
Rigorous Software Development 
CSCI-GA 3033-009 

 Instructor: Thomas Wies 
 

Spring 2013 
 

Lecture 9 



Programming Project 

You will be able to choose from two projects: 
 

• Project 1: Perfect Mine Sweeper Solver 
– model mine sweeper game and solver in Alloy 

– implement game and solver in Java 

– use run-time checking via jmlc/jmlrac 
 

• Project 2: Verifying Dijkstra’s Algorithm 
– implement Dijkstra’s shortest path algorithm in Dafny 

– verify implementation against interface of a priority queue  

– implement and verify the priority queue against its interface 
 

More details forthcoming this week. 



Today’s Topics: 
Class Invariants and Framing 



Class Invariants 

• Class invariants are properties that must hold at the 
entry and exit point of every method, for every 
instance of  a class. 

• They often express properties about the consistency 
of the internal representation of an object. 

• They are typically transparent to clients of an object. 

• They are sometimes also called object invariants or 
instance invariants. 



The Problem with Class Invariants 

There are some problems with class invariants: 
• Ownership: invariants can depend on fields of 

other objects. 
– For example, the invariant of List accesses Node 

fields. 

• Callback: invariants can be temporarily violated. 
– While the invariant is violated, we call a different 

method that calls back to the same object. 

• Atomicity: invariants can be temporarily violated. 
– While the invariant is violated, another thread 

accesses object. 



The Problem with Class Invariants 

• Is it enough to check the highlighted assumes and asserts? 

• No, this would be unsound! 

public class SomeClass { 
  /*@ invariant inv; @*/ 
  /*@ requires P; 
    @ ensures Q; 
    @*/ 
  public void doSomething() { 
    //@ assume(P); 
    //@ assume(inv); 
    ...code of doSomething 
    //@ assert(Q); 
    //@ assert(inv); 
  } 
} 

public class OtherClass { 
  public void caller(SomeClass o)  
  { 
    ...some other code 
    //@ assert(P); 
    o.doSomething(); 
    //@ assume(Q); 
  } 
} 



Invariants May Depend on Other Objects 
Consider a doubly linked list: 
  class Node { 
    Node prev, next; 
    /*@ invariant this.prev.next == this &&  
                  this.next.prev == this; @*/ 
  } 
  class List { 
    private Node first; 
    public void add() { 
      Node newnode = new Node(); 
      newnode.prev = first.prev; 
      newnode.next = first; 
      first.prev.next = newnode; 
      first.prev = newnode; 
    } 
  } 

The invariant of this depends on the fields of this.next and 
this.prev. Moreover the List.add function changes the 
fields of the invariants of Node. 



Invariants May Depend on Other Objects 

List Node 
first 

Node 

next 

prev 

Node 

next 

prev 

Node 

next 

prev 

prev 

next 

List Node 
first 

Node 
next 

prev 

n.next = val 

Invariants  must be 
protected from unsolicited 
updates of dependent fields. 



List Example 

First observation: the invariant should be put into the List class: 
  

 class Node { Node prev, next; } 
 class List { 
   private Node first; 
   /*@ private ghost JMLObjectSet nodes; @*/ 
   /*@ invariant (\forall Node n; nodes.has(n); 
                  n.prev.next == n && n.next.prev == n); @*/ 
   public void add() { 
     Node newnode = new Node(); 
     newnode.prev = first.prev; 
     newnode.next = first; 
     first.prev.next = newnode; 
     first.prev = newnode; 
     //@ set nodes = nodes.insert(newnode); 
   } 
 } 



List Example 
Second observation:  
Node objects must not be shared between two different lists. 
 class Node {  
   /*@ ghost Object owner; @*/ 
   Node prev, next;  
 } 
 class List { 
   private Node first; 
   /*@ private ghost JMLObjectSet nodes; @*/ 
   /*@ invariant (\forall Node n; nodes.has(n); n.prev.next == n && 
                  n.next.prev == n && n.owner == this); @*/ 
   public void add() { 
     Node newnode = new Node(); 
     //@ set newnode.owner = this; 
     newnode.prev = first.prev; 
     newnode.next = first; 
     first.prev.next = newnode; 
     first.prev = newnode; 
     //@ set nodes = nodes.insert(newnode); 
   } 
 



