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Run-time Checking vs. Verification 

• Runtime Assertion Checking 

– finds errors at run time, 

– tests for violation during execution, 

– requires appropriate test cases. 

• Verification 

– finds errors at compile time, 

– proves that there is no violation  

– high degree of confidence, 

– often requires additional annotations/proof guidance. 



Dafny 

• Dafny is an object-oriented programming language and 
verifying compiler developed at Microsoft Research 

• Compiles to Microsoft .NET 

• Compiler statically checks: 

– absence of runtime errors 

– termination of loops/method calls 

– correctness of user-defined contracts 

• Project website:  
http://research.microsoft.com/en-us/projects/dafny/ 
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Dafny Language 

• Object-based language 
– generic classes, no subclassing 

– object references, dynamic allocation 

– sequential control 

• Built-in specifications 
– pre- and postconditions 

– loop invariants, inline assertions 

– termination 

– framing 

• Specification support 
– sets, sequences, algebraic datatypes 

– user-defined functions 

– ghost variables 

 



Top-Level Grammar 

• Program ::= Type* 

• Type ::= Class | Datatype 

• Class ::= class Name { Member* } 

• Member ::= Field | Method | Function 

• Datatype ::= datatype Name { Constructor* } 

 

 

• Generic (that is, accepts type parameters) 

 



Methods 

• A method is declared in the following way: 
 

method Abs(x: int) returns (y: int) 
{ 
  if (x < 0) { return –x; } 
  else { y := x; } 
} 

 

• Note that the return parameter is declared explicitly. 

 



Pre- and Postconditions 

• Pre and postcondition are specified using 
requires and ensures clauses like in JML 

• Example: 
 

method MultipleReturns(x: int, y: int)     
returns (more: int, less: int) 
  requires 0 < y; 
  ensures less < x < more; 
{ 
  more := x + y; 
  less := x - y; 
} 



Functions 

• classes can also define functions and predicates 

• predicates are functions with return type bool 

• functions are like pure ghost methods in JML and 
can be used inside contracts 

• like pure methods, functions 

– must not have side effects 

– must always terminate 

• both properties are checked by the verifier 
 



Functions: Example 

function fib(n: nat) : nat  
{ 
  if (n < 2) then n  
  else fib(n-2) + fib(n-1) 
} 

 

method computeFib(n: nat) returns (m: nat) 

  ensures m == fib(n); 

{ ... } 



Arrays and Quantification 

• Dafny has built-in generic arrays. 

• Arrays can be null and have a built-in length function. 

• Example: 
 

predicate sorted(a: array<int>) 
  requires a != null; 
{ 
  forall j, k :: 0 <= j < k < a.Length ==>     
                    a[j] <= a[k] 
} 



Ghost Fields and Ghost Methods 

• Dafny supports ghost fields and ghost methods 
but not model fields. 

• Model fields can be emulated using ghost fields 
and functions/predicates. 

• Functions and predicates are ghost by default. 

• Dafny has no inbuilt support for class invariants. 

• Class invariants can be encapsulated in 
predicates that are explicitly conjoined to 
pre/postconditions of methods. 



Example: Array Sets 

class ArraySet<T(==)> { 
  var values : array<T>; 
  var size : int; 
  ghost var content : set<T>; 
 
  predicate Valid() { /* relates values and content */ } 
 
  method add(x: T) returns (b: bool) 
    requires Valid(); 
    ensures Valid(); 
    ensures b ==> content == old(content) + {x}; 
    ensures !b ==> content == old(content); 
  { ... } 
} 



Useful Specification Constructs 

• Sets 
– var s0 := {1, 2, 3}; // finite sets 

– var s1 := s0 + {4, 5}; // set union 

– var s2 := s0 * {1, 4}; // set intersection 

– var s3 := (set x | 0 <= x < 5); // comprehension 

• Sequences (functional lists) 
– var s0 := [1, 2, 3, 4, 5]; // finite sequence 

– var e := s0[0]; // indexed access 

– var s1 := s0[..|s|-1]; // slice 

– var s2 := s0 + s1; // concatenation 



How Dafny works: Modular Checking 

• The Dafny verifier checks each method in each 
class in isolation. 

• Each method body is transformed into 
straight-line code with inlined specs, but with 
all method calls and loops eliminated. 

• Straight-line code is then transformed into 
logical formulas that are given to an 
automated theorem prover. 

 



assume and assert 

The basic specifications in Dafny are assume and assert. 

   assume this.next != null;  

 this.next.prev := this; 

 assert this.next.prev == this; 

 

• Dafny proves that if the assume statement holds in the 
pre-state, the assert statement holds in the post-state. 

• Such a triple of specification and code is called 
Hoare triple. 



Checking for Runtime Errors 

To check for runtime errors Dafny automatically 
inserts appropriate assert statements: 

  a[x] := 0; 

becomes 
  assert a != null && 0 <= x < a.Length; 
 a[x] := 0; 



Caution with assume 

assume statements can be useful for debugging 
specifications but should be avoided otherwise. 
 
Never assume something that is not true, otherwise the 
verifier will be able to prove anything: 
 
var a := new int[3]; 
assume a.Length > 3; 
a[-3] := 2; 
 
> dafny BadAssume.dfy 
Dafny program verifier finished with 1 verified, 
0 errors. 



