
Taking the Edge off with Espresso: Scale, Reliability and
Programmability for Global Internet Peering

Kok-Kiong Yap Murtaza Motiwala Jeremy Rahe Steve Padgett Matthew Holliman
Gary Baldus Marcus Hines Taeeun Kim Ashok Narayanan Ankur Jain Victor Lin
Colin Rice Brian Rogan Arjun Singh Bert Tanaka Manish Verma Puneet Sood
Mukarram Tariq Matt Tierney Dzevad Trumic Vytautas Valancius Calvin Ying

Mahesh Kallahalla Bikash Koley Amin Vahdat
Google

espresso-team@google.com

ABSTRACT
We present the design of Espresso, Google’s SDN-based Internet
peering edge routing infrastructure. This architecture grew out of a
need to exponentially scale the Internet edge cost-effectively and to
enable application-aware routing at Internet-peering scale. Espresso
utilizes commodity switches and host-based routing/packet process-
ing to implement a novel fine-grained traffic engineering capability.
Overall, Espresso provides Google a scalable peering edge that is
programmable, reliable, and integrated with global traffic systems.
Espresso also greatly accelerated deployment of new networking
features at our peering edge. Espresso has been in production for
two years and serves over 22% of Google’s total traffic to the Inter-
net.

CCS CONCEPTS
• Networks → Network architectures; • Computer systems
organization→ Availability;

KEYWORDS
Networking, Peering Routers, Traffic Engineering

ACM Reference format:
Kok-Kiong Yap MurtazaMotiwala JeremyRahe Steve Padgett Matt-
hewHolliman Gary Baldus MarcusHines TaeeunKim AshokNara-
yanan Ankur Jain Victor Lin Colin Rice Brian Rogan Ar-
jun Singh Bert Tanaka Manish Verma Puneet Sood MukarramTariq
Matt Tierney Dzevad Trumic Vytautas Valancius Calvin Ying Ma-
hesh Kallahalla Bikash Koley Amin Vahdat. 2017. Taking the Edge off
with Espresso: Scale, Reliability and Programmability for Global Internet
Peering. In Proceedings of SIGCOMM ’17, Los Angeles, CA, USA, August 21–25,
2017, 14 pages.
https://doi.org/10.1145/3098822.3098854

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4653-5/17/08.
https://doi.org/10.1145/3098822.3098854

1 INTRODUCTION
The Internet’s peering edge plays a critical and growing role in
the architecture of large-scale content providers, driven by High-
Definition Video and Cloud Computing. The largest peering edges
deliver Terabits/sec of Internet traffic and megawatts of com-
pute/storage. While most of the computing and storage for content
providers runs in data centers, the edge supports: i) peering with
partner autonomous systems, ii) a server pool of reverse proxies for
TCP termination, and iii) caching and content distribution of static
content. A properly designed edge architecture supports interactive
low latency to a global user population, is the first and most impor-
tant line of defense against DoS and related attacks, and reduces
the buildout of the backbone network back to centrally-located
data centers.

The dominant component of an edge architecture is Internet-
scale routers. These routers are hardware and software engineering
marvels, with at least three critical pieces of functionality. First, the
router must scale to hundreds of ports with the highest bandwidth
density and packet per second processing rates in each genera-
tion. The management and configuration complexity of Internet
routers is substantial, so our tendency has been to favor scale up
with as few, large routers as possible. Second, the router must sup-
port Internet-scale forwarding tables with potentially hundreds of
thousands of individual entries down to /24 subnets in the case of
IPv4 for global Internet-scale routing. Third, on the incoming path,
routers must support complex and large-scale access control lists to
support firewall rules and protect against DoS attacks. Otherwise
specialized firewalls have to be deployed in peering locations, con-
suming limited space and power. Finally, the router must support
high-end compute for BGP software that can manage hundreds of
sessions with remote peers.

In our experience running the network for one of the largest
global content providers, the flexibility, availability, and cost effi-
ciency of the peering edge was increasingly limited by these Inter-
net routers. Most critically, we could not introduce new functional-
ity leveraging a global view of traffic or cross-layer optimizations.
For example, we measure, in real time, the peer ports most likely
to deliver high-bandwidth/low-latency connectivity from our edge
by measuring across millions of individual users. Overriding BGP-
specified forwarding behavior at fine granularity is limiting. In
cases where it is possible, it often requires some change in the
vendor software or hardware. The simplest changes can take up
to a year to qualify, while more complex changes require either

432

https://doi.org/10.1145/3098822.3098854
https://doi.org/10.1145/3098822.3098854

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA K.K. Yap, M. Motiwala, et al.

standardization efforts or new versions of switch silicon. Further,
the scale up nature of high-end Internet routers means that any
upgrade or failure, however rare, would affect a substantial fraction
of our traffic. Finally, the cost per port of Internet routers dominated
our edge costs, typically 4 − 10× relative to the next tier of router
with more modest forwarding and ACL table size.

To address these challenges, we used our experience with SDN
in a different setting [21] to design and implement Espresso, a new
peering edge architecture. The key insight behind Espresso is exter-
nalizingmost network control from the peering devices, and leaving
only a simple data-plane on device—specifically a commodity MPLS
switch. In particular, we move packet processing, including routing
on Internet-scale forwarding tables and ACLs, to high-performance
software packet processors running on the large-scale server in-
frastructure already present in the edge. Further, we integrate our
pre-existing global traffic engineering (TE) system into Espresso
to enable fine-grained, BGP-compliant bandwidth management
in a manner that would be difficult to implement in a distributed
environment and without an end-to-end view of per-flow perfor-
mance. Finally, we move BGP to a custom stack running on servers,
enabling finer-grained partitioning and much more computation
power than available in any Internet router.

Taken together, Espresso’s design accelerates delivery of innova-
tive networking features to our customers at a previously impos-
sible pace. Coupled with our global TE system, Espresso delivers
13% more user traffic on our infrastructure by integrating with
global application-aware TE system as compared to just BGP-based
routing, while also improving peer link utilization and end-to-end
user experience. For example, the mean time between rebuffers
(an important measure for video traffic) improves between 35% to
170%.

2 BACKGROUND AND REQUIREMENTS
Google runs two differentWANs. B4 [21], our datacenter-to-datacenter
WAN supports global computation. B2 [5] provides connectivity
from our datacenters to our peering edge and eventually to end
users around the world (Figure 1). Google has one of the largest
peering surfaces in the world, exchanging data with Internet Service
Providers (ISPs) in over 70 metros.

B2 employs traditional vendor gear and decentralized routing
protocols to provide the highest levels of availability. Traditional IP
routing operates on low-level information for routing traffic, e.g.,
BGP announcements and policies. Supporting application-aware
fine-grained traffic policies therefore requires complex BGP rules
that are hard to manage, reason about [13] or even implement.

In contrast, we built B4 with internally-developed hardware,
SDN control and centralized traffic engineering, leveraging the fact
that much of our datacenter to datacenter traffic did not require
the same availability as B2. As we gained more experience with B4,
centralized traffic engineering and SDN, we were able to contin-
uously improve the availability of our SDN WAN while enjoying
the benefits of cost efficiency, fine-grained traffic management, and
high feature velocity. These capabilities formed the motivation for
Espresso: could we bring the benefits of SDN to a portion of B2
while maintaining the requisite availability and interoperability

B4
Espresso

B2

Internet

Peering Metro

User

Jupiter Data Center
Google

Google

Figure 1: Overview of Google WANs. Espresso runs in Peering Edge
Metros that connect to external peers and back to Data Centers via
B2. B4 is our SDN WAN that supports high volume traffic between
Data Centers.

with arbitrary external hardware and software? Doing so would
require us to meet the following requirements:

(1) Efficiency. Sustaining Google’s rapid Internet traffic growth
requires us to reduce the cost of our Internet peering edge
network at a faster rate, while simultaneously increasing
utilization of the peering ports.

(2) Interoperability. Espresso needs to interoperate with the
rest of the Internet and the peer networks, supporting all
standard Internet protocols, such as BGP and IPv4/IPv6. Pre-
vious SDN deployments [11, 21] were internal and only had
to interoperate with a controlled number of vendors and/or
software.

(3) Reliability. Espresso must carry all Google traffic to and
from users. Consequently, it must deliver better than 99.999%
global availability, or less than five minutes of downtime per
year for traffic that is routed through it. Measuring global
edge availability presents its own challenges and is beyond
the scope of this paper; here, we focus on our techniques for
maintaining availability while centralizing portions of our
network control.

(4) Incremental Deployment. For practical reasons, Espresso
must operate alongside existing traditional routing equip-
ment. Given the scale of Google’s network, it would be in-
feasible to forklift current deployments to support Espresso.
On the other hand, restricting Espresso to new edge turn
ups would limit its utility to Google.

(5) High Feature Velocity. Changing product requirements,
for example to support peering in heterogeneous Cloud de-
ployments, places a premium on rapid feature development
and qualification. Our goal is to deploy a developed feature
to production in two weeks, a process that could take up to a
year with existing practice. Our experience suggests that end
to end feature development and deployment has improved
by more than a factor of six with Espresso.

