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In-network Resource Allocation 
(Scribed by Ambuj Ojha) 

 

Key Insight  

Adding intelligence in routers can improve congestion control relative to purely end to end schemes as 

seen in TCP Tahoe and BBR. We discuss two examples of how this has been achieved.  
 

 

XCP (eXplicit Control Protocol) 
https://cs.nyu.edu/~anirudh/CSCI-GA.2620-001/papers/xcp.pdf 

 

XCP is an alternative protocol which performs better than TCP on high BDP networks. 

 

High BDP Network examples: 

 cellular networks (Bandwidth: Few Mbps, RTT: ~100 milliseconds) 

 satellite links (Bandwidth: few Kbps, RTT: ~ few seconds) 

 transatlantic links (Bandwidth: few Gbps, RTT: ~few seconds) 

 

Non high BDP Network example: 
Data Center network (Bandwidth: few Gbps, RTT:~microseconds) 

 

XCP Motivation: 
 

Its been seen through both theory and experiments that as the product of bandwidth and latency increases, 

TCP becomes inefficient and prone to instability. In the below notes on next page, an empirical discussion 

is provided that also establishes the same. 



 

2 
 

 
 

 



 

3 
 

 

 

XCP Features: 
 XCP Generalizes ECN (DECBit) which set a single bit in the packet header which is set explicitly 

to provide network congestion feedback. XCP provides much richer feedback than ECN. Some 

papers tried to find the minimum size of packet header needed to provide as good feedback as 

XCP 



 

4 
 

 Richer feedback at routers & computation at routers => Better congestion control than standard 

TCP 

 XCP decouples efficiency and fairness (high utilization and fair distribution) with different 

controllers for each. 

o Utilization Controller keeps link busy  

o Fairness Controller enforces different fairness policies independent of efficiency 

o Fairness controller also divides feedback to be sent to end nodes, across multiple packets 

 XCP doesn’t maintain per-flow state on the router. Instead, XCP has the packets themselves carry 

per-flow state like RTT. This was first introduced in CSFQ in 1998. 

 

Protocol: 
 XCP provides a joint design of end-systems and routers 

 Senders maintain congestion window ‘cwnd’ and ‘rtt’ and communicate these to the routers via 

a congestion header in every packet. 

 Routers monitor the input traffic rate to each of their output queues. Based on the difference 

between the link bandwidth and its input traffic rate, the router tells the flows sharing that link 

to increase or decrease their congestion windows by annotating the congestion header of data 

packets. Feedback is divided between flows based on their cwnd and rtt values so that the 

system converges to fairness. Ultimately, the packet will contain the feedback from the 

bottleneck along the path. 

 When the feedback reaches the receiver, it is returned to the sender in an acknowledgment 

packet, and the sender updates its cwnd accordingly. 

Congestion Header: 

 

XCP Sender: 
 XCP sender maintains a congestion window of the outstanding packets, cwnd, and an estimate of 

the round trip time rtt.  

 Whenever a new acknowledgment arrives, positive feedback increases the senders cwnd and 

negative feedback reduces it 



 

5 
 

XCP Receiver: 
 When acknowledging a packet, it copies the congestion header from the data packet to its 

acknowledgment. 

XCP Router: 
 Computes the feedback to cause the system to converge to optimal efficiency and min-max 

fairness. 

 An XCP router uses an efficiency controller and a fairness controller to compute feedback. Both 

of these compute estimates over the average RTT of the flows traversing the link, which smooths 

the burstiness of a window-based control protocol. The average RTT is computed using the 

information in the congestion header. 

Efficiency Controller: 

The main purpose of Efficiency Controller is to maximize link utilization while minimizing drop rate 

and persistent queues by taking into account only the aggregate traffic and not worry about fairness 

issues. It computes ‘Phi’ the desired increase or decrease in the number of bytes that the aggregate 

traffic transmits (in a control interval) based on two terms: spare bandwidth and queue size along with 

gain constants alpha and beta. The EC uses a Multiplicative-Increase Multiplicative-Decrease law 

(MIMD), which increases the traffic rate proportionally to the spare bandwidth in the system (instead 

of increasing by one packet/RTT/flow as TCP does). This allows XCP to quickly acquire the positive 

spare bandwidth even over high capacity links. All the EC requires is that the total traffic changes by 

‘Phi’ over this control interval. 

Fairness controller: 

The job of the fairness controller (FC) is to apportion the feedback to individual packets to achieve 

fairness. It uses AIMD (additive-increase/multiplicative-decrease) to converge to fairness, but other 

policies are also possible. Based on the aggregate feedback ,‘Phi’, provided by the Efficiency 

Controller to the Fairness Controller- 

 If positive, increase throughput for all flows by a constant. 

 If negative, decrease throughput for all flows proportional to their throughput. 