Inlining requires and ensures 

The method contract is just translated into assume and 
assert statements: 
  method m(n: int) returns (m: int) 
    requires n > 0; 
    ensures m == n * n; 
  { 
    body 
  } 
 

becomes 
 

  assume n > 0; 
  body 
  assert m == n * n; 



Eliminating Method Calls 

And if method m is called, the roles of assume and 
assert are interchanged: 
  ... 
  y := m(x); 
  ... 
becomes 
  ... 
  assert x > 0; 
  y := m_x; // m_x fresh variable 
  assume y == x*x; 
  ... 



Handling Loops 

• Dafny cannot know at compile-time how often a 
while loop is executed. 

• However, the verifier needs to consider all 
possible paths through the program. 

• Loop invariants enable the verifier to eliminate all 
loops in the program by using induction. 

• A loop invariant is a Boolean expression that 

– holds before the loop is entered for the first time 

– is maintained by each iteration of the loop 



Adding Loop Invariants 

method computeFib(n: nat) returns (m: nat)  

  ensures m == fib(n); 

{ 

  var i := 0; 

  var k := 1; 

      m := 0; 

  while (i < n)  

  { 

    m, k := k, m + k; 

    i := i + 1; 

  } 

} 

 

> dafny Fibonacci.dfy 

... A postcondition might not hold on this return path ... 



Adding Loop Invariants 

Loop invariants can be annotated using invariant expressions. 
 

method computeFib(n: nat) returns (m: nat)  

  ensures m == fib(n); 

{ 

  var i := 0; 

  var k := 1; 

      m := 0; 

  while (i < n)  

    invariant 0 <= i <= n; 

    invariant k == fib(i+1) && m == fib(i); 

  { 

    m, k := k, m + k; 

    i := i + 1; 

  } 

} 



Termination and Ranking Functions 

• Dafny proves that all loops and (recursive) method and 
function calls terminate. 

• The termination argument can be provided in the form 
of a ranking function. 

• A ranking function (aka variant) is a function that  
– maps program states into some well-founded domain  

(e.g. the natural numbers) 
– decreases with every loop iteration / recursive call 

• Programmers can provide ranking functions using 
decreases expressions. 

• Dafny checks that these expressions are indeed ranking 
functions. 



Ranking Functions: Example 

var i := 0; 
while (i < n) 

  invariant i <= n; 

  decreases n - i; 

{ 

  i := i + 1; 

} 

• In many cases, Dafny is able to infer an 
appropriate decreases expression automatically. 



Lexicographic Ranking Functions 

• Dafny also supports lexicographic ranking functions 

• Example: Ackermann function 
 

function ack(m: nat, n: nat): nat  
  decreases m, n; 
{ 
  if m == 0 then n + 1 
  else if n == 0 then ack(m - 1, 1) 
  else ack(m - 1, ack(m, n - 1)) 
} 
 

Either m decreases or m remains the same and n 
decreases. 



Framing 

• Functions and methods need to specify their memory 
footprint, i.e., the locations they might access or modify. 

• A set of memory locations is called a frame. 

• Frame conditions: 
– reads S; 

specifies that a function reads only locations in frame S 

– modifies S; 
specifies that a method modifies only locations in frame S 

• Functions may read only those locations specified by 
their reads clauses. 

• Methods may access any location but may only modify 
those locations specified by their modifies clauses. 



Example of reads clause 
predicate sorted(a: array<int>) 
  requires a != null; 
  reads a; 
{ 
  forall j, k :: 0 <= j < k < a.Length ==> a[j] <= a[k] 
} 
 
method BinarySearch(a: array<int>, key: int)  
returns (index: int) 
  requires a != null && sorted(a); 
  ensures ... 
{ 
  ... 
} 
 

Predicate sorted may read any cell of array a. 
 



There are limits to what Dafny can prove 

predicate isPrime (x: nat) 
{ x > 1 && forall y :: 1 < y < x ==> x % y != 0 } 

predicate isOdd (x: nat) { x % 2 != 0 } 

ghost method VinogradovsTheorem() 

  ensures exists k : nat ::  

    forall x :: x >= k && isOdd(x) ==>  

      exists y1 : nat, y2 : nat, y3 : nat ::    

        isPrime(y1) && isPrime(y2) && isPrime(y3) &&  

        x == y1 + y2 + y3; 

{ } 

 

> dafny Vinogradov.dfy  

Dafny program verifier finished with 2 verified, 1 error. 



Dealing with Incompleteness 

Common sources of incompleteness 

• quantifiers (in particular, if nested and alternating) 
exists ... :: forall ... :: exists :: ... 

• non-linear integer arithmetic 

• properties that require induction proofs 

 

Often, problems with incompleteness can be resolved by  
guiding the proof search, e.g. by 

• inserting intermediate assertions, 

• providing witnesses for existential quantifiers, 

• making induction explicit. 



Demos 

• Fibonacci numbers 

• Binary search 

• Array sets 

• Schorr-Waite algorithm 

 

Many more examples included in the Boogie 
source code distribution. 

 