433

Taking the Edge off with Espresso SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

Centrally, a highly available peering edge and high feature ve-
locity are often at odds with each other. Having a highly avail-
able system often implies a more slowly-changing system because
management operations are often the cause of unavailability [16].
Trying to improve availability beyond the baseline for traditional
deployments, while increasing feature velocity, entails substantial
architectural care.

3 DESIGN PRINCIPLES
To meet our requirements, we employed several design principles
crucial to the success of Espresso. As shown in Table 1, Espresso
changes the traditional edge routing design by innovating on all
three planes: control, data and management.

(1) Espresso employs a hierarchical control plane split be-
tween local and global controllers. Local controllers apply
programming rules and application-specific traffic routing
policies that are computed by the global controller. This de-
sign is easier to reason about as compared to fully distributed
local controllers in metros peering with one another. This
approach achieves three main objectives: (i) global traffic
optimization to improve efficiency, (ii) improved reliabil-
ity as the local control plane can operate independently of
the global controller, and (iii) fast reaction to local network
events, for example on peering port or device failure the
local controller performs local repair while awaiting globally
optimized allocation from the global controller.

(2) We support fail static for high availability [16]. The data
plane maintains the last known good state so that the control
plane may be unavailable for short periods without impact-
ing packet forwarding. While we are exposed to simultane-
ous data plane failures while the control plane is unavailable,
such failures are typically small in scope, e.g., individual
peering link failure. Achieving fail static properties with
existing network hardware is challenging because of tight
coupling between the control and data plane. For example,
it is typically impossible to distinguish between a BGP stack
failure and a data plane failure. By externalizing control off
peering devices, Espresso is systematically engineered to
fail static. Different components in the control plane can
be unavailable for varying amounts of time while the data
plane and BGP peerings can continue to operate. This design
also allows us to upgrade the control plane frequently on a
live system without impacting the data plane, which fortu-
itously provides ample opportunity to test fail static system
properties.

(3) Espresso emphasizes software programmability via sim-
ple hardware primitives (e.g., MPLS pop and forward to
next-hop). As such, new features can be introduced with-
out waiting for the vendor to qualify and release a software
update. This in turn allows the network to evolve with chang-
ing application requirements and also enables innovative
networking features to be deployed with high velocity. Sep-
arating the control plane from the data plane has the added
benefit of allowing the CPU for control protocols to scale
independently of hardware packet forwarding capabilities.

With commercial Peering Routers, the ratio of control CPU
to data plane performance is fixed.

(4) High feature velocity resulting from programmability im-
poses testability as a key design principle for Espresso. Only
by rigorously and systematically testing each feature through
fully automated end-to-end testing can we achieve feature
velocity without sacrificing reliability and availability.
Because we implement network functionality in software
components, we can perform layers of testing from (i) unit
tests to (ii) components to (iii) pairwise interaction to (iv) end-
to-end systems and subsystems. This is in sharp contrast to
qualification of routers where we can only rely on black box
testing coupled to expensive and hard to manage hardware
deployments. The layers of testing provide confidence in
the safety of new software releases, allowing us to release
frequently while staying within our reliability budget.

(5) Supporting exponential growth means that Espresso must be
designed for intent-drivenmanageability with controlled
configuration updates. This manageability needs to support
large scale operation that is safe, automated, and incremental.
Such automation is key to sub-linear scaling of the human
overhead of running the network and reducing operational
errors, the main source of outages [16].

4 DESIGN
In this section, we describe the design of Espresso and how it
integrates into the existing Google network. We then detail the
design of each component in Espresso and how they adhere to our
design principles.

4.1 Background
Peering locations—a.k.a. edge metros—connect Google to end users
around the world (Figure 1) through external ISP peers. Figure 3a
illustrates this configuration. Prior to Espresso, we used traditional
routers, Peering Routers (PR), to connect Google’s network with
other autonomous systems (AS) in the edge. These PRs support
eBGP peerings, Internet-scale FIBs and IP access-control-lists to
filter unwanted traffic.

Alongside our routers, we also run Layer 7 reverse proxies at the
edge to terminate user connections and to serve cached content.
The proxies reduce connection latency to users, reduce the required
capacity back to data centers through caching, and improve perfor-
mance for cacheable content [15, 23]. A typical user request enters
Google via one of the PRs and terminates at a local L7 (reverse)
proxy. Key to Espresso is using a small subset of this server process-
ing power already running at the edge for programmable packet
processing.

4.2 Design Overview
Figure 2 illustrates the basic architecture of an Espresso edge metro,
which broadly consists of three subsystems.

(1) A global traffic engineering (TE) system enables application-
aware routing at Internet scale. This TE system, consisting of
the Global TE controller (GC) and location controllers (LC),
programs the packet processors with flow entries that allows
dynamic selection of egress port on per-application basis.

434

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA K.K. Yap, M. Motiwala, et al.

Table 1: Espresso: Requirements with the corresponding design principles that help achieve them.
Requirement Design Principle(s) Summary
Efficiency Software Programmability Centralized TE, application-aware optimization and routing (§4.3)
Interoperability Software Programmability eBGP for peering (§4.4.1), support IPv4/IPv6 (§4.2.1)
Reliability Hierarchical Control Plane, Fail

Static, Manageability
Split between local/global control-plane (§4.3), intent-driven configuration
system (§4.5)

Security Software Programmability Fine-grained DoS & Internet ACL on host packet processors (§4.4.4)
Incremental
Deployment Software Programmability TE system supports legacy and Espresso peering devices (§4.3)
High Feature Ve-
locity

Software Programmability,
Testability

Loosely coupled control-plane, automated testing and release processes (§5)

Host
Host
Host
Host
Host

Peering
“Router”

Peering
 Fabric

 (PF)

Host
Host
Host
Host
Host

Backbone
Router

Host

Packet
Processor

Peering
Fabric

Controller

Location
Controller

(LC)

Global TE (GC) Controller

BGP
speakerBGP

speakerBGP speaker

External Peer
Router

eBGP Peering

GRE Tunnel

routes

application-specific host
programming Edge Metro

Peerings

Global

Figure 2: Espresso Control Plane: LC programs Internet-sized FIBs
in the packet processors on the edge hosts, and distributes config-
uration to the Peering Fabric Controllers (PFC). PFC in turns man-
ages PF and BGP speakers. BGP speakers establish eBGP peering
with other AS. The local control plane tasks run on the machines
hosted in the edge metro.

This programmable packet processing also helps mitigate
DoS attacks with finer resolution than possible in hardware
routers.

(2) A combination of a commodity MPLS switch (PF) that
supports forwarding/tunneling rules and ACLs, and BGP
speaker processes that establish BGP peering supports the
traditional peering "router" capabilities. Unlike an Internet-
scale peering router, the PF has a small TCAM and limited
on-box BGP capability. However, it is capable of line rate
decapsulation and forwarding of IP GRE and MPLS packets.

(3) Finally, Espresso supports fully automated configuration and
upgrades through an intent-driven configuration and man-
agement stack. To configure the system, an operator simply
changes the intent. Committing the intent triggers the man-
agement system to generate, version, and statically verify
the configuration before pushing it to all relevant software
components and devices. For additional protection, we also
canary the configuration with another layer of verification
performed by the individual components.

4.2.1 Application-aware routing. A typical user request enters
via a peering device and terminates at an edge host (Figure 3b) via
standard IP routing. With traditional routing, the response would
simply be sent from this edge host to the peering router (PR), which
in turn maps the destination IP address to one of its output ports
by consulting an Internet-scale FIB constructed by its BGP stack.

Espresso PFs do not run BGP locally and do not have the capacity
to store an Internet-scale FIB.We instead store Internet-scale FIBs in
the servers, using cheaper DRAM on servers for better scaling with
the growth of Internet prefixes. Espresso directs ingress packet
to the host using IP GRE where we apply ACLs, see Figure 3b.
The hosts also encapsulate all outbound packets with a mapping
to the PF’s output port. That is, we encode the egress port in the
packet itself through server packet processors, enabling tremendous
hardware and software simplification at the PF.

Thus, it is each server’s packet processor that maps the ultimate
packet destination to a pre-programmed label at the PF using an
Internet-scale FIB stored in server memory. Espresso uses IP-GRE
and MPLS encapsulation, where IP-GRE targets the correct router
and the MPLS label identifies the PF’s peering port (Figure 3a). The
PF simply decapsulates the IP-GRE header and forwards the packet
to the correct next-hop according to its MPLS label after popping
the label. An L3 aggregation network using standard BGP forwards
the IP-GRE encapsulated packet from the host to the PF. IP-GRE
was chosen over destination MAC rewrites, e.g., [4], because it
allows us to scale the aggregation network easily.

To program host FIBs, GC gathers routes from all peering devices,
both traditional and Espresso peering. It calculates the application-
aware FIB, while respecting BGP policy. GC then sends the resulting
Internet-sized FIB to the LCs. Because GC has a slower control loop,
LC maintains responsibility for quickly reacting to any metro-local
network events as shown in Figure 5. Using these rules, the packet
processors can implement application-aware routing.

