15-251: Great Theoretical Ideas in Computer Science Anupam Gupta
Notes on Polynomials, Interpolation, and Codes (draft!!) January 29, 2012

You've probably all seen polynomials before: e.g., 322 —5x+ 17, or 2z — 3, or —2° 43823 —1,
or x, or even a constant 3. These are all polynomials over a single variable (here, z). The
degree of a polynomial is the highest exponent of x that appears: hence the degrees of the
above polynomials are 2, 1,5, 1,0 respectively.

In general, a polynomial over the variable = of degree at most d looks like:
P(z) = cgz® + cq12™ + . 41z + ¢

Note that the sequence of d + 1 coefficients (cg4, c4_1, ..., co) completely describes P(x).

Hence, if the coefficients were all drawn from the set Z,,, then we have exactly p®™ possible
different polynomials. This includes the zero polynomial 0 = 0z 4 029~! + .. 4+ 0x + 0.

In this lecture, we will study some properties of polynomials, relate the ideas we use to
stuff we've seen in Concepts (namely, Chinese remaindering), and then use the properties of
polynomials to construct error correcting codes.

1 Operations on Polynomials

Before we study properties of polynomials, recall the following simple operations on polyno-
mials:

e Given two polynomials P(x) and Q(z), we can add them to get another polynomial
R(z) = P(z) + Q(x). Note that the degree of R(z) is at most the maximum of the
degrees of P and Q. (Q: Why is it not equal to the maximum?)

(22 +22 - 1)+ (32° +72) =32 + 2* + 92 — 1

The same holds for the difference of two polynomials P(z) — Q(z), which is the same
as P(z) + (—Q(x)).

e Given two polynomials P(x) and Q(z), we can multiply them to get another polynomial

S(x) = P(x) x Q(x).
(%422 — 1) x (32° + Tz) = 32° + 42® + 62* + 142* — Tz
The degree of S(z) is equal to the sum of the degrees of P and Q.
e Note that P(x)/Q(z) may not be a polynomial.

e We can also evaluate polynomials. Given a polynomial P(x) and a value a, P(a) :=
cq-al+cgq1-a®t+ .. +c;-a+c. For example, if P(z) = 32° + 423 + 62* + 142 — Ta,
then

P(2)=3-2°44-2°4+6-2"+14-2° - 7.2 = 266

Of course, the multiplication between the ¢;’s and a must be well-defined, as should
the meaning of a for all 7. E.g., if the ¢;’s and a are reals, this is immediate.

But also, if ¢;’s and a all belonged to Z, for prime p, evaluation would still be well-
defined. For instance, if we were working in Z;7, then

P(2) =266 (mod 17) = 11

e A root of a polynomial P(x) is a value r such that P(r) = 0. For example, P(x) above
has three real roots 0, —1 4+ v/2, —1 — v/2, and two complex roots.

2 How Many Roots?

Let’s start with the following super-important theorem.

Theorem 2.1 (Few-Roots Theorem) Any non-zero polynomial of degree at most d has
at most d roots.

This holds true, regardless of what field we are working over. When we are working over the
reals (i.e., the coeffcients are reals, and we are allowed to plus in arbitrary reals for x), this
theorem is a corollary of the fundamental theorem of Algebra. But it holds even if we are
working over some other field (say Z, for prime p).

Let’s relate this to what we know. Consider polynomials of degree 1, also known as linear
polynomials. Say they have real coefficients, this gives a straight line when we plot it. Such
a polynomial has at most one root: it crosses the z-axis at most once. And in fact, any
degree-1 polynomial looks like ¢,z + ¢p, and hence setting x = —cy/c1 gives us a root. So, in
fact, a polynomial of degree exactly 1 has exactly one root.

What about degree 2, the quadratics? Things get a little more tricky now, as you probably
remember from high school. E.g., the polynomial 22 + 1 has no real roots, but it has two
complex roots. However, you might remember that if it has one real root, then both roots
are real. But anyways, a quadratic crosses the z-axis at most twice. At most two roots.

