
Rigorous Software Development - Spring 2012 Thomas Wies

Programming Project 1 - Minesweeper Solver

Please submit your solution via email to the instructor with CC to ly603@nyu.edu. The

deadline for the project is May 18.

The goal of this project is to implement a minesweeper game together with a perfect

minesweeper solver. The game is played on a two-dimensional grid of cells that may contain

mines. The player wins the game if all cells containing mines have been marked. To obtain

information about which cells may contain mines, the player can reveal cells. If a cell with

a mine is revealed, the player loses. If the revealed cell does not contain a mine, it shows

the number of neighboring cells that contain mines. This information can be used to deduce

which of the unrevealed cells contains a mine and which does not.

A perfect minesweeper solver plays the minesweeper game without guessing which cells can

be safely revealed, unless the current board con�guration does not allow to deduce whether

some unrevealed cell contains a mine or not. In particular, a perfect solver can be used

to decide whether a given board con�guration can be solved without guessing. Solving

minesweeper games is closely related to the Minesweeper Consistency Problem, which asks

whether, given a board con�guration, there exists an assignment of mines to unrevealed

cells that is consistent with the con�guration. For more information about this problem see

Richard Kaye's Minesweeper Page1.

Part 1 Alloy Model of Minesweeper Game and Solver

In the �rst part of this project you will develop an Alloy Model of a minesweeper game and

solver.

(a) Develop an Alloy model of minesweeper board con�gurations for abstract minesweeper

games. In an abstract minesweeper game the board is an undirected graph with nodes

representing cells and edges indicating which cells are neighbors. Other than that,

abstract minesweeper games are played exactly like normal minesweeper games. Think

about what properties you want the �eld encoding the neighbor relation to hold and

add appropriate facts to your model. Simulate some board con�gurations.

(b) Think about invariants of board con�gurations that can occur while playing a minesweep-

er game and add appropriate predicates to your model. For instance, during a minesweep-

er game, marked cells are never revealed. Another important property is that the number

of marked cells never exceeds the number of mines on the board. There are more such

invariants that you want to specify. Simulate some board con�gurations both satisfying

and violating your speci�ed invariants.

(c) Specify the operations on board con�gurations that you need for playing the game.

These are: (1) mark a cell on the board, (2) unmark a cell on the board, and (3) reveal

a cell on the board. You will also need to write a function that computes, for a given

1http://web.mat.bham.ac.uk/R.W.Kaye/minesw/

1

http://web.mat.bham.ac.uk/R.W.Kaye/minesw/


Rigorous Software Development - Spring 2012 Thomas Wies

cell, the number of neighboring cells that contain a mine. Make sure that revealing a cell

is propagated, i.e., if a cell with no neighboring mines is revealed then all neighboring

cells are also revealed.

(d) Write assertions checking whether your operations preserve all the invariants of board

con�gurations that you have speci�ed. If some invariant is violated by an operation,

add an appropriate precondition to the operation.

(e) Write a predicate that holds true for board con�gurations that are safe, i.e. do not

contain a revealed mine. Write another predicate that holds true for con�gurations that

are won, i.e., on which all unrevealed mines are marked. Use these predicates and your

operations on minesweeper boards to simulate some minesweeper plays, both winning

and losing.

(f) Write a predicate that holds true for consistent board con�guration according to the

Minesweeper Consistency Problem. Simulate some consistent and inconsistent boards.

Use your consistency predicate to write a perfect minesweeper solver and use your solver

to solve some minesweeper boards. Make sure that your solver does not cheat by directly

accessing the �elds that encode which cells contain mines. You can do this by declaring

these �elds private and putting your consistency predicate and the solver into a separate

module.

Part 2 Minesweeper Game and Solver in Java

In Part 2 of the project you will implement the minesweeper game and solver in Java. We

will restrict ourselves to the classic mine sweeper game played on a two-dimensional grid.

(a) Implement the actual minesweeper game with the board and all board operations such

as revealing cells, marking cells, and determining the number of neighboring mines of

revealed cells. The board and its operations should be encapsulated in a class that

provides all the functionality for a client (such as the solver) to play the game. Make

sure that your class does not expose information to clients that should not be directly

accessible by a player of mine sweeper, such as which unrevealed cells actually contain

mines. Also it should not be possible for a client to undo a reveal operation. The board

class is allowed to expose the total number of hidden mines, though.

(b) Implement a simple parser for board con�gurations and add code to create instances of

your board class from the parsed input �les. The input �le format is a text �le with

one line for each row of the board and each line consisting of a (white) space separated

list of entries, one entry for each cell in the row. Each entry is one of the characters

'H', 'M', and 'R� where 'H' speci�es that the cell is not revealed and does not contain

a mine, 'M' speci�es that the cell is not revealed and contains a mine, and 'R' speci�es

that the cell is revealed and does not contain a mine. Figure 1 shows two examples of

boards encoded in the input format.

(c) Transfer the invariants on board con�gurations, as well as the pre- and post-conditions

of the board operations that you discovered in Phase 1 from Alloy to JML. Add these

2



Rigorous Software Development - Spring 2012 Thomas Wies

H H M M
H H M H
H H H H

H H M M H H
H R R R R H
M R R R R M
M R R R R M
H R R R R H
H H M M H H

Figure 1: Two boards encoded in the input �le format. The left-hand side shows

the encoding of a board consisting of three rows and four columns in which all cells

are hidden. The right-hand side shows the encoding of a board with six rows and six

columns in which some of the cells are already revealed.

speci�cations to your board class and test them using runtime assertion checking. You

may use JMLUnit for generating unit tests, but this is not mandatory.

(d) Implement a perfect minesweeper solver as a client of your board class. The solver should

print all the solving steps to standard out. If the cell in the i-th column and j-th row

is revealed, it should print reveal i j. Similarly, if the cell in the i-th column and

j-th row is marked, it should print mark i j. Note that rows and columns should be

indexed starting from 0. If a solving step was guessed, then this should also be recorded,

by printing guess reveal i j, respectively, guess mark i j. The �nal outcome

of the game should be recorded by printing either game lost or game won. A possible

output of your solver generated for solving the board on the left-hand side of Figure 1

is:

guess reveal 0 0
mark 2 0
mark 2 1
reveal 2 2
reveal 3 2
reveal 3 1
mark 3 0
game won

Another possible output for the same board is:

guess reveal 3 0
game lost

A possible output for the board on the right-hand side of Figure 1 is:

reveal 0 0
reveal 0 5

3



Rigorous Software Development - Spring 2012 Thomas Wies

reveal 5 0
reveal 5 5
mark 0 2
mark 0 3
mark 2 0
mark 2 5
mark 3 0
mark 3 5
mark 5 2
mark 5 3
game won

Note that the board on the right-hand side can be solved without guessing, so your solver

should always win this board and never guess any steps while solving this board.

(e) Write a main program that (1) parses an input board from a �le whose name is provided

as a command line parameter, (2) solves the board with your solver, and (3) outputs the

solution steps and outcome of the game on standard out. The main program should not

print anything else on standard out except for the speci�ed output of the solver. When

the solver loses a game for which guessing cannot be avoided, your program should not

attempt to repeatedly solve the game until it has found a winning sequence of solving

steps.

(f) The course web site provides a zip �le with sample board con�gurations in various sizes.

You can use these boards for testing your solver. Some of the boards can only be solved

with guessing, others can be solved without guessing. Make sure that your solver does

not guess on any of the boards that can be solved without guessing.

4


	Alloy Model of Minesweeper Game and Solver
	Minesweeper Game and Solver in Java