4.2.2 BGP peering and routes propagation. Espresso externalizes
eBGP from the peering device (PF) to software processes running
on the host servers. To establish a BGP session with an external
peer, LC creates an IP-GRE tunnel between the PF and the server
running BGP, Figure 2. We partition the responsibility of handling
peer BGP sessions among servers at the granularity of each peer,
simplifying the process of scaling peering sessions. In addition, this
approach allows Espresso to establish a TCP connection directly
between the peer router and the eBGP engine without requiring
multi-hop peering, which many peers do not support.

435

Taking the Edge off with Espresso SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

Host
Host
Host
Host
Host

Host
Host
Host
Host
Host

Peering
Fabric
(PF)

Backbone
Router

Internal Network

ISP 1 ISP N

Aggregation
Layer

Legacy
Peering
Router
(PR)

IP PacketMPLSIP GRE

IP Packet

Encapsulation
applied by host

(a) Diagram shows path for traffic from the reverse L7 web proxy is directed
towards a selected peering port on the PF using IP GRE and MPLS encapsula-
tion.

Host
Host
Host
Host
Host

Host
Host
Host
Host
Host

Peering
Fabric
(PF)

Backbone
Router

Internal Network

ISP 1 ISP N

Aggregation
Layer

Legacy
Peering
Router
(PR)

IP Packet

IP Packet

IP PacketIP GRE

PF adds
IP-GRE

headers for
filtering traffic

Host pops IP-GRE headers and
applies filtering rules on the

data packet

(b) Diagram shows path for traffic from user to the reverse L7 web proxy is
directed with IP GRE encapsulation.
Figure 3: Espresso Metro with support for both legacy peering
router (PR) and Espresso peering fabric (PF).

Once the peering is established, Espresso exchanges routes with
peers as with any router. LC aggregates these routes across BGP
speakers and delivers them to the GC. In turn, GC learns of available
peering ports on a per-prefix basis, running a global TE optimization

Volume
Aggregator

Optimizer

Limits
Computer

Feed
Aggregator

High level
application-specific
traffic policies and
configuration

User-request
demand and
performance
(per client prefix)

Network
Topology

Server

Network
topology model

Peering routes
with BGP
attributes

Location
Controller

Interface
utilization, queue
drops, etc

application-specific host
programming rules
(per edge metro)

Location
Controller
Location
Controller

Global TE controller (GC)

Location
Controller
Location
Controller
Location
Controller

Figure 4: Global Controller system is a distributed system that peri-
odically produces an optimized application-specific programming
rules that are distributed via LCs in each edge metro.

to rebalance traffic across available peering ports to serve user traf-
fic. LC also quickly propagate any failures (e.g., route withdrawals)
to the hosts. Figure 5 shows an example of this operation.

4.3 Application-aware TE System
Espresso’s TE system is a hierarhical control plane, divided into a
global TE controller (GC) and per-metro location controllers (LC).
GC provides application-aware TE decisions through global opti-
mization, while LC provides local fallback and fast reaction to fail-
ures to increase Espresso’s reliability and responsiveness. Integra-
tion with the existing TE system allows for incremental deployment
of Espresso, as GC supports both traditional and Espresso peering
devices. At a high level, GC’s objective is to efficiently allocate user
traffic demand given the available resources (peering, backbone,
server capacity) while optimizing for application-level metrics such
as goodput and latency. GC also strictly observes application-level
priority to ensure we allocate bandwidth for higher priority appli-
cations before others.

4.3.1 Global Controller. Figure 4 shows an overview of GC’s
operation. The output of GC is a prioritized list of <PR or PF, egress
port> tuples for each <point-of-presence (PoP), client prefix, service
class> tuple, where service class encodes the priority of the traffic
on the network. We refer to this list as the egress map. Packet
processors employ this list to control where an application’s traffic
egresses Google’s network. GC only chooses the egress to optimize
peering port utilization and does not control pathing between the
hosts and the PFs/PRs. Dynamic pathing between hosts and PFs/PRs
is beyond the scope of Espresso.

To make application-aware TE, GC’s optimizer consumes a num-
ber of inputs:
• Peering routes:GCdetermineswhere user traffic can egress
by collecting all peering routes from edge routers. The Feed
Aggregator collects routes while preserving the BGP at-
tributes to respect BGP peering policies. GC consumes routes
from both traditional PRs and the Espresso PFs. GC can then
compute egress maps targeting PR or PF, which allows for in-
cremental deployment of new peering capacity on Espresso.
Using these routes, GC creates a prioritized list of egresses

436

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA K.K. Yap, M. Motiwala, et al.

for each client prefix, based on attributes such as AS path
length, BGP advertisement specificity, operator policies, etc.
• User bandwidth usage and performance: To estimate
user demand, the layer 7 proxies report connection metrics
for each client-prefix and application service class to GC
based on the connections they manage. The Volume Aggre-
gator aggregates bandwidth, goodput, RTT, retransmits, and
queries-per-second reports. A smoothed version of this in-
formation serves as an estimate of user demand and path
performance in the Optimizer.
GC determines the appropriate prefix granularity to use for
programming client prefixes by joining routing data with
observed client latency. The L7 proxies report observed client
latency on a per /24 granularity (/48 for IPv6) to GC, and
if GC observes different latency characteristics for prefixes
within that reported in routing data, it can disaggregate them
until the latency characteristics are similar. This enables
GC to target client populations with very different network
connectivity at the appropriate granularity.
• Link utilization: GC collects per-queue link utilization,
drops, and link speed from network devices in the peering
locations. The Limits Computer shown in Figure 4 aggregates
this information with user demand to allocate bandwidth tar-
gets per link per service class. First, it prioritizes allocation
in the order of service classes. Second, it scales the allocation
down more aggressively if there are drops in higher priority
service classes than in lower priority service classes. This
dynamic scaling is critical to maintaining high peering link
utilization, while limiting any adverse effect to applications
that are latency sensitive, see § 6.2. GC’s congestion reaction
helps get 17% higher utilization of peering links [2, 12, 21].
GC also reacts to downstream congestion in the Internet by
using host-reported client goodput to compare end-to-end
path performance for each client prefix for each egress link.
To compare end-to-end path quality, we group host reports
based on peering link, AS path and client prefix. The resulting
groups have identical BGP and latency characteristics. We
use this information to limit the amount of traffic we place
on a congested path for a given client prefix, moving traffic
to alternate, less congested paths if possible. We show in
§ 6.2 that enabling this feature significantly improves user-
perceived performance, with up to a 170% improvement in
user-perceived quality metrics.

GC uses a greedy algorithm to assign traffic to candidate egress
device and port using the above inputs. We prefer this greedy al-
gorithm over a more optimized linear program (LP) due to its op-
timization speed, simplicity and resulting debuggability. We have
observed marginal 3 − 5% improvements in latency to some client
prefixes from the LP which is insufficient to justify the additional
complexity. We are still investigating in this area, and consider
designing an LP-based solution that meets our operational require-
ments as part of future research.

The greedy algorithm starts with the highest priority traffic and
its most preferred candidate mapping. Traffic assignment spills over
to subsequent candidates when the remaining traffic exceeds the
remaining capacity for the candidate. The algorithm orders egress

options based on BGP policy and metrics, user metrics (e.g., RTT
and goodput), and cost of serving on the link. For example, if we
assign prefix p with expected demand 1 Gbps at location A, to be
served via egress peering port E, then GC subtracts 1 Gbps from the
available serving limit for peering port E, along with any capacity
on the links from A to E. If the complete demand for p cannot be
satisfied by serving via port E, then we split the demand between
multiple peering ports.

GC also adjusts link capacity to account for traffic not under
its control, allowing for incremental deployment. For high priority
traffic, GC reserves space for LC and BGP spilling over in case of a
link failure. This reserved space is still available for loss-tolerant,
lower-QoS traffic.

GC employs safety as its fundamental operating principle. This
approach has been critical to its success in managing Google’s
Internet facing traffic while maintaining global scope. The often
hidden cost for global optimization is a global failure domain. Every
component in GC performs extensive validation at each stage for
defense in depth. GC relies on inputs from a number of different
systems, like monitoring systems that collect interface counters
on peering devices. Given the sheer amount of data consumed by
GC and the number of different input sources, GC must verify
the basic sanity of all incoming data sources. For example, Limits
Computer fails validation if the limits for different links computed
change significantly. When validation fails, the Optimizer continues
producing maps based on changes to the other input sources, while
using the last valid input from Limits Computer for some time.
Before publishing the egress map, the optimizer compares it to
prior maps, validating traffic-shift rules. We assume maps violating
these rules result from some fault in GC, hence we would rather
fail-static in these cases. This means we continue to use the last
valid map to serve traffic. In our experience, being conservative
in validation that could result in serving traffic using stale maps
when there is a false positive than risk programming a bad map
has resulted in a more reliable operational behavior.

We replicate GC in several datacenters for higher availability. A
master election process using a distributed lock system [6], elects
one of the GC stacks as master. The Optimizer in the master GC
stack sends it output to the LCs in every Espresso Metro. There
is a canary process where the LCs canary the new map to a small
fraction of packet processors and report their status to the GC. A
canary failure would revert the programming to previous valid map
and alert an oncall engineer.

