that:

Pr(|L− µ| ≥ εn) ≤ 2 exp

(
−ε

2n

25

)
Hint: You may use the following fact without proof.

Fact: Any There exists a Euclidean MST on points in the 2D plane (using the L2 norm) has
a maximum vertex degree of at most 5.

3. (A randomized algorithm for k-SAT). Consider a satisfiable k-CNF Φ on n variables.
One try of the algorithm: start at uniform x0 ∈ {0, 1}n; for T steps t = 0, 1, . . . , T − 1, if
xt satisfies Φ return xt, else pick an unsatisfied clause C, choose a uniform random literal
` ∈ C and flip its variable to obtain xt+1 from xt. If no solution within T steps, restart. Fix
a satisfying assignment x? and let Dt = ‖xt − x?‖1.

(a) Show that whenever Dt > 0, Pr[Dt+1 = Dt − 1 | xt] ≥ 1/k.

(b) If D0 = d, prove Pr[hit 0 within d steps] ≥ (1/k)d (via d consecutive decreases). (For
this problem, you should assume a unique satisfying assignment.)

(c) For x0 uniform, D0 ∼ Bin(n, 1/2). Show Pr[success in one try] ≥
(
k+1
2k

)n
.

(d) Argue that T = n suffices to capture the event in (b), and conclude the expected time

Õ
(

( 2k
k+1)n

)
; specialize to k = 3 as Õ

(
(32)n

)
.

Remark (Schöning’s bound). If in (b) you instead bound Pr[ever hit 0 | D0 = d] ≥
(1/(k−1))d using a biased random-walk/gambler’s-ruin argument with step −1 w.p. 1/k and
+1 w.p. 1− 1/k, then averaging as in (c) yields per-try success

(
k

2(k−1)
)n

and expected time

Õ
(
(2− 2

k )n
)

(e.g., Õ((43)n) for 3-SAT).

4. (The Long(est) Path Home.) Given a graph G = (V,E), you want to find long simple
paths in the graph in polynomial time.

(a) (Algorithm 1: Dead easy.) Show that you can find a path of length k (if such a path
exists) in time n∆k, where ∆ is the maximum degree of G.

(b) (Easy.) If the graph were directed and acyclic (i.e., a DAG), then show that you can
deterministically find the longest path in G in time O(m + n). Here, and in general,
m = |E| and n = |V |.

3



(c) (Algorithm 2:) Consider running the following procedure n times, and outputing the
longest path found in these n tries.

Take a random permutation of the vertices, and direct each edge from the lower
endpoint to the higher endpoint to create a DAG ~G. Find a longest path in ~G.

Show that for k = c logn
log logn for some constant c > 0, Algorithm 2 will find a path of

length k (if it exists) with probability at least 1/2.

(d) Now, consider a slight extension of this idea. Suppose you have a graph G, and you color
the vertices using k colors (neighbors need not have different color). A path is called
polychromatic if has ` ≤ k vertices, and all the ` vertices have different colors.

i. Show that you can find a polychromatic path of length k in time that is poly(n, k)2k.
(So, this is polynomial time for k = O(log n)).

ii. (Algorithm 3:) Consider running the following procedure n times, and outputing
the longest path found in these n tries.

Take a random coloring of the vertices using k colors, and find the polychro-
matic path of length at most k in G.

Show that for k = c log n for some constant c > 0, Algorithm 3 will find a path of
length k (if it exists) with probability at least 1/2. (Hint: Use Stirling’s approxima-
tion.)
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