The precise control laws follows from these two goals, after accounting for the fact that the 

feedback is split across packets. 

 

Specifically XCP outperforms TCP over the following metrics: 
 

a) Bandwidth utilization 

 XCP’s Efficiency controller with MIMD helps it provide better bandwidth utilization as 

compared to TCP 

 Also increases in bandwidth does not affect XCP as it affects TCP 

 

b) Reducing packet drops 

 XCP’s router feedback allows the system to discover congestion before actual packet drops 

happen and hence XCP has much lower packet drop rates than TCP implying lower 

potentially wasted network capacity 

 Below diagram explains when packet drop impacts throughput 
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c) Reducing Queue Size 

 Much lower queue sizes than TCP => less collateral damage on latency-sensitive traffic. 

  Large queue size can cause collateral damage to small TCP flows (e.g. fetching a thumbnail for      

a website) 

 

d) Security 

 XCP has policing agents at edges of the network which detect misbehaving XCP senders that 

try to grab more than fair share. The agents maintain per-flow state and monitor the behavior 

of the flows to detect network attacks and isolate unresponsive sources. 

 XCP facilitates the job of these policing agents because of its explicit feedback. 

 However, this solution isn’t really effective because it require sender to implement XCP 

 

e) Convergence 

 XCP dampens oscillations and converges smoothly to high utilization small queues and fair 

bandwidth allocation 

 Whenever a new flow starts, the fairness controller reallocates bandwidth to maintain min-max 

fairness.  

 Decoupling utilization and fairness control ensures that this reallocation is achieved without 

disturbing the utilization. Instantaneous queues might build up at routers, which effectively 

absorb the new traffic and drain quickly afterwards. 

 One of the earliest papers to state rapid convergence as a design goal for congestion control 

 Important because many flows (e.g.Web flows) are short-lived 

 

f) Stability 

 Stability is defined as the ability to reach a final good state regardless of where you start. 

 XCP has faster convergence to fair share after network conditions change hence greater 

stability. 

 The analysis for stability is derived from control theory. In general, congestion control systems 

are treated as a form of control systems. Some parameter is observed (ex- loss, delay, rtt, 

rates, etc.) and is used to control some other parameter (ex- window sizes, rates, etc.) XCP 

was one of the first papers to make this connection precise. 
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g) Scalability 

                                        

 

 

 

 

 

h) Fairness 

 Fairness Controller in XCP implements fairness among flows 

 No RTT unfairness => The intercontinental bulk transfer doesn't get squeezed out by the local 

flow 

 Ability to use other fairness policies, such as pricing policies 

 Diagram below shows XCP does not penalize high RTT flows as TCP does 

Figures on the right 

show that as the 

number of FTP 

flows increase XCP 

scales well in terms 

of bottleneck 

utilization (high), 

queue size (low) and 

packet drops (low).  

 

 

XCP is being 

implemented with a 

variety of queuing 

disciplines- RED, 

CSFQ, REM and 

AVQ 
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Reasons why XCP wasn’t adapted: 
 

1) Every end host and router needed change without partial deployment.  

2) XCP came up with a way to perform partial deployment but  it’s not always clear where the 

bottlenecks are, hence one couldn’t turn on XCP in just those regions 

3) It’s also not clear if we are going to get partial benefits from partial deployment 

4) Router implementation was tougher to ensure than end host implementation. Routing was 

traditionally done in hardware for speed. XCP logic needed to be added to the ASIC otherwise it 

would have been too slow. 

 

However with ASICS becoming programmable XCP might make a comeback. 
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WFQ (Weighted Fair Queuing) 
https://cs.nyu.edu/~anirudh/CSCI-GA.2620-001/papers/wfq.pdf 

Historical Context: 
WFQ comes last in the progression of adding more and more intelligence to routers. TCP Tahoe assumes 

routers do nothing except plain packet switching & routers eventually drop packets once their buffers are 

full. XCP makes routers compute & send feedback and run fairness and efficiency controllers, but still 

assumes FIFO stateless routers. WFQ adds intelligence to routers to make them decide the order in which 

packets are scheduled to enforce fairness on a packet-to-packet basis. 

 
WFQ does this by saving per flow state in the router and using this state to implement a sophisticated 

version of round robin with better network congestion handling characteristics than TCP Tahoe or XCP. 

Per Flow State:  
 Finishing Time of the last packet for each flow 

 Queues Data Structures for each flow 

Max Min Fairness Criterion: 
An allocation is fair if  

1) no user receives more than its request 

2) no other allocation scheme satisfying condition 1 has a higher minimum allocation 

3) condition 2 remains recursively true as we remove the minimal user and reduce the total resource 

accordingly 

WFQ Characteristics: 
 Per flow state and more intelligence in the routers means we can expect more out of our network. 

 WFQ can provide protection from arbitrary misbehaving sources, not just misbehaving TCP or 

XCP sources. 

