
Rigorous Software Development
CSCI-GA 3033-009

 Instructor: Thomas Wies

Spring 2013

Lecture 7

Today’s Topic:
Automated Test Case Generation

How to Test Effectively?

public class Factorial {
 /*@ requires n >= 0;
 @ ensures \result > 0;
 @*/
 public static int factorial (int n) {
 int result = n;
 while (--n > 0) result *= n;
 return result;
 }

 public static void main (String[] param) {
 int n = Integer.parseInt(param[0]);
 int fact_n = factorial(n);
 System.out.println("n: " + n + ", n!: " + fact_n);
 }
}

Writing a main method for each test case does not scale.

public void enqueue(Comparable o) {

 if (numElems >= elems.length) grow();

 int pos = numElems++;

 int parent = pos / 2;

 while (pos > 0 && elems[parent].compareTo(o) > 0) {

 elems[pos] = elems[parent];

 pos = parent;

 parent = pos / 2;

 }

 elems[pos] = o;

}

How to Test Effectively?

Faulty implementation of enqueue on binary heap:

Writing all test cases manually does not scale.

Automated Testing

• Unit Testing: write code to automatically test your code.

• A unit test is a test suite for a unit (class/module) of a
program and consists of

– setup code to initialize the tested class;
(test fixture/preamble)

– tear down code to clean up after testing;

– test cases that call methods of the tested class with
appropriate inputs

– check the result of each call (test oracle)

• Once test suites are written, they are easy to run
repeatedly (regression testing).

Unit Testing in Java: JUnit

• A popular framework for unit testing in Java
– Frameworks are libraries with gaps

– Programmer writes classes following particular
conventions to fill in the gaps

– Result is the complete product

• JUnit automates
– the execution and analysis of unit tests;

– generation of tests cases from parameterized test
oracles and user-provided test data.

JUnit Example
import static org.junit.Assert.*;
import org.junit.*;
...
public class PriorityQueueTest {
 private PriorityQueue pq;

 @Before public void setUp () { pq = new Heap(); }
 @After public void tearDown () { pa = null; }

 @Test public void enqueueTest () {
 Integer value = new Integer(5);
 pq.enqueue(value);
 assertEquals(pq.removeFirst, value);
 }
 ...
}

Drawbacks of JUnit

• Low degree of automation

– Programmer still needs to write all the test cases

• Redundant specification

– Duplication between checks in test oracles and
formal specification
(e.g. provided as JML annotations)

Automated Test Generation

• Black box testing

– Implementation is unknown

– Test data generated from spec (e.g., randomly)

– Does not require source code

– Can generate insufficient/irrelevant test data

• White box testing

– Implementation is analyzed to generate test data for it

– Requires source or byte code

– Can use full information from code

Automated Test Generation Methods

• Methods derived from black box testing

– Generate test cases from analyzing formal
specification or formal model of implementation
under test (IUT)

• Methods derived from white box testing

– Code-based test generation that uses symbolic
execution of IUT

We will focus on black box testing

Specification-Based Test Generation

• Generate test cases from analyzing formal
specification or formal model of implementation
under test (IUT)
– Black box technology with according pros and cons

– Many tools, commercial as well as academic:
JMLUnit, JMLUnitNG, BZ-TT, JML-TT, UniTesK, JTest,
TestEra, Korat, Cow Suite, UTJML, . . .

– Various specification languages:
B, Z, Statecharts, JML, ...

– Detailed formal specification/system model required
(here: JML)

Specification-Based Test Generation

• We use design-by-contract and JML as formal
specification methodology:

– View JML method contract as formal description of
all anticipated runs

Specification-Based Test Generation

• Approach: Look at one method and its JML contract at
a time (unit testing)
1. Specialize JML contract to representative selection of

concrete runs
• concentrate on precondition (requires clause)

• assumes that precondition species all anticipated input

• analysis of implicit and explicit logical disjunctions in
precondition

• choose representative value for each atomic disjunct

2. Turn these representative program runs into executable
test cases

3. Synthesize test oracle from postcondition of contract

Contracts and Test Cases

/*@ public normal_behavior

@ requires Pre;

@ ensures Post;

@*/

public void m() { ... }

• All prerequisites for intended behavior contained in
requires clause

• Unless doing robustness testing, consider behavior
violating preconditions irrelevant

• State at start of IUT execution must make precondition true

Test Case Generation: Example

public class Traffic {
 private /*@ spec_public @*/ boolean red, green, yellow;
 private /*@ spec_public @*/ boolean drive, brake, halt;
 /*@ public normal_behavior
 @ requires red || yellow || green;
 @ ensures \old(red) ==> halt &&
 @ \old(yellow) ==> brake;
 @*/
 public boolean setAction() {
 // implementation
 }
}

Which test cases should be generated?