We archive both GC inputs and outputs so operators can easily
revert to the historical known-good state. Validation reduces the
scope and frequency of production outages, while reverting to a
known good state helps reduce the duration of outages.

4.3.2 Location Controller. Since we intentionally dampen GC
output to minimize churn in the global egress map, Espresso fea-
tures a local control plane to handle changes such as interface
failure and sudden decrease in serving capacity. For this, we run a
Location Controller (LC) on host servers in each peering location,
which acts as a fallback in case of GC failure.

The main inputs to LC are application-specific forwarding rules
from GC, and real-time peer routing feeds via eBGP speakers in the
metro. The main output is the application-specific forwarding rules

437

Taking the Edge off with Espresso SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

to the packet processors. Figure 5 shows an example, described
below. A single LC scales to the control of approximately 1000
servers, keeping with our general goal of limiting control overhead
to approximately 0.1% of our infrastructure costs. We also push
the ACL filtering rules via LC to packet processors. Finally as a
configuration cache, LC acts as the nexus point for configuration
to other control components in the metro, e.g., BGP configuration
for the eBGP speakers.

• Scaling host programming. To quickly program all packet
processors, especially in the event of a network failure like
peering port down, we run a number of LC instances in
the metro. These instances are designed to be eventually
consistent. LC programs all packet processors in an edge
metro identically. Hence, to support more packet processors,
we can simply add more LC instances.
• Canary. To limit the blast radius of an erroneous GC output,
LC implements canarying to a subset of packet processors
in a location. We first deliver a new egress map to a subset
of packet processors, proceeding to wider distribution after
verifying correct operation in the canary set. We also canary
other control operations, e.g., ACL programming.
• Local Routing Fallback. Typically 3% of the traffic in a
metro does not match any entry in the egress map, e.g., the
client prefix has not issued requests recently. To provide a
safety net for such traffic, LC calculates BGP best-path using
routes from all metro routers. LC programs these routes as
the default in packet processors. This approach also allows
for a metro to fail static in the event of a failure in GC pro-
gramming. We maintain a constant trickle of traffic on these
paths to provide confidence that this fallback mechanism
will work when needed.
• Fast recovery from failures. To compensate for the slower
responding GC, LC reacts quickly to shift user traffic away
from known failed links. LC uses internal priority queues
to prioritize bad news, e.g., route withdrawals, over GC pro-
gramming. Coupled with the default routes, we avoid black-
holing traffic. A quick response to failure via LC and a slower
response to new peers via GC also provides the correct re-
sponse to a peering flap.

We now discuss the programming example shown in Figure 5. GC
generates egress maps for two application service classes to egress
from peering portsA : 30 and B : 10, whereA and B are two peering
devices, and the numbers refer to the particular port on the peering
device. GC can program traffic for a particular prefix to be split in a
weighted manner across multiple peering ports, e.g., for application
class 1 and prefix 2.0.0.0/24, traffic is split 30% out of A : 30 and
70% out of B : 10. LC sends the appropriate encapsulation rules
used by packet processors to send traffic to the target peering port.
In the example, to egress fromA : 30, packets must be encapsulated
with an outer IP-GRE header with an IP address from the range
42.42.42.0/27, and an MPLS header with label 401. We use a range
of addresses for the encap IP header for sufficient hashing entropy
as switches in the aggregation layer cannot look beyond the outer
IP header for hashing.

LC also receives a real-time feed of the peering routes for each
of the peers via BGP speakers. It uses this information to verify

1.0.0.0/24 [(A:30, 50),
(B:10, 50)]

2.0.0.0/24 [(A:30, 30),
[(B:10, 70)]

3.0.0.0/24 [(A:30, 100)]

Appln. Class 1

1.0.0.0/24 [(A:30, 40),
(B:10, 60)]

2.0.0.0/24 [(A:30, 100)]

3.0.0.0/24 [(A:30, 100)]

Appln. Class 2
Global TE

Optimizer (GC)

LC

A:30 B:10

Packet Processor (Forwarding State)

1.0.0.0/24 [(A:30, 50),
(B:10, 50)]

2.0.0.0/24 [(B:10,
100)]

3.0.0.0/24 [(A:30,
100)]

1.0.0.0/2
4

[(A:30, 40),
(B:10, 60)]

2.0.0.0/2
4

[(A:30,
100)]

3.0.0.0/2
4

[(A:30,
100)]

A:30 GRE-IP:
42.42.42.0/27
MPLS: 401

B:10 GRE-IP:
41.41.41.0/27
MPLS: 410

Appln. Class 1 Appln. Class 2 Encapsulation Rules

Real-time routing feed

Per-application TE rules

1.0.0.0/24

2.0.0.0/24

3.0.0.0/24
1.0.0.0/2
4

[(A:30,
100)]

2.0.0.0/2
4

[(B:10,
100)]

3.0.0.0/2
4

[(B:10,
100)]

Best-path
Routes

1.0.0.0/2
4

[(A:30,
100)]

2.0.0.0/2
4

[(B:10,
100)]

3.0.0.0/2
4

[(B:10,
100)]

Default

1.0.0.0/24

2.0.0.0/24

3.0.0.0/24

LCA:30

1.0.0.0/24

B:10

Packet Processor (Forwarding State)

1.0.0.0/24 [(A:30, 50)]

2.0.0.0/24 [(B:10,
100)]

3.0.0.0/24 [(A:30,
100)]

1.0.0.0/24 [(A:30, 40)]

3.0.0.0/24 [(A:30,
100)]

A:30 GRE-IP:
42.42.42.0/27
MPLS: 401

B:10 GRE-IP:
41.41.41.0/27
MPLS: 410

Appln. Class 1 Appln. Class 2 Encapsulation Rules

Route withdrawals from
peers

1.0.0.0/24 [(A:30,
100)]

2.0.0.0/24 [(B:10,
100)]

3.0.0.0/24 [(B:10,
100)]

Default

2.0.0.0/24

Programming Update to send to Host

Appln.
Class 1

1.0.0.0/24 [(A:30, 50)]

Appln.
Class 2

1.0.0.0/24 [(A:30, 40)]

Appln.
Class 2

2.0.0.0/24 DELETE

Figure 5: Example of LC programming packet processors with TE
assigments from GC, best-path routes and updating the program-
ming based on real-time feed of routing updates (§ 4.3.2). [(A:30, 50),
(B:10,50)] refers to a 50:50 split of traffic between peering device A
port 30 and peering device B port 10 respectively.

the correct output of GC programming. As shown in Figure 5,
when LC receives a route withdrawal for 1.0.0.0/24 for peer A :
30, it updates the corresponding forwarding rules in each of the
application service classes by removing the unavailable egress from
themap. In the event that no egress is available in the egressmap, LC
deletes the programming and the packet processors would instead
perform a lookup in the default service class programmed from the
best-path routes to encapsulate traffic. We keep the LC’s response
simple so that it only reacts to potential failures rather than make
any active traffic steering decisions.

4.4 Peering Fabric
We now discuss how the Peering Fabric (PF) supports the Espresso
edge metro. The Peering Fabric (PF) consists of a commodity MPLS
switch, our custom BGP stack, Raven, and the Peering Fabric Con-
troller (PFC). The PFC is responsible for programming the switch
and managing the eBGP sessions.

4.4.1 Raven BGP Speaker. Weneeded a server-based BGP speaker
for Espresso. We have previously employed Quagga [21] but faced
limitations. Specifically, Quagga is single threaded, C-based and

438

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA K.K. Yap, M. Motiwala, et al.

has limited testing support. Hence, we developed Raven, a high-
performance BGP speaker that runs on the edge servers. Raven
allows us to use the large number of CPU cores and ample mem-
ory on commodity servers to provide performance. Since Raven is
deployed in-house, we can implement only the features we need,
which improves performance and results in a leaner, more stable
codebase. We also benefit from better unit testing available in our
internal codebase. §6.3 presents our comparison between the BGP
speaker implementations.

For Raven to peer with external peers, the BGP packets from
the peer are encapsulated at the PF and delivered to Raven process
running on host machines. Conversely, the packets from Raven are
encapsulated and forwarded in the same manner as regular user
traffic from the hosts, i.e., IP-GRE and MPLS encapsulation. This
ties the control plane (i.e., health of peering session), and data plane
(i.e., traffic targeted towards the peer) together. If the data plane
from the peer is broken for any reason, the peering session also
breaks—resulting in traffic being shifted away from the peering
link. We also exploit the packet processors on the host to perform
both encapsulation and decapsulation of the BGP packets.

We run multiple Raven instances for each PF, distributing the
peers evenly across each instance. Hence, we scale our peering
capabilities horizontally by simply deploying more Raven tasks,
independent of the hardware and scale of the PF. This partitioning
also inherently limits the failure-domain of a single Raven task. Un-
like in a traditional router where all peering units can fail together,
failure of a Raven task only affects sessions associated with that
task.

Since we deploy Raven intances as software services on hosts,
they are frequently restarted for upgrades, either of Raven itself or
of the host machine. Hence, restarting Raven needs to have minimal
impact on traffic. We worked with our peers to enable BGP Graceful
Restart [26] such that data traffic continues to flow during Raven
restart.