And in general, the theorem says, any polynomial of degree at most d has at most d roots.

3 A New Representation for degree-d Polynomials

Let’s prove a simple corollary of the theorem. It says that if we plot two polynomials of
degree at most d, then they can intersect in at most d points—unless they are the same
polynomial! Remember, two distinct lines intersect at most once, two distinct quadratics
intersect at most twice, etc. Same principle.

Corollary 3.1 Given d+1 pairs (ag,by), (a1,b1), ..., (aq, bg), there is at most one polynomial
P(x) of degree at most d, such that P(a;) = b; for alli=0,1,...,d.

Proof: First, note that if a; = a;, then b; better equal b;—else no polynomial can equal
both b; and b; when evaluated at a; = a;.

For a contradiction, suppose there are two distinct polynomials P(x) and Q(z) of degree at
most d such that for all 7,

Then consider the polynomial R(x) = P(z) — Q(x). It has degree at most d, since it is the
difference of two polynomials of degree at most d. Moreover,

R(a;) = P(a;) — Q(a;) =0

for all the d+1 settings of t = 0, 1,...,d. Once again, R is a polynomial of degree at most d,
with d + 1 roots. By the contrapositive of Theorem 2.1, R(z) must be the zero polynomial.
And hence P(x) = Q(x), which gives us the contradiction. [

To paraphrase the theorem differently, given two (i.e., 1 4+ 1) points there is at most one
linear (i.e., degree-1) polynomial that passes through them, given three (i.e., 2 4+ 1) points
there is at most one quadratic (i.e., degree-2) polynomial that passes through them, etc.

Can it be the case that for some d+1 pairs (ag, by), (a1,b1), . . ., (a4, ba), there is no polynomial
of degree at most d that passes through them? Well, clearly if a, = a; but b, # b;. But what
if all the a;’s are distinct?

Theorem 3.2 (Unique Reconstruction Theorem) Given d+1 pairs (ag, bo), (a1,b1), ..., (aq, ba)
with a; # a; for all i # j, there always exists a polynomial P(x) of degree at most d, such
that P(a;) = b; for alli=0,1,...,d.

We will prove this theorem soon, but before that note some implcations. Given d + 1 pairs
(ag,bo), (a1,b1),...,(aq,bq) with distinct a’s, this means there is a wunique polynomial of
degree at most d that passes through these points. Exactly one.

In fact, given d + 1 numbers by, by, . .., by, there is a unique polynomial P(x) of degree at
most d such that P(i) = b;. (We're just using the theorem with a; = i.) Earlier we saw how
to represent any polynomial of degree at most d by d 4+ 1 numbers, the coefficients. Now we
are saying that we can represent the polynomial of degree at most d by a different sequence
of d + 1 numbers: its values at 0,1,...d.

Two different representations for the same thing, cool! Surely there must be a use for this
new representation. We will give at least two uses for this, but first let’s see the proof of
Theorem 3.2. (If you are impatient, you can skip over the proof, but do come back and read
it—it is very elegant.)

4 The Proof of Theorem 3.2

OK, now the proof. We are given d + 1 pairs (a;, b;), and the a’s are all distinct. The proof
will actually give an algorithm to find this polynomial P(x) with degree at most d, and
where P(a;) = b;.

Let’s start easy: suppose all the d + 1 values b;’s were zero. Then P(z) has d + 1 roots, and
now Theorem 2.1 tells us that P(z) = 0, the zero polynomial!

OK, next step. Suppose by = 1, but all the d other b;’s are zero. Do we know a degree-d
polynomial which has roots at d places ay,as, ..., aq. Sure, we do—it is just

Qo(z) = (z — ar)(z — ag) -~ (x — aq).