Data-Driven Test Case Generation

• Generate a test case for each possible value of each
input variable

– Combinatorial explosion
(already 26

 cases for our simple example)

– Infinitely many test cases for unbounded data structures

– Some resulting test cases unrelated to specification or
IUT

• Restriction to test cases that satisfy precondition?

• Insufficient (still too many), but gives the right clue!

Coverage Criteria for
Specification-Based Testing

Example
 requires red || yellow || green;

is true even for red=yellow=green=true

How many different test cases to generate?

Create test cases that make parts of precondition true:

• At least one test per spec case (Decision Coverage)

• One for each disjunct in precondition
(Disjunctive Coverage)

• All disjunctive combinations (Multiple Condition Coverage)

• Criteria based on making predicates true/false, etc.

Disjunctive Coverage

/*@ public normal_behavior

 @ requires red || yellow || green;

 @ ensures \old(red) ==> halt &&

 @ \old(yellow) ==> brake;

 @*/

Disjunctive analysis of precondition suggests
minimum of three test cases that relate to
precondition.

Disjunctive Coverage

• Definition (Disjunctive Normal Form (DNF))
A requires clause of a JML contract is in DNF when it
has the form
 D1 || D2 || ... || Dn
where each Di does not contain an explicit or implicit
disjunction.

• Disjunctive Coverage:
For each disjunct D of precondition in DNF

– create a test case whose initial state makes D true
and as many other disjuncts as possible false

Disjunctive Coverage

Example:
@ requires red || yellow || green;

gives rise to three test cases

• red=true; yellow=green=false

• yellow=true; red=green=false

• green=true; red=yellow=false

Importance of Establishing DNF Syntactically

• Implicit logical disjunctions must be made explicit by
computing DNF: e.g. replace A ==> B with !A || B, etc.

Dealing with Existential Quantification

Example (Square root)
/*@ public normal_behavior
 @ requires n>=0 && (\exists int r; r >= 0 && r*r
== n);
 @ ensures ... @*/
public static final int sqrt(int n) { ... }

Where is the disjunction in the precondition?

Existential quantifier as disjunction:
• Existentially quantified expression (\exists int r; P(r))
• Rewrite as: P(MIN_VALUE)|| ... || P(0)|| ... || P(MAX_VALUE)
• Get rid of those P(i) that are false: P(0)|| ... || P(46340)
• Still too many cases. . .

Partitioning of Large Input Domains

• Partition large/infinite domains in finitely many equivalence
classes

• Partitioning tries to achieve that the same computation path is
taken for all input values within a potential equivalence class.

• Then, one value from each class is sufficient to check for defects.

• As we don't know the IUT, correct partitioning is in general
unattainable.

• Judicious selection and good heuristics can make it work in
practice.

MIN_VALUE MAX_VALUE negative values positive values 0

-231 231 - 1 -17 42 0

Boundary Values

Example (Square)
/*@ public normal_behavior

 @ requires n>=0 && n*n >= 0;

 @ ensures \result >=0 && \result == n*n;

 @*/

public static final int square(int n) { ... }

Include boundary values of ordered domains as class
representatives.

Which are suitable boundary values for n in this example?

Implicit Disjunctions, Part I

Example (Binary search, target not found)
/*@ public normal_behavior
 @ requires (\forall int i; 0 < i && i < array.length;
 @ array[i-1] <= array[i]);
 @ (\forall int i; 0 <= i && i < array.length;
 @ array[i] != target);
 @ ensures \result == -1;
 @*/
int search(int array[], int target) { ... }

No disjunction in precondition!?

We can freely choose array, length, and target in
precondition!

Free Variables

• Free variables:
– Values of variables without explicit quantification can

be freely chosen
– Amounts to implicit existential quantification over

possible values

• How choose representatives from types of free

variables?
– There are infinitely many different arrays . . .
– Before defining equivalence classes, need to

enumerate all values

Data Generation for Free Variables

Systematic enumeration of values by data generation principle

Assume declaration: int[] ar;, then the array ar is

1. either the null array: int[] ar = null;

2. or the empty int array: int[] ar = new int[0];

3. or an int array with one element
a. int[] ar = { MIN_VALUE };

b. int[] ar = { MIN_VALUE + 1 };

c. ...