4.4.2 Commodity MPLS Switch. Espresso’s commodity MPLS
switches support priority-based line-rate packet forwardingbut can-
not hold a full Internet-sized routing or ACL table. In Espresso, we
program this switch with MPLS forwarding rules. The number of
required MPLS forwarding rules corresponds to the number of peer-
ings per router, orders of magnitude smaller than than Internet-size
FIB. To program the switch, we extended its OpenFlow agent to pro-
gram MPLS forwarding and IP-GRE encapsulation/decapsulation
rules into the device. Using such rules, we can direct egress packets
to the selected peer and encapsulate ingress BGP packets towards
the Raven BGP speakers.

4.4.3 Peering Fabric Controller. The PFC acts as the brain of
the PF, managing the BGP speakers and switches. PFC manages
forwarding on the PF by installing flow rules to decapsulate egress
packets and to forward them to the next-hop based on the MPLS
label. PFC also installs flow rules to encapsulate BGP packets re-
ceived from a peer to the server running the correct BGP speaker
for that peering session.

PFC maps peers to the available Raven BGP speakers. This map
is sticky to minimize BGP session restarts. To gauge individual
speaker availability, PFC performs health checks on the speakers
and reassigns peering sessions when they go down. Since we loosely

couple PFC and the Raven speakers, the peerings remain available
even when the PFC is unavailable.

The PFC employs a master-standby architecture to increases
Espresso PF reliability in the face of failures. An interesting con-
sequence of externalizing network functionality from the peering
device is that the software components are naturally distributed
across multiple racks in different power domains, allowing Espresso
to be robust against power failure without additional provisioning.

4.4.4 Internet ACL. Google’s Internet-facing ACL is large, be-
yond the capacity of commodity PF switches. To address this chal-
lenge, Espresso installs a subset of ACL entries on the PF and uses
encapsulation to redirect the remaining traffic to nearby hosts to
perform fine-grained filtering. We use traffic analysis to determine
what ACL entries are the highest volume in packets per second,
and install those on the the PF itself while installing the remain-
der on the hosts. What we have found is that installing just 5% of
the required ACL entries on the PF covers over 99% of the traffic
volume.

Even more important than leveraging commodity hardware,
Espresso’s programmable packet processors can perform more ad-
vanced filtering than what is available in any router hardware,
commodity or otherwise. This greater flexibility can, for example,
support Google’s DoS protection system. The Espresso ACL de-
sign also allows for rules to be shifted around and new rules to be
installed on demand providing increased operational flexibility.

4.5 Configuration and Management
Espresso configuration is based on an automated intent-based sys-
tem. Currently, we leverage existing configuration languages to
express intent in Espresso to minimize churn for operators. De-
signing a network configuration language for SDN systems is an
important area of future work for us.

Upon checking in a human-readable intent for Espresso, the
management system compiles it into lower-level configuration data
that is more easily consumed by the systems. This configuration
data is then delivered verbatim by many of the components in
the system. In this way, we verify overall system configuration
consistency, and also programmatically ensure the configuration is
internally consistent and valid. Changing a configuration schema
only requires modifying the consumer(s) of the configuration and
not in the configuration management system.

The Espresso configuration management differs from traditional
network configuration systems in a number of ways. First, as most
of the functionality is in software we can use a declarative config-
uration language, greatly simplifying higher level configuration
and workflow automation. Second, since the data plane (packet
processors) is composed of a number of smaller units, we can roll
out configuration changes gradually to monitor any impact from
bad configuration updates. Finally, the fact that the control plane is
composed of a number of discrete units, each performing a specific
function allows for strong and repeated validation of configuration
flow to provide defense in depth.

In a peering location, the LC provides a cache of the current
intent/configuration. Hence, as systems come online or fail over,
they always have a local source to load their current configuration,
avoiding a high availability SLO for the configuration system. If

439

Taking the Edge off with Espresso SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

LC’s connection to the configuration system is lost, the LC will fail-
static with the current configuration, alerting operators in parallel
to fix the connection. The LC also canaries configuration to a subset
of devices within a location and verifies correct behavior before
proceeding to wide-scale deployment of a new configuration.

4.5.1 Big Red Buttons. For safety and operational ease, we made
the explicit decision to provide a “big red button” (BRB) that op-
erators could quickly, reliably and safely use to turn off some or
all parts of the system. These BRBs provide defense in depth at all
levels of the system, e.g., (i) we can push a configuration to LC to
send all programming via the best-path routes computed locally,
(ii) we can move traffic by de-configuring one or more BGP peers,
or (iii) we can move all of a peer’s traffic by clicking a button on
the BGP speaker’s monitoring user interface. There are also more
fine-grained knobs to disable sending traffic to a particular peer-
ing port, or overriding part of GC programming. These BRBs are
extensively tested nightly to ensure that they would work when
needed. Using the nightly test result, we analyze the performance
of these BRB in §6.4.

4.5.2 Network Telemetry. Espresso provides streaming teleme-
try of data-plane changes and reaction time statistics to events such
as peering link failure or route withdrawal. For example, peering
link failures are immediately streamed from PFC to the BGP speak-
ers allowing the speaker to withdraw the associated routes quickly,
rather than waiting for the BGP session to timeout. LC also uses
this signal to update host programming.

Control plane telemetry in Espresso leverages various standard
monitoring practices in Google. Every binary in the control plane
exports information on a standard HTTP/RPC endpoint, which is
collected and aggregated using a system like Prometheus [3].

4.5.3 Dataplane Monitoring via Probing. We continually run
end-to-end probes to detect problems. These probes traverse the
same path as regular traffic but exercise specific functionality. For
example, to verify the proper installation of ACLs at hosts, we send
probe packets to the hosts that are encapsulated identically to Inter-
net traffic, allowing us to validate that the systems implementing
the ACL forward/drop as expected. We can send probe packets that
loop back through the PF and through various links to ensure they
reach their destination and are processed correctly.

5 FEATURE AND ROLLOUT VELOCITY
Espresso is designed for high feature velocity, with an explicit goal
to move away from occasional releases of software components
where many features are bundled together. Espresso software com-
ponents are loosely coupled to support independent, asynchronous
and accelerated releases. This imposes a requirement for full inter-
operability testing across versions before each release. We achieve
this by fully automating the integration testing, canarying and
rollout of software components in Espresso.

Before releasing a new version of the Espresso software, we
subject it to extensive unit tests, pairwise interoperability tests
and end-to-end full system-level tests. We run many of the tests
in a production-like QA environment with a full suite of failure,
performance, and regression tests that validates the system opera-
tion with both the current and new software versions of all control

Table 2: Release velocity of each components (in days) for the past
year. Velocity is how frequent a new binary is being rolled out; Qual-
ification is the amount of time it takes for a binary to be qualified
for rollout; And Rollout is the time it takes for a new binary to be
deployed in all sites.

Component Velocity Qualification Rollout
LC 11.2 0.858 (± 0.850) 5.07 (± 3.08)
BGP speaker 12.6 1.14 (± 1.82) 5.01 (± 2.88)
PFC 15.8 1.75 (± 1.64) 4.16 (± 2.68)

plane components. Once this test suite passes, the system begins an
automated incremental global rollout. We also leverage the testing
and development infrastructure that is used for supporting all of
Google codebase [24].

The above features allow Espresso software to be released on
a regular weekly or biweekly schedule as shown in Table 2. To
fix critical issues, a manual release, testing and rollout can be per-
formed in hours. Since releases are such a common task, we ca
quickly and incrementally add features to the system. It is also easy
to deprecate an unused feature, which enables us to maintain a
cleaner codebase. Rapid evolution of the Espresso codebase is one
of the leading contributors to the significantly higher reliability in
Espresso compared to our traditional deploymentsc̃iteevolveordie.

Using three years of historical data, we have updated Espresso’s
entire control plane > 50× more frequently than with traditional
peering routers, which would have been impossible without our test
infrastructure and a fail-static design that allows upgrades without
traffic interruption.

As one example of the benefits, we developed and deployed
a new L2 private connectivity solution for our cloud customers
in the span of a few months. This included enabling a new VPN
overlay, developing appropriate APIs and integrating with the VPN
management system, end-to-end testing, and global roll-out of the
software. We did so without introducing any new hardware or
waiting for vendors to deliver new features. The same work on the
traditional routing platforms is still ongoing and has already taken
6× longer.

6 EVALUATION
6.1 Growth of Traffic over Time
Espresso is designed to carry all of Google’s traffic. We started with
lower priority traffic to gain experience with the system, but with
time it is now carrying higher priority traffic.

To date, Espresso is carrying more than 22% of Google’s out-
bound Internet traffic, with usage increasing exponentially. Fig-
ure 6a shows that an increasing fraction of total traffic is carried
on Espresso. E.g., in the last two months, traffic on Espresso grew
2.24× more than the total.

6.2 Application-aware Traffic Engineering
We discuss some benefits of a centralized application-aware TE. The
global nature of GC means that it can move traffic from one peering
point to another, even in a different metro, when we encounter
capacity limits. We classify this as overflow, where GC serves the
excess user demand from another location. Overflow allows Google
to serve, on average, 13%more user traffic during peaks than would

440

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA K.K. Yap, M. Motiwala, et al.

