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There are n boys and n girls. The boys are called by, bs,...,b,, and the girls are called
g1,92,---,gn. BEach boy has a rank-ordered list of the n girls (with the highest-ranked girl
listed first, etc), and similarly each girl has a rank-ordered list of the n boys. There are no
ties.

Figure 1: An instance of stable matching

Suppose we want to match the boys and girls to each other. (Any boy can be matched to any
girl, it’s just that the boy’s happiness depends on how highly the girl places in his ranking,
and the girl’s happiness depends on how highly the boy places in her ranking.)

What criteria might we use to match the men and girls?

e We could try to minimize how far down we have to go in any list. Say, if every person
was matched to someone who is the top person on their list, that’d be amazing. But
maybe if every person was matched to someone who is within the top 3 of their list,
that’d be pretty good too.

e We could do the same, but just for the boys, or the girls, and ignore the happiness of
the other size. In fact, in the example above, it turns out that each of the girls has a
different boy ranked as #1, so we could just output that matching. The girls would
be very happy, but boy #1 is not that happy (he gets his last place girl).

e We could imagine an “unhappiness cost” of 7 for matching some person to a person i
on their list. And try to minimize the unhappiness cost.

Or the cost could be 2, or 2!, or something growing more rapidly.

e Or maybe some combination of these? Or some other criterion altogether?



For today, we will not consider these issues at all. We will consider a orthogonal but impor-
tant issue: that of stability. In a situation like the one we are modeling, where there is no
overseeing authority, and where the people involved selfishly want to maximize their own self
interest (that is, they want the best partner they can get), a reasonable requirement from
any matching we output is that it be stable: people should have no incentive to break the
proposed matching and choose something else.

In this lecture, we will give algorithms to find stable matchings.

1 Stable Matchings
So how do we find a stable matching of the boys to the girls? But before that, let us carefully
define what this “stability” is.

Well, a matching would be unstable if a boy b and a girl g who are not matched to each other,
preferred each other to their current partners. They would want to dump their partners and
match up. E.g., in Figure 1, consider the matching that matches boy i to girl -—mnow boy 5
and girl 1 prefer each other to their current partners, as do boy 5 and girl 2, or boy 3 and
girl 4, etc.

Given a matching M of the boys and girls, let us say that (b, g) is a rogue couple in M if
1. b, g are not matched by M, but
2. b prefers g to his partner in M, and ¢ prefers b to her partner in M.

Now we say that a matching M is stable if there are no rogue couples in M.

Here are a couple of stable matchings in the example from Figure 1:

e The matching (b3, g1), (b5, g2), (b, 93), (b1, g4), (b2, g5) is one. Why? Each girl is matched
to her very top choice, so she cannot be part of a rogue couple!

o the matching (b1, gs), (b2, g2), (b3, 9a), (b4, g3), (b5, 91) is another one.

You should check that these are indeed stable matchings. Which other stable matchings can
you find?

This leads us to the natural question:
Given boys and girls with rank-ordered lists, how do we find a stable matching?
But before that, we need to answer an even more basic question

Given boys and girls with rank-ordered lists, does there always exist a stable
matching?

In the rest of the lecture, we will show that there always exists a stable matching, no matter
what the preference lists! In fact, the proof will also give a very simple algorithm to find
one. Coming up, right after a word from our sponsors.



2 Does There Always Exist a Stable Matching?

How do we show there always exists a stable matching?

A natural approach is: start with any old matching M; of boys to girls. Suppose there is no
rogue couple in My, we’ve found one. Otherwise, pick a rogue couple and have them dump
their partners and match them up, match the two dumpees together, and repeat. Maybe
this “evolutionary” approach will eventually converge to a stable matching?

Maybe. How would we prove this converges?

Well, the newly-formed happy couple are now matched to people higher in their lists. But
the couple formed by the dumpees, they may really hate each other. Hmm.

At this point, it is instructive to consider the closely related “roommates” problem. Again,
there are 2n people, but each of them rank-orders all the others, not just the people of the
opposite gender. And again, we can define stability of a matching the same way: the absence
of rogue roommates (those who are not matched to each other, but prefer each other to their
current mates).

Now, look at this example (think of poor person 4 as the roommate no one wants):

In this case of the roommates problem, there is no stable matching! Say you match person 4
to person 1 (and 2 and 3 together). Then 3 prefers 1 to his current partner 2, and 1 prefers
3 to 4, so they form a rogue pair. If we let nature take its course, now the matching will be
(1,3) and (2,4). But now 1,2 form a rogue pair. And so on. So a evolutionary approach
would never converge.

This says that if we are to show that an evolutionary approach eventually gives us a stable
matching, we need a proof idea that must fail for the roommates problem.

Hmm again.

In fact, Knuth showed in 1990 that just doing evolutionary approach by choosing an arbi-
trary rogue couple may result in the process cycling indefinitely without reaching a stable
matching. (See the comments at the end of the notes.)