List Example 
Third observation: One may only change the owned fields. 
 class Node {  
   /*@ ghost Object owner; @*/ 
   Node prev, next;  
 } 
 class List { 
   private Node first; 
   /*@ private ghost JMLObjectSet nodes; @*/ 
   /*@ invariant (\forall Node n; nodes.has(n); n.prev.next == n && 
                  n.next.prev == n && n.owner == this); @*/ 
   public void add() { 
     Node newnode = new Node(); 
     //@ set newnode.owner = this; 
     newnode.prev = first.prev; 
     newnode.next = first; 
     //@ assert(first.prev.owner == this) 
     first.prev.next = newnode; 
     //@ assert(first.owner == this) 
     first.prev = newnode; 
     //@ set nodes = nodes.insert(newnode); 
   } 
 



The Owner-As-Modifier Property 

JML supports a type system for checking the owner-as-modifier 
property, when invoked as  
 jmlc --universes.  
 

The underlying type system is called Universes: 
• The class Object has a ghost field owner. 
• Fields can be declared as rep, peer, readonly. 

– rep Object x adds an implicit invariant (or requires)  
x.owner == this. 

– peer Object x adds an implicit invariant (or requires) 
x.owner == this.owner. 

– readonly Object x does not restrict owner, but does not 
allow modifications of x. 

• The new operation supports rep and peer: 
– new /*@rep@*/Node() sets owner field of new node to this. 
– new /*@peer@*/Node() sets owner field of new node to 
this.owner. 



List with Universes Type System 

class Node { /*@ peer @*/ Node prev, next; } 
class List { 
  private /*@ rep @*/ Node first; 
  /*@ private ghost JMLObjectSet nodes; @*/ 
  /*@ invariant (\forall Node n; nodes.has(n);  
                 n.prev.next == n && n.next.prev == n && 
                 n.owner == this); @*/ 
  public void add() { 
    Node newnode = new /*@ rep @*/ Node(); 
    newnode.prev = first.prev; 
    newnode.next = first; 
    first.prev.next = newnode; 
    first.prev = newnode; 
    //@ set nodes = nodes.insert(newnode); 
  } 
} 



The Universes Type System 

A simple type system can check most issues 
related to ownership: 

• rep T can be assigned without cast to rep T 
and readonly T. 

• peer T can be assigned without cast to peer 
T and readonly T. 

• readonly T can be assigned without cast to 
readonly T. 



The Universes Type System 

One needs to distinguish between the type of a 
field peer Node prev and the type of a field 
expression rep Node first.prev. 
• If obj is a peer type and fld is a peer T field 

then obj.fld has type peer T. 
• If obj is a rep type and fld is a peer T field 

then obj.fld has type rep T. 
• If obj = this and fld is a rep T field then 
this.fld has type rep T. 

• In all other cases obj.fld has type  
readonly T. 

 



readonly References 

To prevent changing readonly references, the 
following restrictions apply: 
• If obj has type readonly T, then  

– obj.fld = expr is illegal. 
– obj.method(...) is only allowed if method is a 

pure method. 

• It is allowed to cast readonly T references to 
rep T or peer T: 
– (rep T) expr asserts that expr.owner == this. 
– (peer T) expr asserts that  
expr.owner == this.owner. 

 



Modification only by Owner 

All write accesses to a field of an object obj are  

• in a method of the owner of obj or 

• in a method of an object having the same 
owner as the object that was invoked (directly 
or indirectly) by the owner of obj. 

Invariants that only depend on fields of owned 
objects can only be invalidated by the owner or 
methods that the owner invokes. 



Modification only by Owner 

List Node 
first 

Node 

next 

prev 

Node 

next 

prev 

Node 

next 

prev 

prev 

next 

List Node 
first 

Node 
next 

prev 

n.next = val 

peer 

rep 

peer 

rep 

Universes type system 
ensures that all write 
accesses of dependent 
fields go through the 
owner. 