 Fairness is provided on a packet-by-packet basis under the criterion of Max-Min Fairness. 

XCP/TCP provide it after convergence. 

 WFQ also provides isolation. If a flow sticks to its allocated bandwidth, it will have low delays 

and not be affected by anyone else. 

 

 

 

Figure 1 in WFQ paper illustrates isolation very well.  
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Under FCFS 

1) Telnet just adds to the congestion caused by FTP conversations and suffers high and 

increasing delays as it tries to increase its throughput.  

 

Under WFQ regime,  

1. As long as the Telnet source is sending under its fair share, it will get low delay. 

2. If it exceeds its fair share, its delays will skyrocket as the Telnet queues get filled up at 

routers and packets start getting dropped. 

 

Formal version of this result called the Parekh-Gallager theorem 

"A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The 

Single Node Case" and  

"A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The 

Multiple Node Case" 

The Parekh-Gallager theorm (informally): "If everyone promises to stay under a 
particular transmission rate, and the network can support the sum of 

these transmission rates, and the routers run WFQ, then everyone's 

worst-case per-packet delay can be bounded." 

 

In general, WFQ incentivizes good congestion control because a sender's bad behavior can only 

affect that sender. This is the exact opposite of FCFS/FIFO. 

 

WFQ Tradeoffs: 
 If we keep implementing more and more intelligence in the routers, this means switching speeds 

are going to be slower. This is an obstacle to deployment, even though this is changing now days. 
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 In WFQ, we need to maintain separate queues and other state information for each flow. This can 

lead to very high storage requirements, which can lead to scalability problems. Ex-  

1. In the core of an ISP 

Few millions of flows => Storing per flow state is infeasible 

2. In a datacenter 

Few thousand flows (Active flows are even less)=> Storing per flow state is feasible 

 

WFQ Algorithm: 
Reference: Section 3 of http://web.mit.edu/6.829/www/2016/papers/fq-notes.pdf) 

 

Nagle's Round-Robin algorithm: 

 Service each flow for a time quantum and then move on to the next 

 

Nagle’s Round-Robin has following problems: 

 It’s unfair if one flow uses much larger packets than the other. 

 If a packet arrives just after its turn, it needs to wait a while for the time quanta of each of the 

other flows before it can be transmitted. 

 

Idealized model: 

 Bit-by-bit round robin. Go one bit at a time from each flow. 

 Unattainable since sending single bit with headers is hugely inefficient. 

 

Approximate bit-by-bit round robin: 

We define 

 R: Number of rounds made in the round-robin service discipline up to time t. Essentially, one 

round is one cycle through all active queues sending one bit per flow. 

 N: Number of active flows 

 mu: linespeed; the gateway’s outgoing line 

 

Then, dR/dt = mu / N  

 

 Derivative of R is proportional to mu and inversely proportional to number of flows 

 N keeps varying as the number of active queues change which changes dr/dt. 

 Computing R through the above equation is hard. We use approximate values for R 

 

Calculating Finish Time for each packet in a queue: 

For a packet belonging to a flow which arrives at the gateway, 

 

T1 = Finish_Time (in rounds) of previous packet in same queue if queue is non-empty 

T2 = Current round number R, if queue is empty 

 

Start_Time = MAX (T1, T2)  

 

Since we are approximating sending one bit per flow in one round,  

 

Finish_Time = Start_Time + Length of packet 
 

Once we have Finish_Time for each packet in every queue, we can implement the algorithm below 
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Flow Control Algorithm: 

 

1) Algorithm tracks “Per Flow State”: 

 Finish Time 

 Queue (head and tail pointers) 

2) Sends packet with smallest finish time to "catch up" with bit-by-bit model 

3) Approximate R as the finish time of current packet in service. 

 

The approximations used above, 

 Chose earliest finish time packet 

 Set R to finish time of current packet in service 

don’t introduce too much difference in the worst case relative to bit-by-bit round robin. 

 

 

Our packet-by-packet transmission algorithm is simply defined by the rule that, whenever a packet 

finishes transmission, the next packet sent is the one with the smallest value of ‘Finish_Time’. In a 

preemptive version of this algorithm, newly arriving packets whose ‘Finish_Time’ is smaller than that of 

the packet currently in transmission preempt the transmitting packet. Practically the nonpreemptive 

version is easier to implement but the preemptive algorithm (with resumptive service) is more tractable 

analytically. Over sufficiently long conversations, both of the packetized algorithms asymptotically 

approach the fair bandwidth allocation of the Bitwise RR scheme. 

Historical Impact: 

In 1995, an algorithm called Deficit Round Robin (a variant of Round Robin but with an important fix) 

was developed. Even though it was not as good as WFQ, it was good enough and SIMPLE to implement.  

This algorithm is being widely used in routers as of today. 

 