 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2
 0.22
 0.24

Fr
a
ct

io
n
 o

f
tr

a
ffi

c
o
n
 E

sp
re

ss
o

Time (over 450 days)

(a) Fraction of total traffic carried on Espresso over time.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.2 0.4 0.6 0.8 1

P
e
rc

e
n
ta

g
e
 o

f
p

e
e
ri

n
g

 l
in

ks

95-percentile utilization over 24 hours

(b) CDF of 95-percentile peering link utilization over a day.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

 0.9 0.92 0.94 0.96 0.98 1

P
a
ck

e
t

d
ro

p
s

Link utilization

95-percentile
Average

(c) Packet drops by link utilization
Figure 6: Total traffic and peering link utilization on Espresso.

otherwise be possible. GC can find capacity for overflow either on
a different peering in the same edge metro or could also spill it to
a different point-of-presence (PoP), as it has global visibility. We
observe that over 70% of this overflow is sent out to a different
metro. Figure 7 shows the distribution of overflow by client ISPs,
as a fraction of what could be served without TE. The overflow
fraction is fairly small for most ISPs, however for few very capacity-
constrained ISPs we find the GC overflowing over 50% of the total
traffic to those ISPs from non best location.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
D

F

Overflow fraction (95-percentile)
Figure 7: CDF of overflow (over a day) managed by GC for top 100
client ISPs. X axis shows the fraction of total traffic to the ISP that
is served from a non best location.

As described in § 4.3.1, GC caps loss-sensitive traffic on peering
links to allow for errors in bandwidth estimation. However, GC
can safely push links close to 100% utilization by filling any re-
maining space with lower-QoS loss-tolerant traffic. For this traffic,
GC ignores estimated link capacity, instead dynamically discov-
ering the traffic level that produces a target low level of queue
drops. Figure 6b shows that over 40% of peering links have a 95th
percentile utilization exceeding 50%, with 17% of them exceeding
80% utilization. This is higher than industry norms for link utiliza-
tion [2, 12, 21]. GC sustains higher peak utilization for a substantial
number of peering links without affecting users, easing the problem
of sustaining exponential growth of the peering edge.

Figure 6c focuses on observed packet drops for the highly utilized
peering links. GC manages packet drops to < 2% for even peering
links with 100% utilization. The drops are in the lower-QoS traffic
that is more loss-tolerant, as GC will react aggressively to reduce
limit if higher-QoS drops are observed.

GC monitors client connection goodput to detect end-to-end
network congestion, including those beyond Google’s network. GC
can then move traffic to alternate paths with better goodput. This
congestion avoidance mechanism dramatically improved our video
streaming service’s user-experience metrics for several ISPs, which
has been shown to be critical to user engagement [10].

Table 3 shows examples of improvements to user experience ob-
served by our video player when we enabled congestion detection
and reaction in GC. Mean Time Between Rebuffers (MTBR) is an
important user metric taken from the client side of Google’s video
service. MTBR is heavily influenced by packet loss, typically ob-
served in some ISPs that experience congestion during peak times.
For the examples presented here, we did not observe any congestion
on the peering links between Google and the ISP. This demonstrates
the benefit of a centralized TE system like GC, which considers the
least congested end-to-end path for a client prefix through a global
comparison of all paths to the client across the peering edge.

6.3 Comparison of BGP speakers
Early in the Espresso project, we had to choose between an open-
source BGP stack, e.g., Quagga [1], Bird [14], or XORP [19], or
extend Raven, an internally-developed BGP speaker. We settled

441

Taking the Edge off with Espresso SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

Table 3: Improvements in Goodput and Mean Time Between Re-
buffers (MTBR) observed for video traffic when we enabled GC re-
action to end-to-end congestion detection and reaction.

ISP Change in MTBR Change in Goodput
A 10→ 20 min 2.25→ 4.5 Mbps
B 4.6→ 12.5 min 2.75→ 4.9 Mbps
C 14→ 19 min 3.2→ 4.2 Mbps

on Quagga as the leading open source candidate and conducted
a detailed comparison to Raven. This choice is in-part driven by
the fair amount of effort we have spent in optimizing Quagga in
B4 [21].

One of the most important metrics was the BGP advertising and
withdrawal convergence time, for both IPv4 and IPv6 routes. Raven
consistently outperformed Quagga for IPv4, converging 3.5−5.0×
faster with 3 million routes (Figure 8a) and performing as well for
IPv6 (Figure 8b). Raven also consistently used less memory and
CPU than Quagga, e.g., for one million IPv4 routes, Raven used
less than half the memory of Quagga. We saw similar savings in
IPv6 routes. Raven also has lower latency because it does not write
routes into the kernel. Further, Quagga is single-threaded and does
not fully exploit the availability of multiple cores on machines.

We also compared Raven with the BGP stack on a widely used
commercial router. Based on IPv4 and IPv6 routes drawn from a
production router, we created route sets of different sizes. We com-
pared the advertisement and withdrawal performance of Raven
(Adj-RIB-in post-policy) and the commercial router over several
runs for these route sets. The average convergence latency (Fig-
ure 8c) showed that Raven significantly outperformed the router
in both dimensions. This performance was partly made possible
by the approximately 10x CPU cores and memory available on our
servers relative to commercial routers.

6.4 Big Red Button
In this section, we evaluate the responsiveness of two of our “big
red buttons” mechanisms: (i) we can disable a peering by clicking a
button on the BGP speaker’s user interface for a temporary change,
and (ii) permanently drain traffic by de-configuring one or more
BGP peers via an intent change and config push.

In case (i), we measure the time between clicking the button
on the BGP speaker’s user interface and the routes for that peer
being withdrawn by Raven. This takes an average of 4.12 s, ranging
for 1.60 to 20.6 s with std. dev. of 3.65 s. In case (ii), we measure
the time from checking in intent to the time routes are withdrawn.
This takes an average of 19.9 s, ranging for 15.1 to 108 s with std.
dev. of 8.63 s. This time includes checking in an intent change to a
global system, performing various validation checks, propagating
the drain intent to the particular device and finally withdrawing
the appropriate peering sessions.

6.5 Evaluating Host Packet Processing
Key to Espresso is host-based packet processing to offload Internet
scale routing to the end hosts. This section demonstrates that a
well-engineered software stack can be efficient in memory and CPU
overhead.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30

C
o
n
v
e
rg

e
n
ce

 T
im

e
 (

se
co

n
d

s)

Number of routes (in 100K)

Quagga Advertise
Quagga Withdraw

Raven Advertise
Raven Withdraw

(a) IPv4 Convergence between Quagga and Raven BGP speaker.

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350 400

C
o
n
v
e
rg

e
n
ce

 T
im

e
 (

se
co

n
d

s)

Number of routes (in 100K)

Quagga Advertise
Quagga Withdraw

Raven Advertise
Raven Withdraw

(b) IPv6 Convergence between Quagga and Raven BGP speaker.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 1 2 3 4 5 6

A
v
e
ra

g
e
 C

o
n
v
e
rg

e
n
ce

 T
im

e
 (

se
co

n
d

s)

Number of routes (in 100K)

Router Advertise
Router Withdraw
Raven Advertise
Raven Withdraw

(c) Convergence between Commercial Router and Raven BGP speaker.
Figure 8: Comparison of convergence times of Raven BGP speaker
vs. other BGP implementations.

Figure 9a shows the CDF of the programming update rate from
LC to one host; the host received 11.3 updates per second on aver-
age (26.6 at 99th percentile). We also measure update processing
overhead. Update processing is serialized on a single CPU and takes
only 0.001% on average and 0.008% at 99th percentile of its cycles.

An on-host process translates the programming update into an
efficient longest prefix match (LPM) data structure for use in the
data path. We share this immutable LPM structure among all of

442

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA K.K. Yap, M. Motiwala, et al.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

C
D

F

Updates per second

(a) Routing update arrival rate.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1.98 2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

C
D

F

Route count (in millions)

(b) Route count (IPv4 and IPv6).

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

C
D

F

Memory (in GB)

(c) Memory use of LPM and control plane structures.
Figure 9: Performance of packet processor. Data collected over a 3
month period from a live production host.

the packet processing CPUs, allowing lock-free packet processing.
We first install programming updates in a shadow LPM structure,
updating all packet processing path pointers to point to the new
LPM afterward. We use a compressed multibit trie to implement
IPv4 LPM and a binary trie to implement IPv6 LPM. See [31] for a
survey of possible LPM implementations. Figure 9b shows the route
counts, and Figure 9c the memory usage in an Espresso deploy-
ment over a period of 3 months. The LPMs contain approximately

1.9 million IPv4/IPv6 prefixes-service classes tuple. The LPMs and
control plane structures used 1.2 GB of RAM on average and 1.3
GB of RAM at 99th percentile. We attribute occasional spikes in
memory use to the background threads triggered by our profiling
infrastructure.

We also evaluate the CPU overhead of both LPM lookups and
packet encapsulation on a productionmachine at peak load. At peak,
the machine transmits 37 Gbps and 3 million packets per second.
On average, the LPM lookups consume between 2.1% to 2.3% of
machine CPU, an acceptable overhead. For expediency, we used
simple binary trie LPM implementation, which can be improved
upon.