So now let’s see what does work.
2.1 The Traditional Marriage Algorithm (TMA)

So here’s a simple algorithm that always succeeds in finding a stable matching. We’ll call it
the traditional marriage algorithm, since it uses some stereotypes as visual aids.

Every day, each boy goes to highest ranked girl on his list who hasn’t rejected
him yet.

Each girl now has some number of boys who’ve come to her. (Maybe none.) She
rejects all these boys, except the one who’s highest among them on her list.
(She updates her status to say she is “in a relationship with” this boy.)

The rejected boys cross the girl’s name off their lists.



If no boys are rejected on some day, the process ends, and the girls are matched
to the unique boy who has come to her on this day.

That’s it. Let’s run this algorithm on the instance we gave in Figure 1.

| Day || Girl 1 | Girl 2 | Girl 3 | Girl 4 | Girl 5 |

1 [ 245 1 3
2 5 2 14 3
3 5 1,2 1 3
4 5 2 1 3 1

We’ll now prove that this algorithm is correct. The first question is: is the algorithm well-
defined? Will there always be a girl on each boy’s list who hasn’t rejected him yet, or can it
be the case that some boy crosses off every name on his list? To answer this, we first need
the following lemma.

Lemma 2.1 (Improvement Lemma) If a girl is in a relationship with someone, then she
remains in a relationship with someone for the rest of the algorithm. Moreover, the boy she
is in a relationship with cannot get worse over time (according to her ranked list).

Proof: If ¢ is in a relationship with b, then she’s the highest ranked girl on b’s list who
hasn’t rejected her. So b will keep coming back, until either she rejects him for someone
higher on her list, or the process ends. Hence, she always has a mate from then on, and also
her mate at any time cannot ever get worse. [ |

Corollary 2.2 Fach girl is eventually matched with her favorite among the boys who wvisit
her during the TMA.

Lemma 2.3 No boy will be rejected by all the girls in the TMA.

Proof: If a boy b is rejected by some girl g, she must be in a relationship with someone from
that point onwards. Hence, once b is rejected by all girls, they must all be in a relationship
with others. But there are n girls and n — 1 other boys, this is not possible. [

Good, so the algorithm is well-defined. But does it always terminate?
Lemma 2.4 The TMA terminates in at most n> —n + 1 days.

Proof: Consider all the boys lists, and look at the total number of names which haven’t been
crossed off. Each day the algorithm does not end, some name gets crossed off. Eventually,
there will be at least 1 name not struck off on each list for a total of n names, and originally
this total number was n2. So the number of days before the algorithm terminates is n? —n+1.

Ezercise: can you show a set of rankings for boys/girls that will make TMA indeed take
n? —n+ 1 days to terminate? [ |

Good, good. Now, to show that the matching produced is stable.
Lemma 2.5 (Stability) The TMA outputs a stable matching M.

4



Proof: Suppose not, and let (¢g*,b*) be a rogue couple in the TMA’s matching: they prefer
each other to their partners in this matching. Let TMA match ¢* to b and b* to g. Since b*
prefers g* to g, he must have gone to her on some previous day, but was rejected.

g* must have rejected b* for a person she prefers to him. And by the Improvement Lemma,
she prefers her eventual partner at least as much. So she cannot form a rogue couple with
b*. |
Simple and elegant!

Note that this is just way to get a stable matching. If we switch the roles of the boys and
girls, that gives us another stable matching, possibly a different one. And in general, there
may be other stable matchings that are not produced by the TMA.

3 Optimal and Pessimal Matchings

A natural next question is: does the TMA give a result that is better for the boys, or for
the girls, or neither? To answer this, we come back to the sticky question of how we should
define “better”.

One thing we can indeed show is this: if the boys and girls switch roles, with the girls now
proposing and the boys rejecting/aceepting, then each girl will get a match that is no worse
than their matches in the TMA, and the boys mates will be no better. So, in this sense, the
girls will definitely benefit from swapping roles with the boys.

But in fact, we will show something much stronger: we’ll show that the matching produced
by the TMA is optimal for the boys and pessimal for the girls! (The preceding paragraph’s
claims will follow from what show.)

3.1 Defining Optimality

Given a set of preference lists, how should we define a person’s optimal partner? It may not
make sense to define this as the person at the top of their list—there may be no way that
the two can be matched in any stable matching.

So let’s define a boy’s optimal partner as the highest ranked girl (according to his own
rankings, of course) to whom this boy can be matched in some stable matching. And
his pessimal partner as the lowest ranked girl to whom he can be matched in some stable
matching. Similarly, one can define girls’ optimal and pessimal partners.

Exercise: can you find a set of preference lists where some person’s optimal girl is, in fact,
the girl ranked last on his list? What about a case where person’s pessimal girl is, in fact,
the girl ranked highest on his list?