Limitations of Universes Type System 

• The Universes type system can solve many 
ownership related problems. 

but 

• It’s granularity is often too coarse. 

– What happens if there is no unique owner? 

– What happens if invariants are temporarily violated? 



Temporarily Violating Invariants 
public class Container { 
  int[] content; 
  int size; 
  /*@ invariant 0 <= size && size <= content.length; @*/ 
  public void add(int v) { 
    /* 1 */ 
    size++; 
    /* 2 */ 
    if (size > content.length) { 
      newContent = new int[2*size+1]; 
      ... 
      content = newContent; 
    } 
    ... 
    /* 3 */ 
  } 
} 

When do Invariants Hold? 
• Before a public method is called. /* 1 */ 
• After a public method returns. /* 3 */ 
• However, it may be violated in between. /* 2 */ 



Calls to Private Methods 

public class Container { 
  int[] content; 
  int size; 
  /*@ invariant 0 <= size && size <= content.length; @*/ 
  private /*@ helper @*/ void growContent() { 
    ... 
    content = newContent; 
  } 
  public void add(int v) { 
    /* invariant should hold */ 
    size++; 
    /* invariant may be violated */ 
    if (size > content.length) 
      growContent(); 
    ... 
    /* invariant should hold, again */ 
  } 
} 

Sometimes an invariant may not hold before a private method call. 
JML provides the annotation /*@ helper @*/ for this. 



Calls to Methods of Other Classes 

public class Container { 

  int[] content; 

  int size; 

  /*@ invariant 0 <= size && size <= content.length; @*/ 

  private /*@helper*/ void growContent() { 

    /* invariant may be violated */ 

    newContent = new int[2*size+1]; 

    System.arraycopy(content, 0, newContent, 0, content.length); 

    content = newContent; 

  } 

  ... 

} 
 

• The invariant still needs not to hold, when other methods are 
called, because there is the callback problem. 



The Callback Problem 
public class Log { 

  public void log(String p) { 

    logfile.write("Log: “ + p + " list is “ + Global.theList); 

} } 

public class Container { 

  int[] content; 

  int size; 

  /*@ invariant 0 <= size && size <= content.length; @*/ 

  public void add(int v) { 

  /* invariant should hold */ 

  size++; 

  /* invariant may be violated */ 

  if (size > content.length) { 

    Logger.log("growing array."); 

    ... 

  } 

  public String toString() { 

    /* invariant should hold */ 

    ... 

} } 



The Callback Problem 
public class Log { 

  public void log(String p) { 

    logfile.write("Log: “ + p + " list is “ + Global.theList); 

} } 

public class Container { 

  int[] content; 

  int size; 

  /*@ invariant 0 <= size && size <= content.length; @*/ 

  public void add(int v) { 

  /* invariant should hold */ 

  size++; 

  /* invariant may be violated */ 

  if (size > content.length) { 

    Logger.log("growing array."); 

    ... 

  } 

  public String toString() { 

    /* invariant should hold */ 

    ... 

} } 

implicit call to   
method toString 



The Callback Problem 

• A method of a different class can be called 
while an invariant is violated. 

• This method may call a method of the first 
class. 

• Who has to ensure that the invariant holds? 

– jmlrac complains that the invariant does not hold, 
but only at run-time. 

– How can we detect such violations statically? 



Dynamic Frames 



The Dynamic Frames Approach 

• Problem: a class invariant implicitly universally 
quantifies over the set of all allocated objects. 

– adding more objects can break the class invariant. 

– contradicts compositional verification approach. 

• Solution used in Dafny: Dynamic Frames  

– each object only keeps track of its own invariants. 

– each object maintains a ghost field for its own 
representation frame 

– frames of different objects are kept separate by 
adding appropriate disjointness constraints. 

– yields compositional verification approach. 