So are we done? Not necessarily: Qo(ap) might not equal by = 1. But that is easy to fix!
Just scale the polynomial by 1/Qo(ag). L.e., what we wanted was

Ro(z) = (z —a1)(x —ag) -+ (x — ag) -

Qo(ao)
(x —ar)(x —ag) - (x—ay)
(ap — a1)(ag — az) - - - (ag — aq)

Again, Ro(x) has degree d by construction, and satisfies what we wanted! (We'll call Ry(z)
the 0" “switch” polynomial.)

Next, what if by was not 1 but some other value. Easy again: just take by x Ro(x). This has
value by x 1 at ag, and by x 0 = 0 at all other a;’s.

Similarly, one can define switch polynomials R;(z) of degree d that have R;(a;) = 1 and
R;(a;) = 0 for all i # j. Indeed, this is

(x —ag)---(x—ai—1) - (x —ai1)--- (v — aq)
(ai —ao) -+ (a; —ai—1) - (a; — a;—1) -+ (a; — aq)

Ri(z) =

So the polynomial we wanted after all is just a linear combination of these switch polynomials:

P(QT) = boRo(l‘) -+ b1R1(ZL‘) + ...+ bde(JT)

Since it is a sum of degree-d polynomials, P(z) has degree at most d. And what is P(a;)?
Since Rj(a;) = 0 for all j # i, we get P(a;) = b;R;(a;). Now R;(a;) = 1, so this is b;. All
done.

4.1 An example

Consider the tuples (5,1), (6,2),(7,9): we want the unique degree-2 polynomial that passes
through these points. So first we find Ro(x), which evaluates to 1 at = 5, and has roots at

6 and 7. This is
(x—6)(x—7) 1

Ro(z) = G667 = §(x —6)(z—7)
Similarly 5 7
Ri(z) = ((2 : 55?66:7) =@
and R()_(I—5)<x_6 = —(x —5)(z —6)
T aE-e 2t

Hence, the polynomial we want is
P(z) =1-Ro(z) +2- Ri(z) +9- Ry(x) = 32> — 32z + 86

Let’s check our answer:

P(5) =1, P(6) = 2, P(7) = 9.

Note that constructing the polynomial P(x) takes O(d?) time. (Can you find the simplified
version in this time as well?)

This algorithm is called Lagrange interpolation, after Joseph-Louis Lagrange, or Giuseppe
Lodovico Lagrangia, depending on whether you ask the French or the Italians. (He was born
in Turin, and both countries claim him for their own.) And to muddy things even further,
much of his work was done at Berlin. He later moved to Paris, where he survived the French
revolution—though Lavoisier was sent to the guillotine because he intervened on behalf of
Lagrange. Among much other great research, he also gave the first known proof of Wilson’s
theorem, that n is a prime if and only if n|(n — 1)! + 1—apparently Wilson only conjectured
Wilson’s theorem.

4.2 Remember that Chinese Remainder Theorem?

While you have Lagrange interpolation fresh in your mind, let’s recall Chinese remaindering
and relate the two. The ideas are almost exactly the same—so if you remember one, you
can remember both.

Theorem 4.1 (Chinese Remainder Theorem) Consider integers po,p1, ..., pq such that
ged(pi, p;) = 1, define M = pop1 ... pa. For any values a; € Z,,, there is exactly one x € Zy
such that

r=a; (mod p;).

Proof: Before we show there exists at least one such x, note that if there are two solutions
x,y € Zy, then z = x —y = 0 (mod p;). Hence p;|z for all i, and since all the p’s are
co-prime, we get that N|z. This means z = 0 and hence = = y.

To construct a solution x, let us consider a similar proof strategy to the one for Lagrange
interpolation. Suppose we could we find numbers r; € Zy such

ri=1 (mod p;)
r; =0 (modp;) Vj#1i

Then we could just set
x:=agro+ary + ... +agrg (mod N)

Note that = (mod p;) = a;r; (mod p;) (since r; (mod p;) for all j # i), which equals a;
(since r; =1 (mod p;)).