4. or an int array with two elements . . .

5. . . .

Combining the Heuristics
Example (Binary search, target found)
requires (\exists int i; 0 <= i && i < array.length

 && array[i] == target) &&

 (\forall int i; 0 < i && i < array.length;

 array[i-1] <= array[i]);

Apply test generation principles:

1. Use data generation for unbound int array

2. Choose equivalence classes and representatives for:
– array: int[] empty, singleton, two elements (usually, need to stop here)

– target: int (include boundaries)

3. Generate test cases that make precondition true

Combining the Heuristics
Example (Binary search, target found)
requires (\exists int i; 0 <= i && i < array.length

 && array[i] == target) &&

 (\forall int i; 0 < i && i < array.length;

 array[i-1] <= array[i]);

• empty array: precondition cannot be made true, no test case

• singleton array, target must be the only array element
array = { 0 }; target = 0;
array = { 1 }; target = 1;

• two-element sorted array, target occurs in array
array = { 0, 0 }; target = 0;
array = { 0, 1 }; target = 0;
array = { 1, 1 }; target = 1;

Implicit Disjunctions, Part II

Example (List Copy)
/*@ public normal_behavior

 @ requires true; // src, dst non-nullable by default

 @ ensures ...

 @*/

static void java.util.Collections.copy(List src, List dst)

Aliasing and Exceptions

• In Java object references src, dst can be aliased, i.e., src==dst
– Aliasing usually unintended - exclusion often forgotten in contract

• Preconditions can be (unintentionally) too weak
– Exception thrown when src.length > dst.length

Generate test cases that enforce/prevent aliasing and throwing
exceptions (when not excluded by contract).

The Postcondition as Test Oracle

• Oracle Problem in Automated Testing

– How to determine automatically whether a test
run succeeded?

– The ensures clause of a JML contract provides
verdict on success provided that requires clause
is true for given test case

– Use ensures clauses of contracts (and class
invariant) as test oracles

Executable JML Expressions

• How to determine whether a JML expression
is true in a program state?

• It is expensive to check whether a JML
expression is true in a state
– Corresponds to first-order model checking,

because JML ~ FOL

– PSPACE-complete problem, efficient solutions
exist only for special cases

– Identify a syntactic fragment of JML that can be
mapped into Java

Executable JML Expressions

Example
\exists int i; 0 <= i && i < ar.length && ar[i] == target

is of the form
\exists int i; guard(i) && test(i)

where

• guard() is Java expression with fixed upper/lower bound

• test() is executable Java expression

Guarded existential JML quantifiers as Java (Example)
for (int i = 0; 0 <= i && i < ar.length; i++) {

 if (ar[i] == target) { return true; }

} return false;

Tools for JML-based Test Case Generation

JMLUnit is a unit testing framework for JML built on top of JUnit

User:
• writes specifications
• supplies test data of each type

JMLUnit automatically:
• constructs test cases from test data
• assembles test cases into test suites
• executes test suites
• decides success or failure
• reports results

JMLUnit: Unit Testing for JML

Test Cases and Suites

• A test case (o,x) consists of:

– a non-null receiver object o

– a sequence x of argument objects

• A test suite for method m is a set of
test cases with:

– receiver of m’s receiver type

– arguments of m’s argument types

Test Suites are Cross Products

• For method enqueue:
{ (pq, v) | pq ∈ PriorityQueueTestData, v ∈ IntegerTestData }

• Default is to use all data for all methods

– Filtered automatically by preconditions

– Users can filter manually if desired

• Factory method allows user control of adding
test cases to test suite.

Errors and Meaningless Test Cases

When testing method m:

check m’s postcondition

receiver.m(arg1, ...)

check m’s precondition

{ ... }

check f’s precondition

{ ...
 x.f(...);
} check f’s postcondition

entry precondition violation

internal precondition violation

other violation

Entry precondition violation) test case rejected
Internal or other violation) error reported

Supplying Test Data

• Programmer supplies data in form of strategies

• A strategy for type T:

– has method that returns iterator yielding T

• Strategies allow reuse of test data

• JMLUnit provides a framework of built-in
strategies

– Strategies for built-in types

– Allow for easy extension, composition, filtering, etc.

Strategies for Test Data

• Standard strategies:

– Immutable: iterate over array of values;

– Cloneable: iterate over array, clone each;

– Other: create objects each time.