7 EXPERIENCE
Perhaps the largest meta-lesson we have learned in deploying vari-
ous incarnations of SDN is that it takes time to realize the benefits of
a new architecture and that the real challenges will only be learned
through production deployment. One of the main drivers for our
emphasis on feature velocity is to support our approach of going
to production as quickly as possible with a limited deployment and
then iterating on the implementation based on actual experience.
In this section, we outline some of our most interesting lessons.

(1) Bug in a shared reporting library. All Espresso control-
plane components use a shared client library to report their
configuration state to a reporting system for management
automation. We added this reporting system after the initial
Espresso design but neglected to add it to regression testing.
A latent bug triggered by a failure in the reporting system
caused all the control plane jobs to lock up due to process
thread exhaustion. In turn, the control-plane software com-
ponents across all Pilot peering locations failed. This caused
traffic to be automatically drained from the Espresso PF ports,
failing the traffic back to other peering locations. Espresso’s
interoperability with the traditional peering edge allowed
routing to work around the Espresso control plane failure
and prevented any user-visible impact. This control-plane
outage however reinforced the need for all control and man-
agement plane components to be included in integration
testing.

(2) Localized control plane for fast response. During the
initial deployment of Espresso, we observed an interesting
phenomenon: new routing prefixes were not being utilized
quickly after peering turnup, leading to under-utilization of
available capacity. The root-cause was slow propagation of
new prefixes to the GC and subsequent incorporation in the
forwarding rules. This is a feature in GC, implemented to
reduce churn in the global map computed by GC.
To reduce the time needed to utilize newly learned prefixes
without introducing unintended churn in the GC, we aug-
ment the local control plane to compute a set of default
forwarding rules based strictly on locally collected routing
prefixes within an edge metro. Espresso uses this default set
for traffic that is not explicitly steered by GC, allowing new
prefixes to be utilized quickly. This default also provides an
in-metro fallback in the event of a GC failure, increasing

443

Taking the Edge off with Espresso SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA

system reliability. This lesson demonstrates how a hierar-
chical control plane can manage global optimization while
maintaining or improving reliability.

(3) Global drain of PF traffic. To aid incremental deployment
of Espresso and emergency operational procedures, GC can
disable/enable use of a set of Espresso PF devices as an egress
option for traffic. An operator pushed erroneous GC con-
figuration that excluded all Espresso PF devices from the
set of viable egress options. Fortunately, we had sufficient
spare capacity available, and GC successfully shifted traffic
to other peering devices so that there was minimal user-
visible impact. This outage though again demonstrated the
perils of a global control system, and the need to have addi-
tional safety checks. GC supports a simulation environment
to evaluate the effects of a drain, but the simulation results
were overlooked, and the configuration was still pushed.
To improve availability, we bolstered the simulation envi-
ronment by making large traffic shifts show up as failures,
and introduced additional safety checks in GC to prohibit
draining significant traffic from peering devices.

(4) Ingress traffic blackholing. Espresso’s most user visible
outage resulted from our phased development model. Before
implementing ACL-based filtering in end hosts, we restricted
announcement of prefixes to Espresso peers to the subset
that we could support filtering with the limited PF hard-
ware TCAMs. An inadvertent policy change on one of our
backbone routers caused external announcement of most
of Google prefixes via the PFs. Some of the attracted traffic,
e.g., VPN, did not find an "allow" match in the PF (which
has limited TCAM) and was blackholed. We subsequently
fixed our BGP policies to prevent accidental leaking of routes
to Espresso peers, evaluated the limited ACLs on PF to al-
low additional protocols, and expedited the work to deploy
complete Internet ACL filtering in end-hosts. This outage
demonstrates the risks associated with introducing new net-
work functionality, and how subtle interactions with existing
infrastructure can adversely affect availability.

8 RELATEDWORK
Recently, several large-scale SDN deployments [11, 21, 29] have
been discussed in the literature. These deployments only had to
interoperate with a controlled number of vendors and/or software.
SDN peering [17, 18] provides finer-grained policy but does not
allow application-specific traffic engineering. This work is also
limited to the PoP scale while Espresso targets a globally avail-
able peering surface. None of these deployments target high-level
availability required for a global scale public peering. A number of
efforts [4, 28] target more cost-effective hardware for peering; we
show our approach end-to-end with an evaluation of a large-scale
deployment.

Espresso employs centralized traffic engineering to select egress
based on application requirements and fine-grained communication
patterns. While centralized traffic engineering [7, 8, 20–22] is not
novel, doing so considering end-user metrics at Internet scale has
not been previously demonstrated. We also achieve substantial
flexibility by leveraging host-based encapsulation to implement

the centralized traffic engineering policy by programming Internet-
sized FIBs in packet processors rather than in the network, taking
earlier ideas [9, 25] further.

Edge Fabric [27] has similar traffic engineering goals as Espresso.
However, their primary objective is to relieve congested peering
links in a metro while Espresso aims at fine-grained global optimiza-
tion of traffic. Consequently, Edge Fabric has independent local and
global optimization which does not always yield globally optimal
traffic placement, and relies on BGP to steer traffic. On the other
hand, Espresso integrates egress selection with our global TE sys-
tem allowing us to move traffic to a different serving location and to
perform fine-grained traffic engineering at the hosts. Espresso also
considers downstream congestion which Edge Fabric is exploring
as future work. Another key difference lies in Espresso’s use of
commodity MPLS switches, in contrast with Edge Fabric that relies
on peering routers with Internet-scale forwarding tables. We have
found that such peering routers comprise a substantial portion of
our overall network costs.

Espresso’s declarative network management is similar to Robo-
tron [30]. We further build a fully automated configuration pipeline
where a change in intent is automatically and safely staged to all
devices.

9 CONCLUSIONS
Two principal criticisms of SDN is that it is best suited to walled
gardens that do not require interoperability at Internet scale and
that SDN mainly targets cost reductions. Through a large-scale
deployment of Espresso—a new Internet peering architecture—we
shed light on this discussion in two ways. First, we demonstrate that
it is possible to incrementally evolve, in place, a traditional peering
architecture based on vendor gear and maintain full interoperability
with peers, their myriad policies, and varied hardware/protocol
deployments at the scale of one of the Internet’s largest content
provider networks. Second, we show that the value of SDN comes
from the capability and its software feature velocity, with any cost
savings being secondary.

In particular, Espresso decouples complex routing and packet-
processing functions from the routing hardware. A hierarchical
control-plane design and close attention to fault containment for
loosely-coupled components underlie a system that is highly re-
sponsive, highly reliable, and supports global/centralized traffic op-
timization. After more than a year of incremental rollout, Espresso
supports six times the feature velocity, 75% cost-reduction, many
novel features and exponential capacity growth relative to tradi-
tional architectures. It carries more than 22% of all of Google’s
Internet traffic, with this fraction rapidly increasing.

ACKNOWLEDGMENT
Many teams has contributed to the success of Espresso and it would
be impossible to list everyone that has helped make the project
successful. We would like to acknowledge the contributions of G-
Scale Network Engineering, Network Edge (NetEdge), Network
Infrastructure (NetInfra), Network Software (NetSoft), Platforms
Infrastructure Engineering (PIE), Site Reliability Engineering SRE,
including, Yuri Bank, Matt Beaumont-Gay, Bernhard Beck, Matthew
Blecker, Luca Bigliardi, Kevin Brintnall, Carlo Contavalli, Kevin

444

SIGCOMM ’17, August 21–25, 2017, Los Angeles, CA, USA K.K. Yap, M. Motiwala, et al.

Fan, Mario Fanelli, Jeremy Fincher, Wenjian He, Benjamin Helsley,
Pierre Imai, Chip Killian, Vinoj Kumar, Max Kuzmin, Perry Lorier,
Piotr Marecki, Waqar Mohsin, Michael Rubin, Erik Rubow, Murali
Suriar, Srinath Venkatesan, Lorenzo Vicisano, Carmen Villalobos,
Jim Wanderer, Zhehua Wu to name a few. We also thank our re-
viewers, shepherd Kun Tan, Jeff Mogul, Dina Papagiannaki and
Anees Shaikh for their amazing feedback that has made the paper
better.

REFERENCES
[1] 2010. GNU Quagga Project. www.nongnu.org/quagga/. (2010).
[2] 2013. Best Practices in Core Network Capacity Planning. White Paper. (2013).
[3] 2017. Prometheus - Monitoring system & time series database.

https://prometheus.io/. (2017).
[4] Joo Taveira Arajo. 2016. Building and scaling the Fastly network, part 1: Fighting

the FIB. https://www.fastly.com/blog/building-and-scaling-fastly-network-part-
1-fighting-fib. (2016). [Online; posted on May 11, 2016].

[5] Ajay Kumar Bangla, Alireza Ghaffarkhah, Ben Preskill, Bikash Koley, Christoph
Albrecht, Emilie Danna, Joe Jiang, and Xiaoxue Zhao. 2015. Capacity planning
for the Google backbone network. In ISMP 2015 (International Symposium on
Mathematical Programming).