Now to construct these r;’s. We’ll show the idea for ry. Again, let us first get the zeros in
place — let’s make sure ro = 0 (mod p;) for ¢ > 0. This is easy: just take ¢ = p1ps . .. pa.

5

Can we use this value ¢ as 79?7 Maybe not — possibly ¢ (mod py) = b # 1. So let’s fix that:
multiply ¢ by the multiplicative inverse of b € Z,, (i.e., element b~! such that b~ -b=,, 1):

ro=gqxb! (mod py) -

(Hang on — why does this multiplicative inverse of b exist? Well, from what we know from
the number theory lecture, such an inverse exists if ged(b, pp) = 1. But hey, b = pips...pqg

(mod po), so ged (b, po) = ged(p1pa - .. pa, po) = 1. It’s all good.) [|
This procedure for reconstructing the large integer in Chinese remaindering is very similar
to Lagrange interpolation, isn’t it?

4.2.1 An Example for CRT

Ler us see an example of this — we’ll use the Wikipedia example for CRT. We want a number
x that is 2 modulo 3, 3 modulo 4 and 1 modulo 5. So let’s first create those numbers r; as
in the previous section.

Start with gg =p; -pe=4-5=20=2 (mod 3). So 19 = qo - (27! mod 3) = ¢ - 2 = 40.
Similarly, take ¢y = pg-p2 =3-5=15=3 (mod 4). Sor; =¢q; - (37! mod 4) = ¢; - 3 = 45.
And finally, ¢ =po-p1 =3-4=12=2 (mod 5). So 73 = ¢» - (27! mod 5) = ¢; - 3 = 36.
Finally, z = 2rg+3r;+1ry (mod 2-3-5) = 2-:40+3-45+1-36 (mod 30) = 251 (mod 30) = 11.

Let’s check our answer: 11 is indeed 2 modulo 3, 3 modulo 4 and 1 modulo 5.
4.3 Another Proof of Theorem 3.2

Hey, Theorem 3.2’s so nice, we’ll prove it twice. (Sorry, bad one.) Here’s a proof that uses
simple linear algebra, and gives us another way to

Proof: Suppose the polynomial P(z) = cax® + cq_12T + ..+ 1z + ¢y, where the ¢;’s are
currently unknown. Since P(a;) = b; for all 7, we get d + 1 different equalities of the form

d d—1
cqay + cg—1ag + ..+ crag +co = by

d -1

cqai + cg1ay " + ..+ a1 +co = by
d d—1

cati + cg1a " + .t aai+c =
d d—1

cqtg + cqg_1ay ..+ craqg +co = by

for ¢ = 0,1,...,d. Note that we want values of the unknowns ¢;’s that satisfy all these
constraints: we want to “solve for the ¢’s”.

This we can write more succinctly using linear algebra:

ad ad™' o oy 1 Cd bo
CL? (1(11_1 RN A 1 Cd—1 bl
ag a;l_l e Qg 1 Co bd

Let’s denote this by AZ = b. Note that A is a (d+1) x (d+ 1) matrix. So if A was invertible,
then we could multiply by A~! on both sides, and get ¢ = A~'b.

So, the first question: when is A invertible? This is precisely when the determinant of A is
non-zero. Here, A is so well-structured that it even has a name (it is called a Vandermonde
matrix), and we can write a closed form for its determinant:

det(A) = [[(ai — ;)

1<j

(Exercise: prove this!) And since all our a’s are distinct, this determinant is non-zero, and
hence the matrix A is invertible. In fact, this proves the theorem as stated, since we know
that a solution exists.

Of course, if you do want another algorithm to find the values for ¢;’s. We can do that in
two (closely related) ways:

e We can explicitly compute A~!, and then & = A~1b. You remember how to compute
matrix inverses, right?

e Or use the extremely useful Cramer’s rule. If you want to solve Ac = b and A is
invertible, then the solution is

-

det(AifB)
T T et (A

-

where A;[b] is the matrix obtained by replacing the " column of A by the column
vector b.