An immediate question arises: can two boys have the same optimal girl?
Lemma 3.1 No two boys have the same optimal girl.

Proof: Suppose two boys b; and by did have the same optimal girl g. So there must be two
stable matchings M; and M such that b; is matched to ¢ in M, and b, is matched to ¢ in
M. And say g prefers by to bs.



Now consider Ms. ¢ is matched to b, but she prefers b;. Also, b; is matched to someone but
he prefers g to her (since g was his optimal girl). So (b1, g) would be a rogue couple in M,,
a contradiction. [ ]

Similarly, no two boys have the same pessimal girl, and similarly, all girls have distinct
optimal boys and distinct pessimal boys.

3.2 How Does the TMA Do?

We call a matching male-optimal if each boy is matched to his optimal girl. A matching
female-pessimal if each girl is matched to her pessimal boy. By Lemma 3.1 above, at least
these are both valid matchings. But are these stable matchings? Surprisingly, this is indeed
the case. Even more surprising are the following two theorems.

Theorem 3.2 The stable matching M produced by the TMA is male-optimal.

Proof: Suppose not. So consider the first moment in time when some boy b is rejected by
his optimal girl g. Say she is rejecting him for b*, whom she likes more.

Note that boy b* has not yet been rejected by his optimal girl—indeed, no boy has been
rejected by his optimal girl before this moment in time. So b* likes g at least as much as his
optimal girl.

Since g is b’s optimal girl, there must be some stable matching S where (b, g) are matched.
We just showed that g prefers b* to b. And we just showed that b* likes g at least as much
as his optimal girl, and hence at least as much as his partner in S. So (b, g*) are a rogue
couple in S, a contradiction!

Hence there is no boy who’s rejected by his optimal girl in the TMA. So every boy is matched
to his optimal girl in the TMA. |

Theorem 3.3 Any male-optimal matching M must also be female pessimal.

Proof: Suppose not. Then there exists a girl g matched to b in M, and another stable
matching S matching (g,b*) and b* is even worse for g. Then, g prefers b to her partner b*
in S. And g is b’s optimal girl, so b prefers ¢ to his partner in S. This means (g, b) is rogue
in S, a contradiction! [ |

In retrospect, it makes sense that the TMA gives the boys an advantage, since they are
in a position to proactively seek out their favorites, but it is still surprising that the TMA
produces the simultaneously best possible stable matching for the boys and the worst possible
stable matching for the girls!

4 The TMA in the Real World

A variant of the TMA is actually used in the National Residency Matching Program, where
medical school students are matched to residency programs. In fact, the NMRP algorithm
had been developed ten years before David Gale and Lloyd Shapley published their paper
proposing the TMA algorithm, and was essentially the same.



The students rank colleges, and the colleges rank students. For some time the process was
run to be college-optimal, but since 1995, it has been changed to a student-optimal one.
Moreover, the NMRP process is a bit more involved: the ranked lists are not complete, and
also couples can apply together. Moreover, there is the game-theoretic questions to consider:
is it in the students/colleges best interest to truthfully rank the other side?

5 Future Directions

As we mentioned, Knuth showed that just choosing an arbitrary rogue couple to resolve
at each step can cause the process to cycle without reaching a stable matching. Roth and
Vandevate showed that if we could choose the rogue couple carefully at each step, there is
a “short” sequence of O(n?) break-ups and rematchings that leads to a stable matching.
However, their proof already uses the fact that a stable matching exists, they just show how
to get there — it does not give a different proof of the existence of stable matchings. Note
that the result of Roth and Vandevate implies that the state space is connected, hence the
random dynamics (where we choose a rogue pair at random) will eventually reach stability.
However, recently, Ackermann et al. showed that there are instances where this random
process can take exponentially long to converge to a satble matching.

Other things we could discuss: What about the asynchronous version, where on each day,
only some of the boys go to their best current girls, and a girl says “maybe” to the better of
her current boy, and the best of the boys who've come today. (Note: her current boy may
be taking the day off.) Does this work?

What about collusion: what if the matching could be changed by a rogue 2k-tet: this is a
group of people who jointly decide to change partners so that everyone in this group is better
oft?

Another set of interesting questions are a game-theoretic ones: can people lie about their
preferences to get better results for themselves? Think of this as being a situation where
everyone submits their list to a central authority, who them runs TMA on these lists. Cur-
rently we assumed that each person truthfully reports their preferences. But could there
be a situation where if a person submits a fake list, they get a mate who’s better for them
(higher on their real list) than if they’d submitted their real list? As an example: Gale and
Shapley had shown that the non-proposing side (i.e., the girls in the TMA) could lie about
their preferences to get a better result, but there is no advantage gained by lying if you are
on the proposer’s side. (It is an interesting exercise to show these facts.)

There are many other questions, some mathematical, some algorithmic, some economic and
game-theoretic: see the Wikipedia article, books by Knuth, and by Gusfield and Irving, and
many papers and articles.