Example: Tree Data Structure 

class TreeNode { 
  var data: int; 
  var left: TreeNode; 
  var right: TreeNode; 
 
  constructor Init(x: int) 
  { 
    data := x; 
    left := null; 
    right := null; 
  } 
  ... 
} 



Example: Tree Data Structure 

class TreeNode { 
  var data: int; 
  var left: TreeNode; 
  var right: TreeNode; 
  ... 
  method Insert(x: int) 
  { 
    if (x == data) { return; }  
    if (x < data) { 
      if (left == null) {  
        left := new TreeNode.Init(x);  
      } else {  
        left.Insert(x);  
      } 
    } else { ... 
    } 
  } 



Adding Ghost Field for Dynamic Frame 

class TreeNode { 
  var data: int; 
  var left: TreeNode; 
  var right: TreeNode; 
  ghost var Repr: set<object>; 
 
  constructor Init(x: int) 
    modifies this; 
  { 
    ... 
    Repr := {this}; 
  } 
  ... 
} 
 



Adding Ghost Field for Dynamic Frame 

method Insert(x: int) 
  modifies Repr; 
{ 
  if (x == data) { return; }  
  if (x < data) { 
    if (left == null) {  
      left := new TreeNode.Init(x); }     
    else {  
      left.Insert(x);  
    } 
    Repr := Repr + left.Repr; 
  } else { ... 
  } 
} 
 



Adding Ghost Field for Dynamic Frame 

method Insert(x: int) 
  modifies Repr; 
{ 
  if (x == data) { return; }  
  if (x < data) { 
    if (left == null) {  
      left := new TreeNode.Init(x); }     
    else {  
      left.Insert(x);  
    } 
    Repr := Repr + left.Repr; 
  } else { ... 
  } 
} 
 

Error: assignment may update an 
object not in the enclosing context's 
modifies clause. 



Tie Repr Field to Actual Frame 

predicate Valid 
  reads this, Repr; 
{ 
  this in Repr && null !in Repr && 
  (left != null ==> 
      left in Repr && 
      left.Repr <= Repr && this !in left.Repr && 
      left.Valid) && 
  (right != null ==> 
      right in Repr && 
      right.Repr <= Repr && this !in right.Repr && 
      right.Valid) && 
  (left != null && right != null ==>  
      left.Repr !! right.Repr) 
} 

Repr is self framing 



Tie Repr Field to Actual Frame 

predicate Valid 
  reads this, Repr; 
{ 
  this in Repr && null !in Repr && 
  (left != null ==> 
      left in Repr && 
      left.Repr <= Repr && this !in left.Repr && 
      left.Valid) && 
  (right != null ==> 
      right in Repr && 
      right.Repr <= Repr && this !in right.Repr && 
      right.Valid) && 
  (left != null && right != null ==>  
      left.Repr !! right.Repr) 
} 

implicit ownership 



Tie Repr Field to Actual Frame 

predicate Valid 
  reads this, Repr; 
{ 
  this in Repr && null !in Repr && 
  (left != null ==> 
      left in Repr && 
      left.Repr <= Repr && this !in left.Repr && 
      left.Valid) && 
  (right != null ==> 
      right in Repr && 
      right.Repr <= Repr && this !in right.Repr && 
      right.Valid) && 
  (left != null && right != null ==>  
      left.Repr !! right.Repr) 
} 

Left and right subtree are disjoint 



Tie Repr Field to Actual Frame 

class TreeNode { 
  ... 
  ghost var Repr: set<object>; 
  predicate Valid { ... } 
  constructor Init(x: int) 
    modifies this; 
    ensures Valid; 
  { ... } 
  method Insert(x: int) 
    requires Valid; 
    modifies Repr; 
    ensures Valid; 
    decreases Repr; 
  { ... } 
} 
 

Check that invariant is  
maintained 

Repr is also a ranking function for 
the recursive calls to Insert 



method Client() 

 { 

    var s1 := new TreeNode.Init(1); 

    var s2 := new TreeNode.Init(2); 

    s2.Insert(3); 

         

    assert s1.Valid; 

 } 

Let’s look at a client of TreeNode 

Error: assertion violation 



method Client() 

 { 

    var s1 := new TreeNode.Init(1); 

    var s2 := new TreeNode.Init(2); 

    s2.Insert(3); 

         

    assert s1.Valid; 

 } 

Let’s look at a client of TreeNode 

Error: assertion violation 

We need to maintain the disjointness of frames! 