A note on efficiency: Note that both these approaches require computing determinants
(either explicitly for Cramer’s rule, or hidden in the computation of the inverse). The naive
way to compute the determinant of a m x m matrix takes m! time, but one can do it in
time O(m?) using Gaussian elimination. However, an algorithm based on this approach still
takes more time than the approach for the first proof. [|

5 Application: Error Correcting Codes

Consider the situation: I want to send you a sequence of d + 1 numbers (c4,c4_1, ..., ¢1,Co)
over a noisy channel. I can’t just send you these numbers in a message, because I know
that whatever message I send you, the channel will corrupt up to k of the numbers in that

message. For the current example, assume that the corruption is very simple: whenver a
number is corrupted, it is replaced by a x !. Hence, if I send the sequence

(5,19,2,3,2)

and the channel decides to corrupt the third and fourth numbers, you would get
(5,19, %, %,2).

On the other hand, if I decided to delete the fourth and fifth elements, you would get

(5,19,2,%,%).

Since the channel is “erasing” some of the entries and replacing them with x’s, the codes
we will develop will be called erasure codes. The question then is: how can we send d + 1
numbers so that the receiver can get back these d + 1 numbers even if up to £ numbers in
the message are erased (replaced by *s)? (Assume that both you and the receiver know d
and k.)

A simple case: if d = 0, then one number is sent. Since the channel can erase k£ numbers,
the best we can do is to repeat this single number k& + 1 times, and send these k + 1 copies
across. At least one of these copies will survive, and the receiver will know the number.

This suggests a strategy: no matter how many numbers you want to send, repeat each
number k£ + 1 times. So to send the message (5,19,2,3,2) with k£ = 2, you would send
(5,5,5,19,19,19,2,2,2,3,3,3,2,2,2)

This takes (d 4+ 1)(k + 1) numbers, approximately dk. Can we do better?

Indeed we can! We view our sequence (cg4,¢4_1,...,c1,¢o) as the d + 1 coefficients of a
polynomial of degree at most d, namely P(z) = cax® 4+ cqg12¥V + .+ x4+ co. Now we
evaluate P at some d+ k + 1 points, say 0,1,2,...,d+ k, and send these d + k + 1 numbers
(P(0), P(1),...,P(d+k)) across. The receiver will get back at least d+ 1 of these numbers,
which by Theorem 3.2 uniquely specifies P(z). Moreover, the receiver can also reconstruct
P(z) using, say, Langrange interpolation.

Here is an example: Suppose we want to send (5,19,2,3,2) with & = 2. Hence P(x) =
S5zt + 192 + 22% + 3x + 2. Now we'll evaluate P(x) at 0,1,2,...d + k = 6. This gives

P(0) =2, P(1) =31, P(2) = 248, P(3) = 947, P(4) = 2542, P(5) = 5567, P(6) = 10676
So we send across the “encoded message”:
(2,31,248,947,2542, 5567, 10676)
Now suppose the third and fifth entries get erased. the receiver gets:

(2,31, %,947, %, 5567, 10676)

1T am assuming that you are only sending numbers, and not *s.

8

So she wants to reconstruct a polynomial R(x) of degree at most 4 such that R(0) = 2, R(1) =
31, R(3) = 947, R(5) = 5567, R(6) = 10676. (That is, she wants to “decode” the message.)
By Langrange interpolation, we get that

Rlz) 4%(:5)z —3)(z —)z — 6) — %x(:c _3)(x—5)(x—6) + %x(w ~ 1)z - 5)(x — 6)
—%g?x(x —1)(z—3)(x—6)+ %?x(x —1)(z —3)(z — 5)

which simplifies to P(z) = 5z* + 1923 + 222 + 3z + 2!

