
15-251: Great Theoretical Ideas in Computer Science 15251 Staff
Notes on The Lambda Calculus (draft!!) January 29, 2012

1 Syntax

Lambda expressions are defined recursively as follows:

Variable: a, b, c, . . . are lambda expressions.

Abstraction: If e is a lambda expression then λx.e is a lambda expression for any variable
x. (It is a function taking one argument x and with body e.) When we have multiple
lambdas in a row we abbreviate as follows, λxy.e := λx.λy.e.

Application: If e1 and e2 are lambda expressions then e1 e2 is a lambda expression. (It is
applying e2 as an argument to e1.)

Generally, we are only interested in closed lambda expressions. These are lambda ex-
pressions in which every variable that appears is defined by a lambda to its left. (This is
analogous to Java programs; we are only interested in Java programs that define all their
variables.)

For example, the term λxy.x = λx.λy.x is a closed lambda expression since the only variable
x is defined by a lambda. The sub-expression λy.x is not closed since the variable x in this
sub-expression has not been defined. In the sub-expression x is said to be a free variable.

2 Scope and Parenthesis

Applications associate to the left, i.e., e1e2e3 = (e1e2)e3. Lambdas associate to the right,
i.e., λx.e1e2 = λx.(e1e2).

For example: If we fully parenthesize the expression

λxy.x(λz.zy)yyλz.xy(xz)

we end up with
λxy.((((x(λz.(zy)))y)y)λz.((xy)(xz)))

When two lambdas define the same variable name, the second lambda shadows the first, i.e.,
the expression λyλy.y is alpha equivalent to λy.λx.x, not to λx.λy.x. This is just like Java
where local variables shadow instance variables.

3 Alpha Reductions

Alpha reductions are very simple. All they are is renaming variables. Alpha reductions can
be done at any time without changing the meaning of a lambda expression.

λxy.x = λzy.z = λax.a = λxa.x = . . .

1



If one term can be alpha reduced to another we say the terms are alpha equivalent (since
we can trivially reduce in the other direction as well). Generally we only care to distinguish
terms that are not alpha equivalent, i.e., we say that two terms that are alpha equivalent
are equal and terms that are not alpha equivalent are not equal.

4 Beta Reductions

All beta reductions follow the rule
(λx.e1)e2
e1[e2/x]

which means that if we have a lambda expression (or sub-expression) of the form (λx.e1)e2,
then we can reduce that expression or sub-expression to e1[e2/x]. The meaning of this is
take the term e2 and wherever x appears as a free variable in e1, replace x with e2.

We say an expression is in normal form if no beta reductions can be done on any sub-
expression. Evaluating a lambda expression is the process of performing beta reductions.

4.1 What is the point of alpha reductions?

We need alpha reductions because the beta reduction rule does not always work correctly
when we reduce an expression that defines the same variable name twice. For example, the
term K = λxy.x = λx.λy.x is a function that takes an argument x and returns the constant
function mapping all terms to x. Hence the term λy.Ky should take an argument y and
return a constant function mapping all terms to y. However, if we reduce this naively we get

λy.Ky = λy.(λx.λy.x)y

= λy.λy.y

This is alpha equivalent to λy.λx.x which is a term that takes an argument and returns the
identity function. This is not what we expected.

The problem comes from beta reducing the sub-expression (λx.λy.x)y to λy.y. In the first
term the variable y is outside the scope of the y defined by the λy. However, in the second
term it is inside the scope of the lambda. We say that y has been captured. To avoid this,
we can alpha reduce in the midle of the process to get

λy.Ky = λy.(λx.λy.x)y

= λy.(λx.λz.x)y

= λy.λz.y

We can avoid worrying about capture if we first perform alpha reductions to make all vari-
ables have different names before we start beta reducing.

5 Examples

Define

2



• pair := λxyf.fxy

• first := λp.pλxy.x

• second := λp.pλxy.y

Then for all expressions e1, e2 we have

first(pair e1e2) = first(λf.fe1e2)

= (λf.fe1e2)λxy.x

= (λxy.x)e1e2 = e1

second(pair e1e2) = second(λf.fe1e2)

= (λf.fe1e2)λxy.y

= (λxy.y)e1e2 = e2

How did someone come up with pair, first, and second so that they would have these
properties? The idea is that pair e1e2 needs to somehow store the terms e1 and e2 so that
the terms first and second can extract them later.

The simplest way to store e1 and e2 is just to make pair e1e2 = e1e2. However, this doesn’t
give us any way extract the terms e1 and e2, i.e., there is no way to make a term first such
that first(e1e2) = e1. This is because there are terms e1, e2, e3, e4 such that e1e2 = e3e4 but
e1 6= e3 (exercise: construct some).

The next simplest thing to try is to wrap e1 and e2 in a λ. Trying pair e1e2 = λf.e1e2
has the same problem as before, but if we try pair e1e2 = λf.fe1e2 it works out. When
we do this, we can construct first to use the f variable as a function that will decompose
fe1e2 = (fe1)e2 into e1. An f that works is f = λxy.x.

Therefore, what we end up with is first = λp.pλxy.x. The variable p will be replaced by the
term pair e1e2 which will then be applied to our f = λxy.x. Constructing second is now
trivial, we just change the f we want to use to λxy.y to get second = λp.pλxy.y.

You should do the same kind of thought process when you are trying to construct a multi-
plcation function for the last assignment. Walking through the process of why the addition
function was defined the way it was may be halpful as well.

The terms first and second only really have “meaning” when applied to a term constructed

3



by pair, but that doesn’t mean we can’t try to evaluate somewhat silly things like

first(second(λx.x)second) = first((λp.pλxy.y)(λx.x)second)

= first((λx.x)(λxy.y)second)

= first((λxy.y)second)

= first((λxy.y)λp.pλxy.y)

= firstλy.y

= (λp.pλxy.x)λy.y

= (λy.y)λxy.x

= λxy.x

Since there are no errors in the lambda calculus, we can evaluate any syntactically valid
term whatsoever.

4


