Randomized Algorithms NYU, Fall 2025
HW #2 (out Wednesday Oct 1, 2025) Due: Monday Oct 13, 2025

Please submit solutions only to the problems, not to exercises. Please collaborate in groups of
2 (or at most 3). Write your own solutions, no sharing of written content. Put down
names of your collaborator(s) on the front page and also in the last problem. Submissions
will be via gradescope, and the link will appear on the course webpage and on Brightspace. Also,
changes, corrections, and clarifications will also appear on the Ed discussion board, so please check
it regularly.

Exercises

1. (Coins from coins.) We often say “sample each item with probability ¢”. It’s interesting
to ask: how do we do this sampling?

(a) Suppose we are given an unbiased coin U (of bias 1/2). You can clearly simulate a coin of
bias 1/4 by flipping U twice, and saying “Heads” if you see HH, and “Tails” otherwise.
K

Indeed, you can use 7 flips to simulate any p € [0, 1] of the form p = 5. However, show

that no finite number of coin flips suffice to simulate a coin of bias 1/3.

(b) Complement the above result by giving a protocol that simulates a bias-1/3 coin using
an expected constant number of flips of U.
Extend your result to give a protocol simulating a coin of any bias p, e.g., p = 1/, or
p = 1/4/17, again using expected constant flips. (Hint: Assume you can generate p’s
binary representation efficiently, say 1/7 = 0.0101000101111100110000011011011....)

(c) Now let’s do the other way. You are given a (possibly) biased coin B with some constant
bias p € (0,1). You do not know p. Show how to generate simulate an unbiased coin
(i.e., one with bias 1/2) using an expected O(1) flips of B—here the constant can depend
on p.

2. (Estimate the Coin’s Bias Again.) You have a coin with some unknown bias ¢. To
estimate p, you flip it T := O(Ei2 log %) times, and suppose it comes up heads K times. You
output the estimate @ := K/T'. Use a Chernoff bound to show that Pr[|Q —¢| <e] > 1 —0.

3. (Low-Discrepancy Colorings.) Let U = {1,...,n} be a universe of elements, and let S =
{S1,...,5m} be a collection of m subsets of U. We want to find a coloring x : U — {—1,+1}
that minimizes the maximum imbalance (discrepancy) of the collection. The imbalance of a
set S; is defined as

Imb(S;) = Z x(9)] -
JES;
Consider a randomized coloring where each element j independently chooses x(j) = +1 or
X(j) = —1 with probability 1/2 each.
(a) Focus on a single set S;. Let Z; =3 ;s x(j). What is E[Z;]?
(b) Show that for any A > 0:

Pr[[Imb(S;)| > A] < 2¢=A%/@ISi),



(c) Use the probabilistic method to prove that there must exist a coloring x such that the
maximum imbalance across all sets is bounded by O(y/nlogm).

Remark: A stronger argument shows that there is a coloring with mazimum imbalance
O(y/nlog(m/n)) when m > n. We aim to cover this later in class. This is known as
“Siz standard deviations suffice,” which is a result by Spencer from 1985. For m = n,
Spencer’s theorem says that there is a coloring with discrepancy at most 6+/n, i.e., six
standard deviations.

Problems

Please write short and clear solutions to each of these problems. Use the language of probability
to your advantage. Be clear what the events are, what probabilities and expectations you are
reasoning about. If you use any concentration bounds, please clearly make sure you
argue that the conditions are satisfied.

1. Only Connect! Given an undirected (unweighted) graph G = (V, E), let G(p) be the
random graph where we retain each edge of G independently with probability p. In lecture
#4, we saw that setting p > cloin, where A is the min-cut value in G, the graph G(p) is a
cut-approximator for G with probability 1 — o(1). In particular, we get the simpler fact: if G
is connected, then G, is also connected whp. Let’s prove this simpler fact in a different way

that does not use the cut-counting lemma. Consider the following process:

Initialize Gy = G, and define L = 100logn. For each i =1,2,..., L, let S; be a set
where we pick each edge in G;_; independently with probability 1/A. Contract all
the edges from S; in the graph G;_; (and remove self-loops) to get G;.