Maintaining Disjointness of Frames 
class TreeNode { 
  ... 
  ghost var Repr: set<object>; 
  predicate Valid  
  { ...  
    (left != null && right != null ==>  
      left.Repr !! right.Repr) 
  } 
  ... 
  method Insert(x: int) 
    requires Valid; 
    modifies Repr; 
    ensures Valid; 
    decreases Repr; 
  { ... } 
} 
 

Error: this postcondition might not 
hold. 

Error: Related location. 



Maintaining Disjointness of Frames 

constructor Init(x: int) 
  modifies this; 
  ensures Repr == {this}; 
  ensures Valid; 
{ ... } 
 
method Insert() 
  requires Valid; 
  modifies Repr; 
  ensures fresh(Repr – old(Repr)); 
  ensures Valid; 
  decreases Repr; 
{ ... } 
 

Repr is only extended with 
freshly allocated objects 



Specifying Functional Correctness 

class TreeNode { 
  ... 
  ghost var Contents: set<int>; 
  predicate Valid  
  { ...  
    Contents == (if left == null then {} else left.Contents) + 
                (if right == null then {} else right.Contents) + 
                {data} 
  } 
  ... 
  constructor Init(x: int) 
    ... 
    ensures Contents == {x}; 
  { ...  
    Contents := {x}; 
  } 

 



Specifying Functional Correctness 

method Insert(x: int) 
  ... 
  ensures Contents == old(Contents) + {x}; 
{ 
  if (x == data) { return; }  
  if (x < data) { 
    if (left == null) {  
      left := new TreeNode.Init(x); }     
    else {  
      left.Insert(x);  
    } 
    Repr := Repr + left.Repr; 
  } else { ... 
  } 
  Contents := Contents + {x}; 
} 

 

Verification successful. 



Let’s take a look at Find 

method Find(x: int) returns (present: bool) 
  requires Valid; 
  ensures present <==> x in Contents; 
  decreases Repr; 
{ 
  if (x == data) { 
    present := true; 
  } else if (left != null && x < data) { 
    present := left.Find(x); 
  } else if (right != null && data < x) { 
    present := right.Find(x); 
  } else { 
    present := false; 
  } 
} 



Let’s take a look at Find 

method Find(x: int) returns (present: bool) 
  requires Valid; 
  ensures present <==> x in Contents; 
  decreases Repr; 
{ 
  if (x == data) { 
    present := true; 
  } else if (left != null && x < data) { 
    present := left.Find(x); 
  } else if (right != null && data < x) { 
    present := right.Find(x); 
  } else { 
    present := false; 
  } 
} 

Error: this postcondition might not 
hold. 



Specifying the Representation Invariant 

predicate Valid 
  reads this, Repr; 
{ 
  ... 
  (left != null ==> 
      ... && 
      (forall y :: y in left.Contents ==> y < data)) && 
  (right != null ==> 
      ... && 
      (forall y :: y in right.Contents ==> y > data)) && 
  ... 
  Contents == (if left == null then {} else left.Contents) + 
              (if right == null then {} else right.Contents) + 
              {data} 
} 

Tree is sorted 



Let’s take a look at Find 

method Find(x: int) returns (present: bool) 
  requires Valid; 
  ensures present <==> x in Contents; 
  decreases Repr; 
{ 
  if (x == data) { 
    present := true; 
  } else if (left != null && x < data) { 
    present := left.Find(x); 
  } else if (right != null && data < x) { 
    present := right.Find(x); 
  } else { 
    present := false; 
  } 
} 

Verification successful. 



Other Approaches to Frame Problem 

• pack/unpack mechanism (Spec#, VCC) 
– based on ownership principle 
– solve callback problem by adding a ghost fields that keep track 

of object consistency. 

• implicit dynamic frames (Chalice, VeriCool) 
– like dynamic frames 
– no modifies clauses needed 
– no explicit maintenance of Repr field needed 
– frames are encoded implicitly in pre- and postconditions. 

• separation logic (VeriFast, jStar, ...) 
– similar to implicit dynamic frames  
– disjointness of frames comes for free. 

 