[6] Mike Burrows. 2006. The Chubby lock service for loosely-coupled distributed
systems. In Proceedings of the 7th symposium on Operating systems design and
implementation. USENIX Association, 335–350.

[7] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman Shaikh,
and Jacobus van der Merwe. 2005. Design and Implementation of a Routing Con-
trol Platform. In Proceedings of the 2Nd Conference on Symposium on Networked
Systems Design & Implementation - Volume 2 (NSDI’05). USENIX Association,
Berkeley, CA, USA, 15–28. http://dl.acm.org/citation.cfm?id=1251203.1251205

[8] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown,
and Scott Shenker. 2007. Ethane: Taking Control of the Enterprise. SIGCOMM
Comput. Commun. Rev. 37, 4 (Aug. 2007), 1–12. https://doi.org/10.1145/1282427.
1282382

[9] Martin Casado, Teemu Koponen, Scott Shenker, and Amin Tootoonchian. 2012.
Fabric: A Retrospective on Evolving SDN. In Proceedings of the First Workshop on
Hot Topics in Software Defined Networks (HotSDN ’12). ACM, New York, NY, USA,
85–90. https://doi.org/10.1145/2342441.2342459

[10] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,
Jibin Zhan, and Hui Zhang. 2011. Understanding the Impact of Video Quality
on User Engagement. In Proceedings of the ACM SIGCOMM 2011 Conference
(SIGCOMM ’11). ACM, New York, NY, USA, 362–373. https://doi.org/10.1145/
2018436.2018478

[11] Sarah Edwards, Xuan Liu, and Niky Riga. 2015. Creating Repeatable Computer
Science and Networking Experiments on Shared, Public Testbeds. SIGOPS Oper.
Syst. Rev. 49, 1 (Jan. 2015), 90–99. https://doi.org/10.1145/2723872.2723884

[12] Nick Feamster. 2016. Revealing Utilization at Internet Interconnection Points.
CoRR abs/1603.03656 (2016). http://arxiv.org/abs/1603.03656

[13] Nick Feamster, Jay Borkenhagen, and Jennifer Rexford. 2003. Guidelines for
interdomain traffic engineering. ACM SIGCOMM Computer Communication
Review 33, 5 (2003), 19–30.

[14] O. Filip. 2013. BIRD internet routing daemon. http://bird.network.cz/. (May
2013).

[15] Tobias Flach, Nandita Dukkipati, Andreas Terzis, Barath Raghavan, Neal Card-
well, Yuchung Cheng, Ankur Jain, Shuai Hao, Ethan Katz-Bassett, and Ramesh
Govindan. 2013. Reducing Web Latency: the Virtue of Gentle Aggression. In
Proceedings of the ACM Conference of the Special Interest Group on Data Commu-
nication (SIGCOMM ’13). http://conferences.sigcomm.org/sigcomm/2013/papers/
sigcomm/p159.pdf

[16] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.
2016. Evolve or Die: High-Availability Design Principles Drawn from Googles
Network Infrastructure. In Proceedings of the 2016 Conference on ACM SIGCOMM
2016 Conference (SIGCOMM ’16). ACM, New York, NY, USA, 58–72. https://doi.
org/10.1145/2934872.2934891

[17] Arpit Gupta, Robert MacDavid, Rüdiger Birkner, Marco Canini, Nick Feamster,
Jennifer Rexford, and Laurent Vanbever. 2016. An Industrial-scale Software
Defined Internet Exchange Point. In Proceedings of the 13th Usenix Conference on
Networked Systems Design and Implementation (NSDI’16). USENIX Association,
Berkeley, CA, USA, 1–14. http://dl.acm.org/citation.cfm?id=2930611.2930612

[18] Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean Patrick Donovan,
Brandon Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark,
and Ethan Katz-Bassett. 2014. SDX: A Software Defined Internet Exchange.
SIGCOMM Comput. Commun. Rev. 44, 4 (Aug. 2014), 579–580. https://doi.org/10.
1145/2740070.2631473

[19] Mark Handley, Orion Hodson, and Eddie Kohler. 2003. XORP: An Open Platform
for Network Research. SIGCOMM Comput. Commun. Rev. 33, 1 (Jan. 2003), 53–57.
https://doi.org/10.1145/774763.774771

[20] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan
Nanduri, and Roger Wattenhofer. 2013. Achieving high utilization with software-
driven WAN. In ACM SIGCOMM Computer Communication Review, Vol. 43. ACM,
15–26.

[21] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. 2013. B4:
Experience with a globally-deployed software defined WAN. ACM SIGCOMM 43,
4, 3–14.

[22] Matthew K Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srinivasan
Seshan, and Hui Zhang. 2015. Practical, real-time centralized control for cdn-
based live video delivery. ACM SIGCOMM Computer Communication Review 45,
4 (2015), 311–324.

[23] Abhinav Pathak, Y Angela Wang, Cheng Huang, Albert Greenberg, Y Charlie
Hu, Randy Kern, Jin Li, and Keith W Ross. 2010. Measuring and evaluating TCP
splitting for cloud services. In International Conference on Passive and Active
Network Measurement. Springer Berlin Heidelberg, 41–50.

[24] Rachel Potvin and Josh Levenberg. 2016. Why Google Stores Billions of Lines
of Code in a Single Repository. Commun. ACM 59, 7 (June 2016), 78–87. https:
//doi.org/10.1145/2854146

[25] Barath Raghavan, Martín Casado, Teemu Koponen, Sylvia Ratnasamy, Ali Ghodsi,
and Scott Shenker. 2012. Software-defined Internet Architecture: Decoupling
Architecture from Infrastructure. In Proceedings of the 11th ACM Workshop on
Hot Topics in Networks (HotNets-XI). ACM, New York, NY, USA, 43–48. https:
//doi.org/10.1145/2390231.2390239

[26] S. Sangli, E. Chen, R. Fernando, J. Scudder, and Y. Rekhter. 2007. Graceful Restart
Mechanism for BGP. RFC 4724 (Proposed Standard). (Jan. 2007). http://www.ietf.
org/rfc/rfc4724.txt

[27] Brandon Schlinker, Hyojeong Kim, Timothy Chiu, Ethan Katz-Bassett, Harsha
Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi
Zeng. 2017. Engineering Egress with Edge Fabric. In Proceedings of the ACM
SIGCOMM 2017 Conference (SIGCOMM ’17). ACM, New York, NY, USA.

[28] Tom Scholl. 2013. Building A Cheaper Peering Router. NANOG50. (2013). nLayer
Communications, Inc.

[29] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Hong Liu, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2016. Jupiter Rising: A Decade
of Clos Topologies and Centralized Control in Google’s Datacenter Network.
Commun. ACM 59, 9 (Aug. 2016), 88–97. https://doi.org/10.1145/2975159

[30] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H.Y. Wong, and Hongyi Zeng. 2016.
Robotron: Top-down Network Management at Facebook Scale. In Proceedings of
the 2016 Conference on ACM SIGCOMM 2016 Conference (SIGCOMM ’16). ACM,
New York, NY, USA, 426–439. https://doi.org/10.1145/2934872.2934874

[31] David E Taylor. 2005. Survey and taxonomy of packet classification techniques.
ACM Computing Surveys (CSUR) 37, 3 (2005), 238–275.

445

http://dl.acm.org/citation.cfm?id=1251203.1251205
https://doi.org/10.1145/1282427.1282382
https://doi.org/10.1145/1282427.1282382
https://doi.org/10.1145/2342441.2342459
https://doi.org/10.1145/2018436.2018478
https://doi.org/10.1145/2018436.2018478
https://doi.org/10.1145/2723872.2723884
http://arxiv.org/abs/1603.03656
http://conferences.sigcomm.org/sigcomm/2013/papers/sigcomm/p159.pdf
http://conferences.sigcomm.org/sigcomm/2013/papers/sigcomm/p159.pdf
https://doi.org/10.1145/2934872.2934891
https://doi.org/10.1145/2934872.2934891
http://dl.acm.org/citation.cfm?id=2930611.2930612
https://doi.org/10.1145/2740070.2631473
https://doi.org/10.1145/2740070.2631473
https://doi.org/10.1145/774763.774771
https://doi.org/10.1145/2854146
https://doi.org/10.1145/2854146
https://doi.org/10.1145/2390231.2390239
https://doi.org/10.1145/2390231.2390239
http://www.ietf.org/rfc/rfc4724.txt
http://www.ietf.org/rfc/rfc4724.txt
https://doi.org/10.1145/2975159
https://doi.org/10.1145/2934872.2934874

	Abstract
	1 Introduction
	2 Background and Requirements
	3 Design Principles
	4 Design
	4.1 Background
	4.2 Design Overview
	4.3 Application-aware TE System
	4.4 Peering Fabric
	4.5 Configuration and Management

	5 Feature and Rollout Velocity
	6 Evaluation
	6.1 Growth of Traffic over Time
	6.2 Application-aware Traffic Engineering
	6.3 Comparison of BGP speakers
	6.4 Big Red Button
	6.5 Evaluating Host Packet Processing

	7 Experience
	8 Related Work
	9 Conclusions
	References