(a) For any vertex v in G;_1, let G, ; be the event that the set S; contains at least one edge
incident to v. Show that Pr[G, ;] > 1 — 1/e assuming that G;_; contains at least two
vertices. Btw, are G,; and G, ; independent?

(b) Let N; be the number of vertices in G, so that Ny = n. Define the event &; that is true
if N; < N;_1-3/4 0or N; = 1. Show that Pr[&;] > ¢, for some absolute constant ¢ > 0.

(c) Use a Chernoff bound to show that |Nz| = 1 with probability at least 1 — 1/poly(n).
Please clearly state what random variables are you summing over, and why they are
independent and bounded.

(d) Finally, define S = UZ-LZISZ-, and note that each edge in G belongs to S with probability
at most L—¢ L/\. Infer that sampling each edge of G with probability p := L/\ gives
us a connected graph with high probability.

2. Nearly Orthonormal Vectors. Call a set of unit vectors “near-orthonormal” if the inner
product of any two of them is close to zero. In this problem we will show that while there
are at most d orthonormal vectors in RY, there can be exponentially many near-orthonormal

vectors! For vectors z,y € RY, we use (z,y) = Zgzl x;1; to denote the inner product.

(a) Let x = (x1,29,...,24) and y = (y1,¥2,...,Yq) be two independently and uniformly
chosen vectors in {—1,1}¢. (Le., each bit z; and y; in each vector is independently and
uniformly chosen from {—1,1}.) Show that

Pr(|(z.y)| > ed < 2exp (—<2d/6)



(b) Given parameter € > 0, a set S of unit vectors is called e-orthonormal if for all Z,5 € S,

(7, 9)] <e.

Show that there exists a constant ¢ > 0 and constant dy, such that for any ¢ < 1/2
(say) and any d > dy, if you sample N := exp(ce?d) random vectors independently and
uniformly from the set {—ﬁ, —1—%}% this sampled set is e-orthonormal with probability

at least 1/2.

3. An Approximate Counter, and the Median-of-Means Estimator. Here is a way of
maintaining an approximate counter. (Call this the basic counter.)

Start with X < 0. When an element arrives, increment X by 1 with probability
2%, When queried, return N := 2%X — 1.

. _ _ n(n-1)
(a) Suppose the actual count is n, show that E[N] = n, and Var(N) = =5—.
Since its variance is large, average k independent basic counters Ny, Ny, ..., Ni, and output

the sample average N := %ZZ N;. Call this the k-mean counter.

(b) Show that Pr[N ¢ (1£e)n] < 5.

Hence using k = 25%5 counters can make the failure probability at most . (I.e., your error is
less than en with “confidence” 1 — 4.) Here’s a way to use only K = O(si2 log %) counters to
get the same answer (and the approach is useful in many different contexts beyond this one).
We call this counter the median-of-means counter.

(¢) Suppose Y is a real-valued random variable and let I C IR denote an interval. Suppose
Pr[Y ¢ I] <1/4.
Now, take a collection of /-many independent copies of Y and let M denote the median
of Y1,...,Y,. Show that by taking ¢ = ©(log(1/6), we get Pr[M ¢ I| <. Hint: what
must happen for the the median to be too high? What is the chance of that?

(d) Using (c), conclude that by taking Y to be the ko-mean counter from part (b) with
ko = ©(1/€%), we have Pr[M ¢ (14 ¢)n] < 6.

4. (Collaboration Acknowledgments.) Please write down names of people you collaborated
with, which online resources you used, and whether you used any LLMs/Chatbots for this
problem (and if so, which aspects you used them for). If none, please say so explicitly; it will
be useful for me to know this.