Note: The numbers get large, so you may want work modulo a prime. Since we want to
send numbers as large as 19, let’s work in Zsy3. Then you’d send the numbers modulo 23,
which would be

(2,8,18,4,12,1,4)

Now suppose you get
(2,8, %,4,%,1,4)

Interpolate to get

R(z) =45z —1)(z = 3)(x = 5)(x — 6) — 5 '2(x — 3)(x — 5)(z — 6) + 9 'w(z — 1)(z — 5)(x — 6)
—407'z(x — 1)(z — 3)(x — 6) + 2 - 45 "2 (x — 1)(x — 3)(z — 5)

where the multiplicative inverses are modulo 23, of course. Simplifying, we get P(x) =
5zt + 1923 + 222 + 3x + 2 again. (Of course, if you are working modulo a prime p, both the
sender and the receiver must know the prime p.)

5.1 FError Correction

One can imagine that the channel is more malicious: it decides to replace some k of the
numbers not by stars but by other numbers, so the same encoding/decoding strategy cannot
be used! Indeed, the receiver now has no clue which numbers were altered, and which ones
were part of the original message! In fact, even for the d = 0 case of a single number, we need
to send 2k 4+ 1 numbers across, so that the receiver knows that the majority number must
be the correct one. And indeed, if you evaluate P(z) at d + 2k + 1 locations and send those
values across, even if the channel alters k of those numbers, there is a unique polynomial
that agrees with d + k + 1 of these numbers (and this must be P(z))—this is not hard to
show. What is more interesting is that the receiver can also reconstruct P(z) fast: this is
known as the Berlekamp-Welch algorithm. We will not cover this here, but you will see it
in later courses, or can look it up online.

6 Half an Application: Polynomial Multiplication

This will only be half an application: we will mention the main idea behind this application,
but defer the actual details to 15-451.

We saw two representations of a degree-d polynomial P(z): the coefficient representation
where we write down the d + 1 coefficients (c4,cq_1,...,co), and the value representation
where we write down the value of P at some specific d+ 1 points, say (P(0), P(1),..., P(d)).

9

Let us consider the time it takes to perform various polynomial operations in these two
representations:

e Addition: takes O(d) time in both representations.

e Multiplication: takes O(d?) time in the coefficient representation, but O(d) time in the
value representation. (We need to make sure that the product also has degree at most
d, else we will need more values.)

e Evaluation at a single point: can be done in time O(d) in the coefficient representation.
(Exercise: How?)

In the value representation, one way to do evaluation would be to reconstruct P(x)
using Lagrange interpolation, and then evaluate P(z). But that would require O(d?)
time.

So suppose we want to speed up polynomial multiplication. Here’s an approach: Given two
degree-d polynomials P, () as a list of coefficients, we evaluate them at 2d+1 points to convert
them to the value representation. Then we multiply them together using 2d + 1 multiplies.
Finally, we convert this solution back to the coefficient represntation using Lagrange.

The problem is: the 2d + 1 evaluations, and also Lagrange interpolation, both these things
take Q(d?) time.

The solution: don’t evaluate them at any old 2d+ 1 points. Evaluate them at the 2d+ 1 roots
of unity. (whoal!) This gives rise to the famous Fast Fourier Transform, which multiplies
two polynomials in time O(dlogd). You'll see more of this in 15-451.

Final note: why do we care about multiplying polynomials together, anyways? Well, the
same techniques also speed up integer multiplication as well. In this course we’ll see how to
multiply two n-bit numbers in time O(n'®). But the techniques based on the Fast Fourier
Transform allows us to multiply two n-bit integers in time O(nlogn loglogn).

7 Future Directions

Both the polynomial and the CRT case are examples of basis change: we start off with the
standard basis, and convert it into a non-standard basis. It would be good to flesh that
higher level idea out.

k-out-of-n secret sharing is another great example of where polynomial interpolation is useful.

10

