Randomized Algorithms NYU, Fall 2025
HW #1 (out Friday Sept 19, 2025) Due: Monday Sept 29, 2025

Please collaborate in groups of 2 (or at most 3). Write your own solutions, no sharing of
written content. Put down names of your collaborator(s) on the front page. Submissions
will be via gradescope, and the link will appear on the course webpage and on Brightspace. Also,
changes, corrections, and clarifications will also appear on the Ed discussion board, so please check
it regularly.

Exercises

1. (Non-Musical Chairs) An airplane in Politesville has n seats, and n passengers assigned to
these seats. The first passenger to board gets confused, and sits down at a uniformly random
seat. The rest of the passengers do the following: when they board, if their assigned seat is
free they sit in it, else (being too polite) they choose a uniformly random empty seat and sit
in it. (a) Show that the last person to board sits in their assigned seat with probability 1/2.
(b) Show that the expected number of people who board to find their assigned seat already
occupied is H, — 1 =1/2+1/34 ...+ 1/n.

2. (Number of Near Min-Cuts) An a-min-cut is a subset S such that the weight of 0S5 is at
most « times the weight of the minimum cut. Show that the probability that any particular
a-min-cut is output is at least 1/n2%. Hence infer that the number of a-min-cuts is at most
n?®,

3. (Estimate the Coin’s Bias.) You have a coin with some unknown bias gq. To estimate p, you
flipit T := O(%) times, and suppose it comes up heads K times. You output the estimate
Q@ := K/T. Use Chebyshev’s inequality to show that Pr[|Q —¢| <¢] >1—34.

4. (Large Cliques) In lecture, we claimed that for any ¢ > 0, the random graph G(n,1/2) has
a clique of size (2 — ¢)logyn with probability 1 — o(1). Prove this for yourself using the
second-moment method. (Hint: if Xg is the indicator of the event that set S C V is a clique,
then the covariance Cov(Xg, X7) may no longer be non-positive.)

Problems

Please write short and clear solutions to each of these problems. Use the language of probability
to your advantage. Be clear what the events are, what probabilities and expectations you are
reasoning about.

1. (Lonely Vertices) Consider the Erdés-Rényi random graph G(n, p) and suppose € > 0 is some
constant. Show that:

(a) if p> % then the graph has at no isolated vertices with probability 1 — o(1).

(b) if p < W then the graph has at least one isolated vertex with probability 1 — o(1).

2. (Cutting it Fine.) Given a connected undirected (and unweighted, for simplicity) n-vertex
graph G, a k-cut is a paritition of the vertex set into k non-empty parts S1,Ss,...,Sg. The
size of the k-cut is the number of edges that cross between distinct parts in this partition.
Consider the following algorithm:



e (Phase 1) As long as the number of vertices in G is more than 2k — 2, pick a random
edge and contract it.

e (Phase 2) Now we have a graph on 2k — 2 vertices. For each of these vertices, choose a
random label from {L1, La,..., L}, contract vertices with the same label, and output
the resulting cut.

Show the following:

(a) If the min k-cut size is A, then A < 2(k — 1),
(b) Any fixed min k-cut survives the first phase with probability at least 1/, 2k 1))

(¢) Conditioned on surviving the first phase, it is output in the second phase with probability

at least /j—,i . kk%?

Hence, this gives an ~ n2*=1_time algorithm for the k-cut problem.

3. (Cyclic Changes.) An f-cycle in a graph is a cycle with at most ¢ nodes; please note the “at
most”. In this problem, we want to show there exist graphs with many edges, and no short
cycles. It is easy to construct such graphs with Q(n) edges—in fact, a tree has n — 1 edges
and no cycles at alll We want slightly denser graphs with no ¢-cycles for any constant £.

(a) Consider the graph G(n,p) for some p € [0,1]. Calculate the probability that some
sequence of £ k vertices is a cycle, and hence calculate the expected number of /-cycles.

(b) (Do not submit.) Note that setting p ~ 1/n means the expected number of ¢-cycles is
o(1), but the expected number of edges is O(n)—which is not very interesting!

(c) Now consider the following two part algorithm: (i) first pick G ~ G(n,p), and then (ii)
for each f-cycle with k£ < ¢ in G, delete an arbitrary edge on it. By constructlon this
graph has no ¢-cycles i.e., cycles of length at most £. Show that setting p = nf S ensures
that the expected number of edges in the resulting graph is O(m) with m := nlteT,

Hence, infer that there exist graphs with m = w(n) edges and no ¢-cycles.

4. (Taken from Johan Hastad’s course “Theoreticians toolkit” at KTH.) Constructing a random
3-SAT formula with n variables and m = [dn] clauses® is done as follows: Randomly take
three different variables (all triples being equally likely). Choose one of the eight ways to
negate these variables (uniformly at random) and make them into a clause. Repeat with
independent randomness until you have m clauses.

(a) For what value of d is the expected number of satisfying assignments O(1)7 Call this
value dp.

(b) Prove that the formula is likely (with probability 1 — o(1)) to be unsatisfiable for any
constant d such that d > (do + ¢).

(¢) (This is more challenging) Prove that the formula remains at least somewhat likely to
be unsatisfiable also in the case when d is slightly smaller than dy. The difficulty of this
problem is very much dependent on what we mean by “somewhat likely” and “slightly
smaller”. The exact formulation to prove to get a full score on this problem is that there
is some constant d; < dg such that for d = d; the probability that the corresponding
random formula is satisfiable is at most 1/2. The size of dy — d; does not matter for your
score on the problem and the main property of a solution to aim for is a mathematically
correct argument. Hint: A satisfiable formula that does not depend on all its variables
has many satisfying assignments.

'[z] is the smallest integer that is at least