• Cloning and creating from scratch can prevent
unwanted interference between tests.

• JMLUnit tries to guess appropriate strategy.

Example Strategies

import org.jmlspecs.jmlunit.strategies.*;

import junit.framework.*;

public abstract class Heap_JML_TestData extends TestCase {

 public IntIterator vCompIter(String methodName, int argNum)

 { return vComparableStrategy.ComparableIterator(); }

 private StrategyType vComparableStrategy =

 new ImmutableObjectAbstractStrategy() {

 protected Object[] addData() {

 return new Integer[] {10, -22, 55, 3000};

 }

 };

 ...

Example Strategies

 ...
 public IndefiniteIterator vHeapIter (String methodName, int argNum)
 { return vPointStrategy.iterator(); }

 private StrategyType vHeapStrategy =
 new NewObjectAbstractStrategy() {
 protected Object make(int n) {
 switch (n) {
 case 0: return new Heap();
 case 1: return new Heap(new Integer {1, 2, 3});
 default: break;
 }
 throw new NoSuchElementException();
 }
 };
}

Using JMLUnit

• JML-compile the class to be tested
jmlc Factorial.java

• generate the test suite and test data templates
jmlunit Factorial.java

• supply the test data
$EDITOR Factorial_JML_TestData.java

• compile the test suite
javac Factorial_JML_Test*.java

• execute the test suite
jmlrac Factorial_JML_Test

Drawbacks of JMLUnit

• Limited degree of automation:
– only test data for primitive types is generated

automatically

• Limited degree of granularity:
– fine-grained filtering of test data for individual methods

is difficult

• Limited coverage:
– no guarantee that a certain coverage criterion is

satisfied

• Limited relevancy of generated test cases
– black box testing

Some Alternatives to JMLUnit

• JMLUnitNG
– similar feature set as JMLUnit, better memory

footprint, improved filtering of test data, ...

• Korat, TestEra, UDITA
– automated generation of test data for complex

data types (use techniques similar to Alloy)

• KeY Unit Test Generator, Java Pathfinder
– based on symbolic execution + constraint solving

(white box testing)

Automated Test Case Generation with Korat

• Provides test case generation for complex data
types.

• Supports checking of JML specifications.

• User provides for each complex data type
– a Java predicate capturing the representation

invariant of the data type;

– a finitization of the data type.

• Korat generates test cases for all instances that
satisfy both the finitization constraints and the
representation predicate (similar to Alloy)

Example: Binary Trees

import java.util.*;
class BinaryTree {
 private Node root;
 private int size;
 static class Node {
 private Node left;
 private Node right;
 }
 ...
}

Representation Predicate for BinaryTree

public boolean repOK() {
 if (root == null) return size == 0;
 Set visited = new HashSet();
 visited.add(root);
 LinkedList workList = new LinkedList();
 workList.add(root);
 while (!workList.isEmpty()) {
 Node current = (Node) workList.removeFirst();
 if (current.left != null) {
 if (!visited.add(current.left)) return false;
 worklist.add(current.left);
 }
 if (current.right!= null) { ... }
 }
 return visited.size () == size;
}

Finitization for BinaryTree

public static Finitization finBinaryTree (int NUM_Node) {

 IFinitization f = new Finitization(BinaryTree.class);

 IObjSet nodes = f.createObjSet(Node.class, NUM_Node, true);

 // #Node = NUM_Node

 f.set(“root”, nodes); // root in null + Node

 IIntSet sizes = f.createIntSet(Num_Node);

 f.set(“size”, sizes); // size = NUM_Node

 f.set(“Node.left”, nodes); // Node.left in null + Node

 f.set(“Node.right”, nodes); // Node.right in null + Node

 return f;

}

Finitization for BinaryTree

Instances generated for finBinaryTree(3)

right

left
right

right

right left

right
left

left left

Summary

• Black box vs. white box testing
• Black box testing ~ specification-based test generation
• Systematic test case generation from JML contracts guided

by a few heuristics
– Only generate test cases that make precondition true
– Each operation contract and each disjunction in precondition

gives rise to a separate test case
– Choose appropriate coverage criterion, e.g., disjunctive

coverage
– Large/infinite datatypes approximated by class representatives
– Values of free variables supplied by data generation
– Create separate test cases for potential aliases and exceptions

• Postconditions of contract and class invariants provide test
oracle

• Turn pre- and postconditions into executable Java code

